Spelling suggestions: "subject:"match""
61 |
Modelling and optimisation of batch distillation involving esterification and hydrolysis reaction systems. Modelling and optimisation of conventional and unconventional batch distillation process: Application to esterification of methanol and ethanol using acetic acid and hydrolysis of methyl lactate system.Edreder, E.A. January 2010 (has links)
Batch distillation with chemical reaction when takes place in the same unit is referred to
as batch reactive distillation process. The combination reduces the capital and operating
costs considerably. Among many different types of batch reactive distillation column
configurations, (a) conventional (b) inverted (c) semi-batch columns are considered
here.
Three reaction schemes such as (a) esterification of methanol (b) esterification of
ethanol (c) hydrolysis of methyl lactate are studied here. Four different types of
dynamic optimisation problems such as (a) maximum conversion (b) maximum
productivity (c) maximum profit and (d) minimum time are formulated in this work.
Optimal design and or operation policies are obtained for all the reaction schemes.
A detailed rigorous dynamic model consisting of mass, energy balances, chemical
reaction and thermodynamic properties is considered for the process. The model was
incorporated within the dynamic optimisation problems. Control Vector
Parameterisation (CVP) technique was used to convert the dynamic optimisation
problem into a nonlinear programming problem which was solved using efficient SQP
(Successive Quadratic Programming) method available within the gPROMS (general
PROcess Modelling System) software.
It is observed that multi-reflux ratio or linear reflux operation always led to better
performance in terms of conversion, productivity for all reaction schemes compared to
that obtained using single reflux operation.
Feed dilution (in the case of ethanol esterification) led to more profit even though
productivity was found to be lower. This was due to reduction in feed price because of
feed dilution. Semi-batch reactive distillation opertation (for ethanol esterification) led
to better conversion compared to conventional batch distillation, however, the total
amount of acetic acid (reactant) was greater in semi-batch operation. Optimisation of
design and operation (for ethanol esterification) clearly showed that a single cloumn
will not lead to profitable operation for all possible product demand profile. Also
change in feed and /or product price may lead to adjust the production target to
maximise the profitability.
In batch distillation, total reflux operation is recommended or observed at the begining
of the operation (as is the case for methnaol or ethanol esterification). However, in the
case of hydrolysis, total reflux operation was obseved at the end of the operation. This
was due to lactic acid (being the heaviest) was withrawn as the final bottom product. / Libyan Petroleum Institute
|
62 |
Operation and modeling of RO desalination process in batch modeBarello, M., Manca, D., Patel, Rajnikant, Mujtaba, Iqbal January 2014 (has links)
No / In this work, a reverse osmosis (RO) desalination process operating under batch mode is considered experimentally. The effect of operating parameters, such as pressure and feed salinity on the permeate quantity and salinity is evaluated. In addition, the water permeability constant, Kw, which is one of the main parameters that affect the optimal design and operation of RO processes is evaluated as a function of changing feed salinity and pressure using the experimental data and two literature models. A strong pressure dependence of the water permeability constant is observed in line with earlier observations. Interestingly, a strong concentration dependence of the water permeability constant is also observed which has always been neglected or ignored in the literature. Finally, for a given pressure, concentration dependent correlations for Kw are developed and are used in the full process model (described by a system of ordinary differential and algebraic equations) for further simulation studies and to validate the experimental results.
|
63 |
Optimisation of semi-batch reactive distillation column for the synthesis of methyl palmitateAqar, D.Y., Abbas, A.S., Patel, Rajnikant, Mujtaba, Iqbal 28 March 2022 (has links)
Yes / Synthesis of methyl palmitate (MP) has not been considered in the past using a reactive distillation process (continuous or batch) due to the challenge of keeping the reactants palmitic acid (PA) and methanol (MeOH) together in the reactive zone. MeOH, being the lightest in the reaction mixture, travels up the distillation column as distillation proceeds and will be removed from the system via the distillate in a conventional batch reactive distillation (CBRD) column and thus will limit the conversion of PA. Therefore, in this work semi-batch reactive distillation (SBRD) column is proposed where additional methanol will be fed at the bottom of the column in a continuous mode allowing the chemical reaction to continue. However, as water (H2O) is one of the reaction products and is the second lightest component in the mixture, it will travel up the column next and will be removed in the distillate tank. Also due to wide difference in the boiling points of the reaction products and due to diminishing amount of water in the reboiler, the backward reaction will not be a dominating factor and therefore ignored in this work. With this backdrop, optimal performance of the SBRD column is evaluated in terms of conversion of PA to MP and energy consumption via minimization of the operating batch time for a wide range on MP purity.
|
64 |
Assessment of control techniques for the dynamic optimization of (semi-)batch reactorsPahija, E., Manenti, F., Mujtaba, Iqbal, Rossi, F. 18 February 2014 (has links)
Yes / This work investigates how batch reactors can be optimized to increase the yield of a desired product coupling two appealing techniques for process control and optimization: the nonlinear model predictive control (NMPC) and the dynamic real-time optimization (D-RTO). The overall optimization problem is formulated and applied to calculate the optimal operating parameters of a selected case study and the numerical results are compared to the traditional control/optimization techniques. It has been demonstrated in our previous work (Pahija et al, Selecting the best control methodology to improve the efficiency of discontinuous reactors, Computer Aided Chemical Engineering, 32, 805-810, 2013) that the control strategy can significantly affect optimization results and that the appropriate selection of the control methodology is crucial to obtain the real operational optimum (with some percent of improved yield). In this context, coupling NMPC and D-RTO seems to be the ideal way to improve the process yield. The results presented in this work have been obtained by using gPROMS® and MS C++ with algorithms of BzzMath library.
|
65 |
LRD and SRD Traffics: Review of Results and Open Issues for the Batch Renewal ProcessKouvatsos, Demetres D., Fretwell, Rod J. January 2002 (has links)
No / The batch renewal process is the least-biased choice of process given only the measures of count correlation and interval correlation at all lags.This paper reviews the batch renewal process, both for LRD (long-range-dependent) traffic and for SRD (short-range-dependent) traffic in the discrete space-discrete time domain, and in the wider context of general traffic in that domain. It shows some applications of the batch renewal process in simple queues and in queueing network models. The paper concludes with open research problems and issues arising from the discussion.
|
66 |
Bayesian optimization with empirical constraintsAzimi, Javad 05 September 2012 (has links)
Bayesian Optimization (BO) methods are often used to optimize an unknown function f(���) that is costly to evaluate. They typically work in an iterative manner. In each iteration, given a set of observation points, BO algorithms select k ��� 1 points to be evaluated. The results of those points are then added to the set of observations and the procedure is repeated until a stopping criterion is met. The goal is to optimize the function f(���) with a small number of experiment evaluations. While this problem has been extensively studied, most existing approaches ignored some real world constraints frequently encountered in practical applications. In this thesis, we extend the BO framework in a number of important directions to incorporate some of these constraints.
First, we introduce a constrained BO framework where instead of selecting a precise point at each iteration, we request a constrained experiment that is characterized by a hyper-rectangle in the input space. We introduce efficient sequential and non-sequential algorithms to select a set of constrained experiments that best optimize f(���) within a given budget. Second, we introduce one of the first attempts in batch BO where instead of selecting one experiment at each iteration, a set of k > 1 experiments is selected. This can significantly speedup the overall running time of BO. Third, we introduce scheduling algorithms for the BO framework when: 1) it is possible to run concurrent experiments; 2) the durations of experiments are stochastic, but with a known distribution; and 3) there is a limited number of experiments to run in a fixed amount of time. We propose both online and offline scheduling algorithms that effectively handle these constraints. Finally, we introduce a hybrid BO approach which switches between the sequential and batch mode. The proposed hybrid approach provides us with a substantial speedup against sequential policies without significant performance loss. / Graduation date: 2013
|
67 |
Run-to-run modelling and control of batch processesDuran Villalobos, Carlos Alberto January 2016 (has links)
The University of ManchesterCarlos Alberto Duran VillalobosDoctor of Philosophy in the Faculty of Engineering and Physical SciencesDecember 2015This thesis presents an innovative batch-to-batch optimisation technique that was able to improve the productivity of two benchmark fed-batch fermentation simulators: Saccharomyces cerevisiae and Penicillin production. In developing the proposed technique, several important challenges needed to be addressed:For example, the technique relied on the use of a linear Multiway Partial Least Squares (MPLS) model to adapt from one operating region to another as productivity increased to estimate the end-point quality of each batch accurately. The proposed optimisation technique utilises a Quadratic Programming (QP) formulation to calculate the Manipulated Variable Trajectory (MVT) from one batch to the next. The main advantage of the proposed optimisation technique compared with other approaches that have been published was the increase of yield and the reduction of convergence speed to obtain an optimal MVT. Validity Constraints were also included into the batch-to-batch optimisation to restrict the QP calculations to the space only described by useful predictions of the MPLS model. The results from experiments over the two simulators showed that the validity constraints slowed the rate of convergence of the optimisation technique and in some cases resulted in a slight reduction in final yield. However, the introduction of the validity constraints did improve the consistency of the batch optimisation. Another important contribution of this thesis were a series of experiments that were implemented utilising a variety of smoothing techniques used in MPLS modelling combined with the proposed batch-to-batch optimisation technique. From the results of these experiments, it was clear that the MPLS model prediction accuracy did not significantly improve using these smoothing techniques. However, the batch-to-batch optimisation technique did show improvements when filtering was implemented.
|
68 |
Diferentes parâmetros de produção de goma xantana pela fermentação de Xanthomonas campestris pv campestrisOliveira, Kassandra Sussi Mustafé [UNESP] 01 October 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:24Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-10-01Bitstream added on 2014-06-13T19:26:15Z : No. of bitstreams: 1
oliveira_ksm_me_rcla.pdf: 637533 bytes, checksum: f315d101c191461c95fee11e9fd4d042 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A goma xantana é um biopolímero produzido por Xanthomonas campestris muito utilizado como agente espessante. A síntese do biopolímero pode ocorrer em variadas condições, no entanto a qualidade a goma produzida também muda. Alguns trabalhos sugerem que a produção de goma xantana por batelada alimentada pode resultar num desempenho melhor em concentração de goma, rendimento e produtividade quando comparado à batelada simples. Nesse trabalho foram avaliados a influência de diferentes metodologias de oferta de sacarose na produção de goma xantana e sua qualidade, e também a produtividade e rendimento do processo. As melhores metodologias foram testadas em bioreator de 7,5L. Também foram avaliadas diferentes metodologias de separação do biopolímero (com o acréscimo de sais ao caldo ou ao etanol na etapa de extração da goma), bem como a influência de surfactantes e sais na viscosidade da goma em solução. Em incubadora com agitação orbital a quantidade e qualidade de goma xantana produzida a 25°C foram mais interessantes. Em fermentador, a produção de xantana a 30°C em meio contendo 2% de sacarose pode ter seu tempo reduzido sem que isso afete a concentração e a viscosidade da goma obtida. A viscosidade do biopolímero produzido a 25°C em meio contendo 4% de sacarose foi superior (365,9 cP) quando comparado ao biopolímero produzido a 30°C, em meio contendo 2% de sacarose. A produtividade e concentração de goma obtidos estão entre os encontrados na literatura (0,34 g xantana L-1 h-1 e 24 g xantana L-1). O uso de sais na extração da goma permite a redução do solvente utilizado e uma goma de melhor qualidade. Destacaram-se a utilização dos sais NaCl na concentração de 0,01% e CaCl2 a 0,05%. O tratamento térmico aumenta a quantidade e a viscosidade do biopolímero além de eliminar as células. A adição de 0,01% de SDS e de 0,001% de Tween 80 na solução de goma xantana aumenta sua viscosidade. / Xanthan gum is a biopolymer produced by Xanthomonas campestris, used as a thickener. Its synthesis can happen in different conditions, but quality of xanthan produced also changes. Studies suggest that fed batch xanthan gum production can result in better performance in gum concentration, yield and productivity, when compared to batch. This work evaluates the influence of different methods of sucrose supply on xanthan gum quantity and quality, as well its productivity and process efficiency. The best methods were tested in a bioreactor of 7.5 L. Were also evaluated different separation methods (with the addition of salt in broth or ethanol during the separation phase) and the influence of surfactants on viscosity on xanthan solution. In shaker incubator, the gum produced at 25°C was more interesting. In bioreactor, the xanthan production at 30°C using 2% sucrose can be reduced to 40 hours, without affecting concentration and viscosity of the gum obtained. The viscosity of the biopolymer produced at 25°C using 4% sucrose were higher (365.9 cP) when compared to biopolymer produced at 30°C with 2% sucrose. Concentration and yield are similar than those found in the literature (0.34 g xanthan L-1 h-1 and 24 g xanthan L-1). The use of salts in xanthan extraction reduces the input and a better quality gum. The salts NaCl (concentration of 0.01%) and CaCl2 (0.05%) showed best results. Heat treatment increases the xanthan quantity and viscosity and eliminates cells from broth. The addition of 0.01% SDS and 0.001% Tween 80 in the solution of xanthan gum increases its viscosity.
|
69 |
Diferentes parâmetros de produção de goma xantana pela fermentação de Xanthomonas campestris pv campestris /Oliveira, Kassandra Sussi Mustafé. January 2009 (has links)
Orientador: Pedro de Oliva Neto / Banca: Jonas Contiero / Banca: Ranulfo Monte Alegre / Resumo: A goma xantana é um biopolímero produzido por Xanthomonas campestris muito utilizado como agente espessante. A síntese do biopolímero pode ocorrer em variadas condições, no entanto a qualidade a goma produzida também muda. Alguns trabalhos sugerem que a produção de goma xantana por batelada alimentada pode resultar num desempenho melhor em concentração de goma, rendimento e produtividade quando comparado à batelada simples. Nesse trabalho foram avaliados a influência de diferentes metodologias de oferta de sacarose na produção de goma xantana e sua qualidade, e também a produtividade e rendimento do processo. As melhores metodologias foram testadas em bioreator de 7,5L. Também foram avaliadas diferentes metodologias de separação do biopolímero (com o acréscimo de sais ao caldo ou ao etanol na etapa de extração da goma), bem como a influência de surfactantes e sais na viscosidade da goma em solução. Em incubadora com agitação orbital a quantidade e qualidade de goma xantana produzida a 25°C foram mais interessantes. Em fermentador, a produção de xantana a 30°C em meio contendo 2% de sacarose pode ter seu tempo reduzido sem que isso afete a concentração e a viscosidade da goma obtida. A viscosidade do biopolímero produzido a 25°C em meio contendo 4% de sacarose foi superior (365,9 cP) quando comparado ao biopolímero produzido a 30°C, em meio contendo 2% de sacarose. A produtividade e concentração de goma obtidos estão entre os encontrados na literatura (0,34 g xantana L-1 h-1 e 24 g xantana L-1). O uso de sais na extração da goma permite a redução do solvente utilizado e uma goma de melhor qualidade. Destacaram-se a utilização dos sais NaCl na concentração de 0,01% e CaCl2 a 0,05%. O tratamento térmico aumenta a quantidade e a viscosidade do biopolímero além de eliminar as células. A adição de 0,01% de SDS e de 0,001% de Tween 80 na solução de goma xantana aumenta sua viscosidade. / Abstract: Xanthan gum is a biopolymer produced by Xanthomonas campestris, used as a thickener. Its synthesis can happen in different conditions, but quality of xanthan produced also changes. Studies suggest that fed batch xanthan gum production can result in better performance in gum concentration, yield and productivity, when compared to batch. This work evaluates the influence of different methods of sucrose supply on xanthan gum quantity and quality, as well its productivity and process efficiency. The best methods were tested in a bioreactor of 7.5 L. Were also evaluated different separation methods (with the addition of salt in broth or ethanol during the separation phase) and the influence of surfactants on viscosity on xanthan solution. In shaker incubator, the gum produced at 25°C was more interesting. In bioreactor, the xanthan production at 30°C using 2% sucrose can be reduced to 40 hours, without affecting concentration and viscosity of the gum obtained. The viscosity of the biopolymer produced at 25°C using 4% sucrose were higher (365.9 cP) when compared to biopolymer produced at 30°C with 2% sucrose. Concentration and yield are similar than those found in the literature (0.34 g xanthan L-1 h-1 and 24 g xanthan L-1). The use of salts in xanthan extraction reduces the input and a better quality gum. The salts NaCl (concentration of 0.01%) and CaCl2 (0.05%) showed best results. Heat treatment increases the xanthan quantity and viscosity and eliminates cells from broth. The addition of 0.01% SDS and 0.001% Tween 80 in the solution of xanthan gum increases its viscosity. / Mestre
|
70 |
Avaliação de materiais argilosos da Formação Corumbataí para uso em liners compactados (CCL) / Evaluation of clay materials from Corumbataí Formation to use in compressed liners (CCL)Amanda Francieli de Almeida 18 December 2015 (has links)
A disposição final dos resíduos, de forma a minimizar a contaminação das águas, é feita, em geral, em aterros sanitários os quais devem apresentar na base camadas de argila compactada (CCL) que também são conhecidas como liners. Esses sistemas de barreiras desempenham funções diversas, dentre as quais se destacam o isolamento do resíduo e a diminuição da infiltração e a minimização da migração de contaminantes (filtragem, sorção e outras reações geoquímicas) em direção à água subterrânea. O objetivo deste trabalho foi avaliar os materiais argilosos relacionados à Formação Corumbataí com o intuito de selecionar os materiais que reúnem as melhores características para serem usados em liners compactados. Os aspectos avaliados foram a retenção de contaminantes por meio dos ensaios de equilíbrio em lote (batch test) e percolação em coluna com solução de CuCl2.2H2O, e avaliação da resistência à compressão simples do solo compactado, para suportar as cargas exercidas em um aterro sanitário. Para os cálculos dos parâmetros de adsorção utilizando o batch test, procedeu-se à construção e linearização das isotermas e, a partir do coeficiente de determinação, foi possível observar que os melhores ajustes foram com os modelos linear e de Freundlich. A isoterma de melhor ajuste para o cátion foi à de Freundlich em todas as amostras, destacando principalmente AM-2 e AM-16 com R² de 0,9983 e 0,9978 respectivamente. Na percolação em coluna os valores do fator de retardamento (Rd) para o Cl- e Cu++ foram determinados utilizando os métodos de Freeze e Cherry (1979) e Shackelford (1994) nas curvas de chegada. Na resistência à compressão simples a amostra mais significativa foi a AM-3 que resistiu uma força média de 992,1 N, chegando a uma tensão média de 477,4 kPa. Após uma análise integrada as amostras com maior desempenho foram AM-2 e AM-3, sendo que a AM-2 não foi apta apenas em um cenário elaborado para analisar a resistência à compressão simples. / The final waste disposal is usually the landfills. In order to minimize water contamination because of the waste, the landfills ought to have layers of clay compacted (CCL). Those layers are also known as liners. The barriers system has many functions, for instance, the isolation of the waste, the reduction of infiltration and also the reduction of contaminants migrations (filtering, sorption and other geochemical reactions) toward groundwater. This paper aims to evaluate the clay materials presents in Corumbataí Formation. The main objective was to select materials that have the best characteristics to be used in compacted liner. The aspects that were analyzed includes: the retentions of contaminants using batch test, and also column percolation with CuCl2.2H2O solution. It was also evaluated the resistance of the compacted soil to stand the loads exerted in a landfill. To calculate the adsorption parameters by using the batch test, the constructions and also the linearization of the isotherms were made, through coefficient of determination as its base. Because of those tests it was possible to identify that the best settings are the linear model and also the Freundlich model. The isotherm that presented the best adjustment for the cation was Freundlich isotherm. It was the best adjustment in all samples, mainly in AM-2 and also in AM-16 with R² of 0,9983 and 0,9978 respectively. In percolation column the values of retardation factor (Rd) for Cl- and also for Cu++, were determined by using Freeze and Cherry (1979) and also Shackelford\'s methods (1994) on breakthrough curves. In the \"compressive strength\", the most significant sample was AM-3 that resisted an average force of 992.1 N, reaching an average stress of 477.4 kPa. After an integrated analysis, the best samples were AM-2 and AM-3. However, the AM-2 was not able to work in a scenario that was created to analyze an unconfined compressive strength.
|
Page generated in 0.0346 seconds