1 |
Synthèse et étude électrochimique de matériaux silicates utilisés en tant qu'électrode positive pour les accumulateurs Li-Ion / Synthesis and electrochemical study of silicate materials for Li-ion batteriesLefevre, Guillaume 23 February 2018 (has links)
La société fait face à des défis tels que le réchauffement climatique et la diminution des ressources. Ils sont intimement liés à l’énergie et à son stockage, dont les batteries Li-ion sont à ce jour la technologie la plus utilisée. L’amélioration de la densité d’énergie et la sécurité, ainsi que la réduction des éléments toxiques, rares et coûteux sont recherchées. Durant cette étude, les électrodes positives basées sur des matériaux polyanioniques silicates sont considérées pour répondre à ces demandes. Deux composés sont particulièrement étudiés, Li2MnSiO4, dont la capacité spécifique est supérieure à 300mAh.g-1 et LiMnSiO4, de structure olivine, encore jamais répertorié, dont la capacité (174mAh.g-1) et le potentiel (>3.7V) théoriques sont prometteurs.Dans un premier volet, un nanomatériau Li2MnSiO4/C est synthétisé par voie sol-gel. Ses propriétés électrochimiques et structurales sont étudiées. Les différents phénomènes de dégradation observés sont discutés par la suite. Une stratégie de dopage est proposée pour limiter la perte de capacité en cyclage par stabilisation de la structure via le composé Li2-xMn1+xAlxSi1-xO4/C. Enfin l’influence du stockage à l’air de Li2MnSiO4/C est mise en évidence et un mécanisme concernant la formation de Li2CO3 est proposé.En seconde partie, une synthèse de LiMnSiO4/C en plusieurs étapes est proposée à partir de l’olivine MgMnSiO4/C, suivie d’une oxydation chimique et d’une lithiation électrochimique. Chaque étape est caractérisée pour déterminer la structure, l’état d’oxydation et le comportement électrochimique du matériau obtenu.Pour conclure cette étude, les deux matériaux optimisés ont été testés suivant les profils d’applications spatiales (satellites LEO et GEO). La meilleure cyclablité de LiMnSiO4/C est confirmée ainsi que sa légitimité en tant qu’alternative prometteuse au matériau conventionnel Li2MnSiO4/C. / The society is currently facing challenges such as global warming and rarefaction of resources. These issues have a factor in common, energy and more specifically its storage, for which lithium-ion batteries are today the state-of-the-art technology. Researchers and industries are focusing on the increase of energy density and safety and the reduction of toxic, costly and rare elements. In this study, positive electrodes based on silicate polyanionic materials are considered to fulfill these requirements. Two materials are studied, Li2MnSiO4 that exhibits appealing large capacity (>300mAh.g-1) and an unreported LiMnSiO4 with olivine structure that would have medium capacity (174 mAh.g-1) but associated with a high voltage (>3.7V).In a first part, a nanocomposite material Li2MnSiO4/C is synthesized by sol-gel route. Its electrochemical and structural properties are studied. The different degradation phenomena are discussed thereafter. Al-doped and Mn-rich Li2-xMn1+xAlxSi1-xO4/C is also proposed to lower the structural collapse during cycling. Finally the impact of its storage in air is assessed and a mechanism is proposed to explain the formation of Li2CO3.In a second part, a multistep synthesis is designed starting from olivine MgMnSiO4/C, followed by chemical oxidation and electrochemical lithiation to obtain LiMnSiO4/C. Each step is characterized to assess the structure, oxidation degree and electrochemical behavior of the final material.Finally, the testing of the two materials for space applications (LEO and GEO satellites profiles) confirms the better cyclability of LiMnSiO4/C and its validity as promising alternative to the conventional unstable Li2MnSiO4 compound
|
2 |
Study and improve the electrochemical behaviour of new negative electrodes for li-ion batteries / Etude et amélioration des propriétés électrochimiques des nouvelles électrodes négatives pour les batteries li-ionTesfaye, Alexander Teklit 14 November 2017 (has links)
Les accumulateurs commerciaux à base de lithium-ion (LIB) utilisent des matériaux à base de carbone (graphite) comme électrode négative; cependant, la technologie atteint sa limite en raison de la faible capacité spécifique théorique. L'objectif de cette thèse est d'étudier le comportement électrochimique de trois nouvelles anodes à haute capacité (SnSb microsturé, Ti3SiC2 anodisé et nanotubes de Si poreux) comme alternatives au graphite, d'identifier les principaux paramètres responsables de la perte de capacité et de proposer une solution commune pour améliorer leurs performances électrochimiques. Ces matériaux d'électrode présentent une bonne performance électrochimique qui les rend prometteurs pour remplacer le carbone en tant qu'électrode négative pour batteries au Li-ion. Cependant, ils présentent une perte de capacité initiale importante qui doit être résolue avant la commercialisation. Les limitations observées sont attribuées à de nombreux facteurs, et en particulier à la formation et la croissance d’une SEI à la surface des matériaux. En raison de la forte perte de la capacité et du manque d’études détaillées sur les matériaux à base d’étain, en particulier le SnSb, nous avons concentré la suite du travail à la formation et la croissance de la SEI sur cette électrode négative. L'évolution des propriétés électriques, de la composition chimique et de la morphologie du SnSb microstructuré a été étudiée en détail pour comprendre son comportement électrochimique. Pour limiter l’effet de la SEI, nous avons proposé d’appliquer un film protecteur à la surface de l'électrode. / Currently, commercial lithium ion batteries (LIBs) use carbon based materials as negative electrode; however the technology is reaching its limit because of the low theoretical specific capacity. The objective of this thesis is to study the electrochemical behaviour of three different new high capacity anodes (SnSb alloy, anodized Ti3SiC2, and Si nanotubes) as alternative to graphite, identify the main parameters responsible for the capacity fading, and propose a versatile solution to improve their electrochemical performance. These electrode materials exhibit good electrochemical performance which makes them promising candidates to replace carbon as a negative electrode for LIBs. However, their limitation due to capacity fading and the large initial irreversible capacity loss must be resolved before commercialization. The observed limitations are attributed to many factors, and particularly, to the formation and growth of SEI layer which is the common factor for all the three electrode materials. Because of the strong capacity fade and lack of many detailed studies on the Sn-based materials, specifically SnSb, we focus our study to investigate the formation and growth of SEI layer on SnSb electrode. The evolution of the electrical, compositional, and morphological properties have been investigated in detail to understand the electrochemical behavior of micron-sized SnSb. To limit the capacity fade, we propose the use of a protective film on the electrode surface. The electrochemical performance of micron-sized SnSb electrode coated with thermoplastic elastomer protective film, namely poly(styrene-b-2-hydroxyethyl acrylate) PS-b-PHEA has been achieved.
|
3 |
Etude du vieillissement de batteries lithium-ion fonctionnant à haute température par Spectroscopie Photoélectronique à rayonnement X (XPS). / Study of aging mechanisms of lithium-ion batteries operating at high temperature by X-ray Photoelectron Spectroscopy.Bodenes, Lucille 21 December 2012 (has links)
Les accumulateurs lithium-ion occupent aujourd’hui une place prédominante dans le domaine du stockage de l’énergie. Leur fonctionnement et les phénomènes impliqués dans leur vieillissement sont relativement bien connus, aux températures d’utilisation proches de la température ambiante. Cependant, leur utilisation dans le cadre d’applications dites « haute température », telles que le forage pétrolier, la stérilisation « in situ » ou la géolocalisation, nécessite la levée de certains verrous techniques : la stabilité de l’électrolyte et des liants d’électrodes, la compatibilité électrolyte/séparateur, le vieillissement des matériaux et l’évolution des interfaces. Les accumulateurs sélectionnés pour ces travaux de thèse sont constitués d’un matériau lamellaire de type Li(Ni,Mn,Co)O2 pour l’électrode positive, et de graphite pour l’électrode négative. Afin de décrire les phénomènes de vieillissement associés à une telle utilisation, des analyses de surface ont été menées par Spectroscopie Photoélectronique à rayonnement X sur les électrodes issues d’accumulateurs cyclés à haute température. Ces analyses ont permis de mettre en évidence la dégradation du liant de l’électrode positive et l’évolution des interfaces électrodes/électrolyte à 85 et 120°C, et d’améliorer le choix des composants des batteries pour de meilleures performances à haute température. / Nowadays, lithium-ion batteries occupy a prominent place in the field of energy storage. Phenomena involved in their aging mechanisms are quite well known for operating temperatures close to room temperature. However, their use at high temperatures for applications such as oil drilling, "in situ" sterilization or freight tracking requires some technical issues to be improved: stability of the electrolyte and electrode binders, compatibility electrolyte / separator, aging of active materials and changes of the interfaces. The batteries selected for this thesis consist of a Li(Ni,Mn,Co)O2 lamellar material at the positive electrode and graphite at the negative electrode. To describe aging phenomena related to high temperature, surface analyzes were carried out by X-ray Photoelectron Spectroscopy on the electrodes of batteries cycled at 85 and 120°C. These analyzes reveal the degradation of the positive electrode’s binder, and the changes of electrodes/electrolyte’s interfaces at high temperature compared to ambient temperature.
|
4 |
Etudes des phénomènes thermiques dans les batteries Li-ion.Hémery, Charles-Victor 12 November 2013 (has links) (PDF)
Les travaux présentés dans cette thèse concernent l'étude thermique des batteries Li-ion en vue d'une application de gestion thermique pour l'automobile. La compréhension des phénomènes thermiques à l'échelle accumulateur est indispensable avant de réaliser une approche de type module ou pack batterie. Ces phénomènes thermiques sont mis en évidence à partir d'une modélisation thermique globale de deux accumulateurs de différentes chimies, en décharge à courant constant. La complexité du caractère résistif de l'accumulateur Li-ion a mené au développement d'un modèle prenant en compte l'interaction entre les phénomènes électrochimiques et thermiques, permettant une approche prédictive de son comportement. Enfin la réalisation de deux boucles expérimentales, de simulation de systèmes de gestion thermique d'un module de batterie, montre les limites d'un refroidissement classique par air à respecter les critères de management thermique. En comparaison, le second système basé sur l'intégration innovante d'un matériau à changement de phase (MCP) se montre performant lors de situations usuelles, de défauts ou encore lors du besoin d'une charge rapide de la batterie.
|
5 |
Impact des phénomènes aux interfaces électrode/électrolyte sur les performances des batteries Li-ion haute tension : faiblesses et atouts des électrolytes à base de carbonates d'alkyles et de sulfones face aux électrodes LiNi0,4Mn1,6 O4 et Li4Ti5O12 / Title no availableDemeaux, Julien 08 October 2013 (has links)
Les accumulateurs LiNi0.4Mn1.6O4 (LNMO)/Li4Ti5O12 (LTO), permettent d’atteindre théoriquement les densités de puissance et d’énergie fournissant une autonomie suffisante aux véhicules électriques. Cependant, deux problèmes majeurs liés à LNMO limitent leurs performances : l’oxydation prononcée des électrolytes à base de carbonates d’alkyles et la dissolution d’ions de métaux de transition (Mn2+, Ni2+). Les formulations à base de carbonate d’éthylène (EC) ont une aptitude à former des films polymères couvrant la matière active. Les cyclages galvanostatiques, faisant suite ou non à un stockage, confirment la supériorité de ces électrolytes, conduisant à des pertes de capacité réduites de l’électrode LNMO. D’autre part, les sulfones sont des composés prometteurs pour une utilisation dans les batteries LNMO/LTO. L’emploi de cellules symétriques et asymétriques démontre que les sulfones sont non-réactives vis-à-vis des interfaces LNMO/électrolyte et LTO/électrolyte. Cependant, cette non-réactivité ne permet pas le dépôt de films polymères qui auraient permis de stopper la dissolution d’ions Mn2+ et Ni2+ à partir de l’électrode positive. Ceci résulte en des performances dégradées à 30°C des accumulateurs par rapport à ceux employant EC dans les électrolytes. / LiNi0.4Mn1.6O4 (LNMO)/Li4Ti5O12 (LTO) accumulators should theoretically achieve the power and energy densities that provide sufficient autonomy to electric vehicles. However, two major issues related to the use of LNMO limit their performances: the pronounced oxidation of the alkylcarbonate-based electrolytes and the transition metal ion (Mn2+, Ni2+) dissolution. The ethylene carbonate (EC)-based formulations get an ability to form polymer-covering films onto the active material. The galvanostatic cycling tests, after storage or not, confirm the superiority of these electrolytes, leading to reduced capacity losses of the LNMO electrode. Furthermore, sulfones are promising compounds to be applied to LNMO/LTO batteries. The use of symmetric and asymmetric cells demonstrates that sulfones are non-reactive towards the LNMO/electrolyte and LTO/electrolyte interfaces. However, this non-reactivity does not allow the deposition of polymer films, which would have enabled to stop the Mn2+ and Ni2+ dissolution from the positive electrode. This results in degraded performances of batteries at 30°C compared to those using EC in electrolytes.
|
6 |
Système de mesure d'impédance électrique embarqué, application aux batteries Li-ion / Study of a battery monitoring system for electric vehicle, application for Li-ion batteriesNazer, Rouba Al 24 January 2014 (has links)
La mesure d'impédance électrique en embarqué sur véhicule est un sujet clé pour améliorer les fonctions de diagnostic d'un pack batterie. On cherche en particulier à fournir ainsi des mesures supplémentaires à celles du courant pack et des tensions cellules, afin d'enrichir les indicateurs de vieillissement dans un premier temps, et d'état de santé et de charge dans un second temps. Une méthode classique de laboratoire pour obtenir des mesures d'impédance d'une batterie est la spectroscopie d'impédance électrochimique (ou EIS). Elle consiste à envoyer un signal sinusoïdal en courant (ou tension) de fréquence variable balayant une gamme de fréquences d'intérêt et mesurer ensuite la réponse en tension (ou courant) pour chaque fréquence. Une technique d'identification active basée sur l'utilisation des signaux large bande à motifs carrés est proposée. En particulier, des simulations ont permis de comparer les performances d'identification de différents signaux d'excitation fréquemment utilisés dans le domaine de l'identification et de vérifier les conditions correspondant à un comportement linéaire et invariant dans le temps de l'élément électrochimique. L'évaluation de la qualité d'estimation est effectuée en utilisant une grandeur spécifique : la cohérence. Cette grandeur statistique permet de déterminer un intervalle de confiance sur le module et la phase de l'impédance estimée. Elle permet de sélectionner la gamme de fréquence où la batterie respecte les hypothèses imposées par la méthode d'identification large bande. Afin de valider les résultats, une électronique de test a été conçue. Les résultats expérimentaux permettent de mettre en valeur l'intérêt de cette approche par motifs carrés. Un circuit de référence est utilisé afin d'évaluer les performances en métrologie des méthodes. L'étude expérimentale est ensuite poursuivie sur une batterie Li-ion soumise à un courant de polarisation et à différents états de charge. Des essais comparatifs avec l'EIS sont réalisés. Le cahier de charge établi à l'aide d'un simulateur de batterie Li-ion a permis d'évaluer les performances de la technique large bande proposée et de structurer son utilité pour l'estimation des états de vieillissement et de charge. / Embedded electrical impedance measurement is a key issue to enhance battery monitoring and diagnostic in a vehicle. It provides additional measures to those of the pack's current and cell's voltage to enrich the aging's indicators in a first time, and the battery states in a second time. A classical method for battery impedance measurements is the electrochemical impedance spectroscopy (EIS). At each frequency, a sinusoidal signal current (or voltage) of a variable frequency sweeping a range of frequencies of interest is at the input of the battery and the output is the measured voltage response (or current). An active identification technique based on the use of wideband signals composed of square patterns is proposed. Particularly, simulations were used to compare the performance of different excitation signals commonly used for system identification in several domains and to verify the linear and time invariant behavior for the electrochemical element. The evaluation of the estimation performance is performed using a specific quantity: the spectral coherence. This statistical value is used to give a confidence interval for the module and the phase of the estimated impedance. It allows the selection of the frequency range where the battery respects the assumptions imposed by the non-parametric identification method. To experimentally validate the previous results, an electronic test bench was designed. Experimental results are used to evaluate the wideband frequency impedance identification. A reference circuit is first used to evaluate the performance of the used methodology. Experimentations are then done on a Li–ion battery. Comparative tests with EIS are realized. The specifications are established using a simulator of Li-ion battery. They are used to evaluate the performance of the proposed wide band identification method and fix its usefulness for the battery states estimation: the state of charge and the state of health.
|
7 |
Etudes des phénomènes thermiques dans les batteries Li-ion. / Study of thermal phenomena in Li-ion batteriesHémery, Charles-Victor 12 November 2013 (has links)
Les travaux présentés dans cette thèse concernent l'étude thermique des batteries Li-ion en vue d'une application de gestion thermique pour l'automobile. La compréhension des phénomènes thermiques à l'échelle accumulateur est indispensable avant de réaliser une approche de type module ou pack batterie. Ces phénomènes thermiques sont mis en évidence à partir d'une modélisation thermique globale de deux accumulateurs de différentes chimies, en décharge à courant constant. La complexité du caractère résistif de l'accumulateur Li-ion a mené au développement d'un modèle prenant en compte l'interaction entre les phénomènes électrochimiques et thermiques, permettant une approche prédictive de son comportement. Enfin la réalisation de deux boucles expérimentales, de simulation de systèmes de gestion thermique d'un module de batterie, montre les limites d'un refroidissement classique par air à respecter les critères de management thermique. En comparaison, le second système basé sur l'intégration innovante d'un matériau à changement de phase (MCP) se montre performant lors de situations usuelles, de défauts ou encore lors du besoin d'une charge rapide de la batterie. / This work relates to the thermal study of Li-ion batteries in order to develop an optimized battery thermal management system. The understanding of thermal phenomena at cell scale is essential before to undertake an approach of the battery module or pack. Galvanostatic discharges of two kind of Li ion cells are modeled to highlight thermal phenomena. The complexity of the resistive behavior of Li-ion cell led to the development of an electrochemical-thermal coupled model to get a predictive approach. Then, two experimental tests benches were designed so as to compare two battery thermal management systems (BTMS). Restrictions of air cooling highlight its disability to achieve thermal management criteria. Innovative integration of a phase change material (PCM) was then tested under several uses of the battery module. This new BTMS showed really promising performances during intensive driving cycles, failure tests, and when a fast charge is needed.
|
8 |
Étude par tomographie RX d'anodes à base de silicium pour batteries Li-ion / X-ray tomography study of silicon-based anodes for Li-ion batteriesVanpeene, Victor 22 March 2019 (has links)
De par sa capacité spécifique théorique dix fois plus élevée que celle du graphite actuellement utilisé comme matériau actif d'anode pour les batteries Li-ion, le silicium peut jouer un rôle important dans l'augmentation de la densité d'énergie de ces systèmes. La réaction d'alliage mise en place lors de sa lithiation se traduit cependant par une forte expansion volumique du silicium (~300 % contre seulement ~10 % pour le graphite), conduisant à la dégradation structurale de l'électrode, affectant notablement sa tenue au cyclage. Comprendre en détail ces phénomènes de dégradation et développer des stratégies pour limiter leur impact sur le fonctionnement de l'électrode présentent un intérêt indéniable pour la communauté scientifique du domaine. L'objectif de ces travaux de thèse était en premier lieu de développer une technique de caractérisation adaptée à l'observation de ces phénomènes de dégradation et d'en tirer les informations nécessaires pour optimiser la formulation des anodes à base de silicium. Dans ce contexte, nous avons utilisé la tomographie aux rayons X qui présente l'avantage d'être une technique analytique non-destructive permettant le suivi in situ et en 3D des variations morphologiques s'opérant au sein de l'électrode lors de son fonctionnement. Cette technique a pu être adaptée à l'étude de cas du silicium en ajustant les volumes d'électrodes analysés, la résolution spatiale et la résolution temporelle aux phénomènes à observer. Des procédures de traitement d'images adéquates ont été appliquées afin d'extraire de ces analyses tomographiques un maximum d'informations qualitatives et quantitatives pertinentes sur leur variation morphologique. De plus, cette technique a pu être couplée à la diffraction des rayons X afin de compléter la compréhension de ces phénomènes. Nous avons ainsi montré que l'utilisation d'un collecteur de courant 3D structurant en papier carbone permet d'atténuer les déformations morphologiques d'une anode de Si et d'augmenter leur réversibilité en comparaison avec un collecteur de courant conventionnel de géométrie plane en cuivre. Nous avons aussi montré que l'utilisation de nanoplaquettes de graphène comme additif conducteur en remplacement du noir de carbone permet de former un réseau conducteur plus à même de supporter les variations volumiques importantes du silicium. Enfin, la tomographie RX a permis d'étudier de façon dynamique et quantitative la fissuration et la délamination d'une électrode de Si déposée sur un collecteur de cuivre. Nous avons ainsi mis en évidence l'impact notable d'un procédé de "maturation" de l'électrode pour minimiser ces phénomènes délétères de fissuration-délamination de l'électrode. / Because of its theoretical specific capacity ten times higher than that of graphite currently used as active anode material for Li-ion batteries, silicon can play an important role in increasing the energy density of these systems. However, the alloying reaction set up during its lithiation results in a high volume expansion of silicon (~300% compared with only ~10% for graphite) leading to the structural degradation of the electrode, which is significantly affecting its cycling behavior. Understanding in detail these phenomena of degradation and developing strategies to limit their impact on the functioning of the electrode are of undeniable interest for the scientific community of the field. The objective of this thesis work was first to develop a characterization technique adapted to the observation of these degradation phenomena and to draw the necessary information to optimize the formulation of silicon-based anodes. In this context, we have used X-ray tomography which has the advantage of being a non-destructive analytical technique allowing in situ and 3D monitoring of the morphological variations occurring within the electrode during its operation. This technique has been adapted to the case study of silicon by adjusting the analyzed electrode volumes, the spatial resolution and the temporal resolution to the phenomena to be observed. Appropriate image processing procedures were applied to extract from these tomographic analyzes as much qualitative and quantitative information as possible on their morphological variation. In addition, this technique could be coupled to X-ray diffraction to complete the understanding of these phenomena. We have shown that the use of a carbon paper structuring 3D current collector makes it possible to attenuate the morphological deformations of an Si anode and to increase their reversibility in comparison with a conventional copper current collector of plane geometry. We have also shown that the use of graphene nanoplatelets as a conductive additive to replace carbon black can form a conductive network more able to withstand the large volume variations of silicon. Finally, the X-ray tomography allowed studying dynamically and quantitatively the cracking and delamination of an Si electrode deposited on a copper collector. We have thus demonstrated the significant impact of a process of "maturation" of the electrode to minimize these deleterious phenomena of cracking-delamination of the electrode.
|
9 |
Etude des mécanismes de vieillissement des interfaces de batteries Lithium-ion appliquées aux énergies renouvelables / Study of long term ageing mechanisms of lithium-ion batteries interphases applied to sustainable energy sourcesPierre André Albert, Bernard 16 January 2015 (has links)
Le développement des énergies renouvelables, telles que le solaire photovoltaïque ou l’éolien, est fortement conditionné par la nature intermittente de ces sources d’énergie. Cette intermittence se traduit par un décalage entre pics de production et de consommation. Le stockage de l’énergie électrique revêt donc un caractère primordial dans la gestion de ce décalage. Pour accomplir cette tâche, la technologie lithium-ion est une bonne candidate parmi les technologies de stockage électrochimique de l’énergie. Mais les applications visées exigent des durées de vie bien supérieures à celles requises pour l’électronique portable ou pour les véhicules électriques. En effet les performances des batteries, notamment en termes de capacité, doivent être préservées pendant des durées de 15 à 20 ans. Cette thèse a alors pour but l’étude des mécanismes de vieillissement à long terme d’accumulateurs Li-ion composés d’oxydes lamellaires Li(NixMnyCo1 x y)O2 à l’électrode positive et de graphite à l’électrode négative, en se focalisant sur les interfaces électrode/électrolyte qui sont le lieu privilégié des mécanismes de vieillissement. Ce travail a été réalisé à l'aide de la spectroscopie photoélectronique à rayonnement X (XPS) et de la spectroscopie d’impédance électrochimique (EIS), deux techniques complémentaires particulièrement bien adaptées à l’étude des interfaces, l'une permettant de sonder les environnements chimiques en extrême surface, l'autre donnant la réponse d’un système à une sollicitation électrique sinusoïdale de fréquence variable. La contrainte importante induite par les durées de vie visées (20 ans) ont conduit à simuler le vieillissement à long terme des batteries en leur faisant subir des sollicitations électrochimiques beaucoup plus importantes que lors d’une utilisation normale Les caractérisations par XPS et EIS ont été systématiquement mises en relation avec l’évolution des performances électrochimiques des batteries considérées. Cette étude a permis d'apporter des améliorations aux batteries pour apporter une meilleure réponse à ces phénomènes de vieillissement en termes de maintien des performances: modification de la formulation des électrodes, des électrolytes, de la nature des matériaux actifs, etc. / Development of renewable energy sources such as photovoltaic or wind energy is limited by the intermittent nature of these energy sources. This intermittent nature results in the mismatch between production and consumption peaks. As a result, the storage of electrical energy plays an essential role to manage this mismatch. To this aim, lithium-ion technology appears as a good candidate among other ways of electrochemical storage of energy. However the targeted applications require much greater life span than those commonly admitted for portable electronics or electric vehicles. Battery performances, e.g. rechargeable capacity, should be preserved over 15 or 20 years. This PhD thesis aims at studying the long-term aging mechanisms of Li-ion batteries made up of lamellar oxides Li(NixMnyCo1 x y)O2 at the positive electrode and graphite at the negative electrode. We focused on the electrode/electrolyte interfaces which are the major place of aging processes. The work has been performed by X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS), two complementary techniques especially adapted to the study of interfaces, the former giving access to the chemical environments of atoms at the surface, the latter giving the answer of a system to a sinusoidal electric current with various frequencies. An important technical constraint was the difference between the targeted life span for the application (20 years) and the duration of the thesis (3 years). In order to simulate long-term aging the batteries were submitted to electrochemical stress in much harder conditions than in normal use. XPS and EIS characterizations were constantly related to evolution of electrochemical performances of batteries. This study allowed us during the duration of the project to bring improvements to batteries in order to obtain a better response to aging mechanisms regarding retention of electrochemical performances: e.g. change of electrodes or electrolyte formulation, change of active materials composition, etc.
|
10 |
Développement d’un réacteur électro-membranaire utilisant l'électrolyse pour la production d'hydroxyde de lithiumFaral, Manon 04 1900 (has links)
Au cours des dernières années, le développement des batteries Li-ion a révolutionné nos modes de vie. Compte tenu de la croissance exponentielle en batteries, le besoin se répercute sur les matériaux de base, qui sont entre autres, synthétisés à partir de sels de lithium de haute pureté. Nemaska Lithium, une entreprise partenaire du projet, est reconnue en tant que nouveau producteur d’hydroxyde de lithium, par l’entremise d’un procédé électromembranaire breveté. Comparativement au procédé conventionnel, la solution mise en place est l’une des méthodes la plus économique et écologique à l’échelle mondiale.
Dans le but de diminuer encore plus les coûts énergétiques du procédé, l’usage d’une anode dépolarisée à l’hydrogène ((ADH); H2(g) ⇄ 2H+(aq) +2é; E=0,00 V) est considérée. Cette approche demande une certaine compréhension et optimisation de l’électrode à des fins d’adaptation pour l’électrolyse. Ainsi, ce travail tant fondamental qu’appliqué a été réalisé afin d’étudier les phénomènes se produisant à l’ADH.
Dans un premier temps, une étude portée sur la cinétique de réaction de l’oxydation de l’hydrogène à l’aide d’une électrode à disque tournant est réalisée. L’influence d’ions lithium et d’une couche catalytique composite sur l’efficacité de la réaction a ainsi pu être démontrée. L’identification des limitations du système a ensuite permis l’optimisation de l’ADH à l’aide d’un plan d’expérience. L’ADH est composée d’un ionomère, d’un catalyseur et d’un support à catalyseur, qui ont des propriétés intrinsèques ayant un impact direct sur l’efficacité et la durabilité de celle-ci. Conséquemment, pour une étude de performance et d’optimisation, plusieurs configurations d’assemblage d’électrode à membrane (MEA) ont été considérées visant à faire varier les proportions des différentes composantes avec un plan d’expérience. Ce projet a ainsi permis l’étude menant à une meilleure compréhension d’une nouvelle technologie d’électrolyse membranaire. / In recent years, the development of Li-ion batteries has revolutionized our lifestyles. Given the exponential demand for batteries, the requirement is for base materials, which are synthesized from high-purity lithium salts. Nemaska Lithium, a partner in the project, is recognized as a new producer of lithium hydroxide, using a patented electromembrane process. Compared to the conventional process, this solution is one of the most economical and environmentally friendly methods worldwide.
In order to further reduce the energy costs of the process, the use of a hydrogen depolarized anode ((HDA); H2(g) ⇄ 2H+(aq) +2é; E0=0,00 V) is considered. This approach requires some understanding and optimization of the electrode for electrolysis adaptations. Thus, this fundamental and applied work was conducted to study the phenomena occurring at the HDA.
First, a study on the kinetics of the hydrogen oxidation reaction using a rotating disk electrode is performed. The influence of lithium ions and a composite catalytic layer on the efficiency of the reaction was demonstrated. The identification of system limitations allowed the optimization of the DHA using a design of experiment. The components of a HDA have intrinsic properties which have a direct impact on its efficiency and durability. They consist of an ionomer, a catalyst, and a catalyst support. Consequently, for a performance and optimization study, several membrane electrode assembly (MEA) configurations were considered in order to vary the proportions of the different components with a design of experiment. This study provided a better understanding and development of this new membrane electrolysis technology.
|
Page generated in 0.0669 seconds