41 |
Solutions to the Yang-Baxter equation and Casimir invariants for the equantised orthosymplectic superalgebra /Dancer, Karen. January 2004 (has links) (PDF)
Thesis (Ph.D.) - University of Queensland, 2005. / Includes bibliography.
|
42 |
William Perkins and seventeenth-century conceptions of pastoral theology with special consideration of George Herbert and Richard BaxterDitzenberger, Christopher S., January 1994 (has links)
Thesis (M.A.)--Gordon-Conwell Theological Seminary, 1994. / Abstract and vita. Includes bibliographical references (leaves 117-123).
|
43 |
Frekvenční chování reálného hospodářského cyklu - lokální a globální šokyŠírková, Petra January 2012 (has links)
No description available.
|
44 |
Fire Ecology in the Acadian Spruce-Fir Region and Vegetation Dynamics Following the Baxter Park Fire of 1977Small, Erin D. January 2004 (has links) (PDF)
No description available.
|
45 |
Modelos de mecânica estatística exatamente solúveis em duas dimensões / Exactly solvable models of statistical mechanics in two dimensionsOnody, Roberto Nicolau 11 December 1984 (has links)
Neste trabalho nós estudamos alguns sistemas de spins e vértices exatamente solúveis em duas dimensões. A solubilidade exata está ligada ao fato de existirem soluções não triviais das equações de fatorização, o que nos permite obter a energia livre no limite termodinâmico. Introduzimos e resolvemos pelo método de espalhamento inverso, um modelo de dez vértices assimétrico com dois e três estados nas ligações. Obtemos o diagrama de fases e mostramos que o sistema exibe uma transição de fase de primeira ordem. Analisamos um modelo de oito vértices de férmions livres e propomos uma nova relação funcional que nos permite calcular a energia livre por vértice. Mostramos que este sistema de vértices corresponde ao modelo de Ising na rede Union Jack. Apresentamos um método de solução de modelos de spin em redes triangulares a partir da solução do mesmo modelo na rede quadrada. O método se aplica sempre que o modelo de spins envolver interação de primeiros vizinhos e satisfizer a relação triângulo-estrela. Estendemos para a rede triangular, as soluções autoduais de Fateev e Zamolodchikov para a rede quadrada, de modelos de spin com simetria Z(N). Analisamos as conjecturas existentes sobre a criticalidade do modelo de Potts definido na rede de Kagomé. Baseados na simetria e nas degenerescências dessa rede conjecturamos uma expressão para a sua linha crítica. / We study some spin and vertex systems which are exactly solvable in two dimensions. The exact solubility is connected to the existence of non trivial solutions of the factorization equations which allow us to determine the free energy in the thermodynamic limit. We introduce and solve by the inverse scattering method, a ten vertex model with two and three states on the links. We get the phase diagram of the system and show that it exhibits a first order phase transition. Analysing a free fermion eight vertex model, we propose a new functional relation which permit us to get the free energy per vertex. We also show that this system is equivalent to the Ising model in a Union Jack lattice. We present a method to solve spin models on triangular lattices from the known solution of the same model on square lattices. The method applies whenever the model involves first neighbours interactions and satisfies the star triangle relation. We extend to the triangular lattice the self dual solutions of Fateev and Zamolodchikov for Z(N) invariant spin systems. We also analyse the conjectures made before for the critical Potts model on a Kagomé lattice. Based on symmetry and on the collapses of this lattice we conjecture an expression for their critical line.
|
46 |
On integrable deformations of semi-symmetric space sigma-models / Deformações integráveis do modelo sigma da supercorda em espaços semi-simétricosHuamán, René Negrón 05 October 2018 (has links)
In this thesis we review some aspects of Yang-Baxter deformations of semi-symmetric space sigma models. We start by giving a short review of the sigma model description of superstrings and then we offer a self contained introduction to the Yang-Baxter deformation technique. We then show how to obtain an integrable deformation of the hybrid sigma model. Also, we show that the gravity dual of beta-deformed ABJM theory can be obtained as a Yang-Baxter deformation. This is done by selecting a convenient combination of Cartan generators in order to construct an Abelian r-matrix satisfying the classical Yang-Baxter equation. / Nesta tese revisamos alguns aspectos das deformações de Yang-Baxter de modelos sigma em espaços semi-simétricos. Damos uma breve revisão do modelo sigma de supercordas e, em seguida, oferecemos uma introdução ao método de deformação de Yang-Baxter. Em seguida, mostramos como obter uma deformação integrável do modelo sigma híbrido. Além disso, mostramos que o dual gravitacional da teoria ABJM beta-deformada pode ser obtida como uma deformação de Yang-Baxter. Isso é feito selecionando-se uma combinação conveniente de geradores de Cartan para construir uma matriz r Abeliana satisfazendo a equação clássica de Yang-Baxter.
|
47 |
Séparation des variables et facteurs de forme des modèles intégrables quantiques / Separation of variables and form factors of quantum integrable modelsGrosjean, Nicolas 25 June 2013 (has links)
Les facteurs de forme et les fonctions de corrélation déterminent les quantités dynamiques mesurables associées aux modèles de théorie des champs et de mécanique statistique. Dans le cas de modèles intégrables en dimension 2, au-delà des propriétés du spectre ou de la fonction de partition, un des grands défis actuels concerne le calcul exact des facteurs de forme et des fonctions de corrélation.Le but de cette thèse est de développer une approche permettant de résoudre ce problème dans le cadre de la méthode de séparation des variables quantique de Skyanin. Cette méthode généralise au cas quantique et pour des systèmes avec un grand nombre de degrés de liberté la méthode de Hamilton-Jacobi en mécanique analytique. Le Hamiltonien est exprimé avec des opérateurs séparés, son spectre et ses états propres caractérisés par un système d'équations de Baxter résultant des structures algébriques de Yang-Baxter, caractéristiques de l'intégrabilité de ces modèles.Cette thèse a permis, pour les modèles de sine-Gordon (théorie des champs quantique) et de Potts chiral (modèle de physique statistique), le calcul des produits scalaires entre états propres du Hamiltonien, la résolution du problème inverse, i. e. l'expression des opérateurs du modèle en termes des variables séparées, ainsi que le calcul en termes de déterminants des facteurs de forme, i. e. des éléments de matrice des opérateurs locaux du modèle dans la base propre du Hamiltonien, ce qui constitue un pas important vers le calcul des fonctions de corrélation de ces modèles. / Form factors and correlation functions determine the measurable dynamic quantities that are associated with field theories and statistical physics models. In the case of 2-dimensional integrable models, one of the main challenges beyond spectrum properties and partition function is the exact computation of form factors and correlation functions.The aim of this thesis is to develop an approach in the framework of Sklyanin's separation of variables to address this problem. This framework generalizes to the quantum case and for systems with many degrees of freedom the Hamilton-Jacobi method from analytical mechanics. The Hamiltonian is expressed in terms of separated operators, its spectrum and eigenvectors are characterized by a system of Baxter equations. These Baxter equations are a consequence of Yang-Baxter relations that are characteristic of these models being integrable.The result of this thesis is, in the case of the sine-Gordon model (quantum field theory) and of the chiral Potts model (statistical physics model), the computation of scalar products of Hamiltonian eigenstates, the resolution of the inverse problem (expressing the model operators in terms of separated variables) and the computation in terms of determinant of form factors (the matrix elements of the model local operators in the Hamiltonian eigenbasis), which is an important step towards the computation of the correlation functions of these models.
|
48 |
Απεικονίσεις Yang-Baxter, δομή Poisson και ολοκληρωσιμότηταΚουλούκας, Θεοδωρος 11 August 2011 (has links)
Σκοπός της παρούσας διατριβής είναι η κατασκευή και μελέτη συνολοθεωρητικών λύσεων της κβαντικής εξίσωσης Yang-Baxter (απεικονίσεις Yang-Baxter) και η συσχέτισή τους με την ολοκληρωσιμότητα διακριτών δυναμικών συστημάτων. Οι κατασκευές απεικονίσεων Yang-Baxter που προτείνονται προέρχονται από την αναπαραγοντοποίηση ισχυρών ζευγών Lax εξαρτώμενων από μια φασματική παράμετρο. Οι αντίστοιχοι πίνακες Lax προκύπτουν από την συμπλεκτική εμφύλλωση διωνυμικών πινάκων εφοδιασμένων με μια κατάλληλη δομή Poisson (αγκύλη Sklyanin). Στην περίπτωση των 2x2 πινάκων Lax, οι αντίστοιχες απεικονίσεις είναι συμπλεκτικές, τετράρητες και ταξινομούνται με βάση τον μεγιστοβάθμιο όρο του πίνακα Lax ως προς την ισοδυναμία απεικονίσεων Yang-Baxter. Εκφυλισμένες απεικονίσεις Yang-Baxter, οι οποίες σχετίζονται με γνωστές ολοκληρώσιμες εξισώσεις, προκύπτουν από όρια των τετράρητων (μη-εκφυλισμένων). Η σύνδεση μεταξύ απεικονίσεων Yang-Baxter και ολοκληρωσιμότητας επιτυγχάνεται θεωρώντας περιοδικά προβλήματα αρχικών τιμών σε δισδιάστατα πλέγματα. Σε κάθε απεικόνιση Yang-Baxter αντιστοιχεί μια οικογένεια αντιμεταθετικών απεικονίσεων μεταφοράς στο πλέγμα (transfer maps) που διατηρούν αναλλοίωτο το φάσμα του μονόδρομου πίνακά τους. Η αγκύλη Sklyanin εξασφαλίζει την ενέλιξη των ολοκληρωμάτων που προκύπτουν από το φάσμα του μονόδρομου πίνακα. Κατά αυτόν τον τρόπο από τις συμπλεκτικές απεικονίσεις Yang-Baxter που κατασκευάσαμε παράγονται ολοκληρώσιμες απεικονίσεις μεταφοράς. Τέλος, η μελέτη μας επεκτείνεται σε συστήματα πεπλεγμένων απεικονίσεων Yang-Baxter (entwining Yang-Baxter maps) . / The purpose of this thesis is the construction and the study of set theoretical solutions of the quantum Yang-Baxter equation (Yang-Baxter maps) and the connection with the integrability of discrete integrable systems. The constructions that we present are derived from the re-factorization of strong Lax pairs depending on a spectral parameter. The corresponding Lax matrices are obtained from the symplectic foliation of binomial matrices equipped with an appropriate Poisson bracket (Sklyanin bracket). In the case of 2x2 binomial Lax matrices, the corresponding maps are symplectic, quadrirational and can be classified with respect to the Yang-Baxter equivalence. Degenerate Yang-baxter maps constructed as limits of the quadrirational maps, are connected to known integrable equations. The connection between Yang-Baxter maps and integrability is achieved by considering periodic initial value problems on two dimensional lattices. For any Yang-Baxter map that admits a Lax matrix, there is a family of commuting transfer maps which preserve the spectrum of their monodromy matrix. The Skllyanin bracket ensures that the integrals obtained from the spectrum of the monodromy matrix are in involution. In this way, integrable transfer maps are generated from the symplectic Yang-Baxter maps that we constructed. Finally, our study is extended for systems of entwining Yang-Baxter maps.
|
49 |
A equação de Yang-Baxter para modelos de vértices com três estadosPimenta, Rodrigo Alves 02 March 2011 (has links)
Made available in DSpace on 2016-06-02T20:16:47Z (GMT). No. of bitstreams: 1
3474.pdf: 452458 bytes, checksum: 7857dc28822e6d45234586ddd2b5e98e (MD5)
Previous issue date: 2011-03-02 / Universidade Federal de Minas Gerais / In this work we study the solutions of the Yang-Baxter equation associated to nineteen vertex models invariant by the parity-time symmetry from the perspective of algebraic geometry. We determine the form of the algebraic curves constraining the respective Boltzmann weights and found that they possess a universal structure. This allows us to classify the integrable manifolds in four different families reproducing three known models besides uncovering a novel nineteen vertex model in a unified way. The introduction of the spectral parameter on the weights is made via the parameterization of the fundamental algebraic curve which is a conic. The diagonalization of the transfer matrix of the new vertex model and its thermodynamic limit properties are discussed. We point out a connection between the form of the main curve and the nature of the excitations of the corresponding spin-1 chains. / Nesta dissertação estudamos as possíveis soluções da equação de Yang-Baxter para modelos de dezenove vértices invariantes por simetria de paridade e reversão temporal do ponto de vista da geometria algébrica. Determinamos a forma das curvas algébricas que vinculam os respectivos pesos de Boltzmann e descobrimos que suas estruturas são universais. Com tal observação foi possível classificar, de uma maneira unificada, as variedades algébricas integráveis em quatro diferentes famílias, três delas já conhecidas e uma delas correspondendo a um novo modelo de dezenove vértices. A introdução de um parâmetro espectral nos pesos de Boltzmann é feita através da parametrização da curva algébrica fundamental, que é uma crônica. A diagonalização da matriz de transferência do novo modelo de vértices bem como suas propriedades no limite termodinâmico são discutidas. Mencionamos ainda uma curiosa conexão entre a forma da curva principal e a natureza das excitações das Hamiltonianas de spin-1 associadas aos modelos de vértices.
|
50 |
Separation of variables and new quantum integrable systems with boundaries / Séparation des variables et nouveaux systèmes intégrables quantiques avec bordsPezelier, Baptiste 01 June 2018 (has links)
Les principaux outils pour la compréhension du comportement macroscopique desystèmes quantiques à partir de leur description microscopique sont la déterminationdu spectre du Hamiltonien associé et le calcul des fonctions de corrélation. Cettethèse se place dans le cadre du développement d’un tel programme de recherche afind’étudier des systèmes intégrables quantiques avec des conditions aux bordsintégrables générales, le but à long terme étant la description exacte d’une physiquequantique hors équilibre.Plus spécifiquement, nous avons analysé la classe des systèmes intégrablesquantiques sur réseau associés aux représentations cycliques de l’algèbre de réflexionà 6-vertex, avec comme exemples les modèles de sine Gordon et de Potts chiral avecconditions aux bords intégrables.Une large partie du travail a été consacrée au développement de la méthode deséparation quantique des variables pour résoudre le problème spectral de la matricede transfert de ces modèles avec conditions de bords intégrables les plus générales,en étendant l’idée des transformations de jauge de Baxter à ces algèbres de réflexion.Nous avons caractérisé complètement le spectre de la matrice de transfert (valeurspropres et vecteurs propres) en termes des solutions d’un système discret d’équationspolynomiales et d’une façon équivalente en termes des solutions, dans une certaineclasse de fonctions, d’une équation de type Baxter fonctionnelle. Cela permet de fairele lien dans certains cas particuliers avec la méthode de l’anstaz de Bethe algébriquequi ne permet pas d’étudier ces modèles en toute généralité.Nous avons ensuite construit des familles de nouveaux Hamiltoniens locaux avecconditions aux bords intégrables qui commutent avec la matrice de transfert. Pour cefaire nous avons défini une hiérarchie de nouvelles équations de réflexion mélangeantdifférentes représentations de l’algèbre quantique à 6-vertex et utilisant entre autres,la matrice R fondamentale cyclique. / The main theoretical tools to understand the macroscopic behaviour of quantumsystems from their microscopic description are the determination of theirHamiltonian spectrum and the computation of their correlation functions. This thesistakes place in the development of such a research program to study quantumintegrable models with general integrable boundary conditions, the long-range goalbeing to be able to exactly describe out of equilibrium physics.More specifically, we have analysed the class of integrable quantum models on thelattice associated to cyclic representations of the 6-vertex reflection algebra,including as particular cases the lattice sine- Gordon model at root of unity and thechiral Potts model with general integrable boundaries.A large part of the work has been devoted to the development of the quantumseparation of variables method to solve the spectral problem for these models withgeneral integrable boundary conditions, by generalising the Baxter’s gaugetransformations to these cyclic reflection algebras.We have completely characterised the transfer matrix spectrum (both eigenvaluesand eigenstates) in terms of the set of solutions to a discrete system of polynomialequations and equivalently as the set of solutions, in a given class of functions, to aBaxter like functional equation. This last point allows in particular cases to make alink with the Algebraic Bethe Ansatz approach, which in general, cannot be used forthe study of these models.We have then constructed families of new local Hamiltonians with integrableboundaries commuting with the above transfer matrix. To that end, we have defined ahierarchy of new mixed reflection equations, involving different representations ofthe 6-vertex algebra and using, among others, the fundamental R-matrix.
|
Page generated in 0.0466 seconds