Spelling suggestions: "subject:"bayesiano"" "subject:"bayesianas""
41 |
Modelos multidimensionais da TRI com distribuições assimétricas para os traços latentes / Multidimensional IRT models with skew distributions for latent traits.Gilberto da Silva Matos 15 December 2008 (has links)
A falta de alternativas ao modelo normal uni/multivariado já é um problema superado pois atualmente é possível encontrar inúmeros trabalhos que introduzem e desenvolvem generalizações da distribuição normal com relação `a assimetria, curtose e/ou multimodalidade (Branco e Arellano-Valle (2004), Genton (2004), Arellano-Valle et al. (2006)). No contexto dos modelos unidimensionais da Teoria da Resposta ao Item (TRI), Bazán (2005) percebeu esta realidade e introduziu uma classe denominada PANA (Probito Assimétrico - Normal Assimétrica) a qual permite modelar possíveis comportamentos assimétricos de um modelo (uma probabilidade) de resposta ao item bem como a especificação de uma distribuição normal assimétrica para os traços latentes (unidimensionais) a qual é utilizada no processo de estimação. Motivado pela necessidade de melhor representar os fenômenos da área psicométrica (Heinen, 1996, p. 105) e da atual disponibilidade de distribuições elípticas assimétricas cujas propriedades são tão convenientes quanto aquelas devidas `a distribuição normal, a proposta do presente trabalho é apresentar uma extensão do modelo K-dimensional de 3 Parâmetros Probito (Kd3PP) com vetores de traços latentes normalmente distribuídos para o caso t-Assimétrico, gerando, assim, o que denominamos modelo Kd3PP-tA. Nossa proposta, portanto, pode ser considerada como uma extensão do trabalho desenvolvido por Bazán (2005) tanto no sentido de extender a distribuição unidimensional assimétrica dos traços latentes para o caso multidimensional quanto no que conscerne em considerar o achatamento (curtose) da distribuição. Nossa proposta também pode ser vista como uma extensão do trabalho de Béguin e Glas (2001) no sentido de desenvolver o método de estimação bayesiana dos modelos multidimensionais da TRI via DAGS (Dados Aumentados com Amostrador de Gibbs) para o caso em que os vetores de traços latentes comportam-se segundo uma distribuição multivariada t-Assimétrica. No desenvolvimento deste trabalho nos deparamos com uma das principais dificuldades encontradas no processo de estimação e inferência dos modelos multidimensionais da TRI que é a falta de identificabilidade e, com a intenção de ampliar e desmistificar nossos conhecimentos sobre um assunto ainda pouco explorado na literatura da TRI, apresentamos um estudo bibliográfico sobre este tema tanto sob o contexto da inferência clássica quanto bayesiana. Com o intuito de identificar situações particulares em que o uso de uma distribuição normal assimétrica para os traços latentes seja de maior relevância para a estimação e inferência dos parâmetros de item, bem como outros parâmetros relacionados à distribuição dos traços latentes, algumas análises sobre conjuntos de dados simulados são desenvolvidas. Como conclusão destas análises, podemos dizer que há uma melhora superficial quando a informação sobre uma possível assimetria na distribuição dos traços latentes não é ignorada. Além disso, os resultados favoreceram a seleção dos modelos que consideram distribuições assimétricas para os traços latentes, principalmente quando são considerados os modelos que possibilitam a estimação dos parâmetros de localização e escala da distribuição dos vetores de traços latentes. Duas principais contribuições que consideramos de ordem prática, são: a análise e a interpretação de testes através da estimação de modelos uni e multidimensionais da TRI que consideram tanto distribuições simétricas quanto assimétricas para os vetores de traços latentes e a disponibilização de uma função escrita em códigos R e C++ para a estimação dos modelos apresentados e desenvolvidos no presente trabalho. / The lack of alternatives to the univariate or multivariate normal model has been already solved because actually it has been possible to find several works that introduce and develop generalizations of the normal distribution in relation to the asymmetry, kurtosis and/or multimodality (Branco e Arellano-Valle (2004), Genton (2004), Arellano-Valle et al. (2006). In the context of unidimensional models of the Item Response Theory (IRT), Baz´an (2005) observed this fact and introduced a class called PANA (Probito Assimétrico - Normal Assimétrica) which allows to take account for asymmetry in the shape of an item response model (probability) and the specification of a skew normal distribution for unidimensional latent traits which is used in the estimation process. Motivated by the need to better represent the phenomenon of psychometric area (Heinen, 1996, p. 105) and the current availability of skew elliptical distributions whose properties are as convenient as those due to normal distribution, the proposal of this work is to provide an extension of multidimensional 3 Parameters Probit model (Kd3PP) where latent traits vectors are normally distributed for the case of Skew-t distribution (Sahu et al., 2003), generating therefore what we call Kd3PP-St model. Our proposal, therefore, can be regarded as an extension of the work of Bazán (2005) in two ways: the first is extending the unidimensional skew normal distribution of latent traits to the multidimensional case and second in the sense to consider the flattening (kurtosis) of this distribution. Our proposal can also be seen as an extension of the work of B´eguin e Glas (2001) in the sense that we develop the Bayesian estimation method of the 3 parameters multidimensional item response model by DAGS (Augmentated Data with Gibbs sampling) for the case where the latent trait vectors behave according to a Skew-t multivariate distribution. In the development of this work we come across one of the main difficulties encountered in the process of estimation and inference of multidimensional IRT models which is the lack of identifiabilitie and, with the intent to demystify and expand our knowledge on a subject still little explored in the literature of the IRT, we present a bibliographical study on this subject both in the context of classical and Bayesian inference. In order to identify particular situations where the use of a skew normal distribution is more relevant to the estimation and inference of item parameters as well as other parameters related to the distribution of latent traits, some analyses on simulated data sets are developed. As results of these analyses, we can say that there is a modest improvement when information about a possible asymmetry in the distribution of latent traits is not ignored. Moreover, the results favored the selection of models that consider asymmetric distributions for latent traits, especially when models that enable the estimation of parameters of location and scale from this distribution are considered. Two main contributions that we consider of pratical interest are: analysis and interpretations of tests using unidimensional and multidimensional IRT models that consider both simetric and skewed distributions for the vectors of latent traits and a function written in R and C++ language program that is made disponible for the estimation of models treated in this work.
|
42 |
Modelos multidimensionais da TRI com distribuições assimétricas para os traços latentes / Multidimensional IRT models with skew distributions for latent traits.Matos, Gilberto da Silva 15 December 2008 (has links)
A falta de alternativas ao modelo normal uni/multivariado já é um problema superado pois atualmente é possível encontrar inúmeros trabalhos que introduzem e desenvolvem generalizações da distribuição normal com relação `a assimetria, curtose e/ou multimodalidade (Branco e Arellano-Valle (2004), Genton (2004), Arellano-Valle et al. (2006)). No contexto dos modelos unidimensionais da Teoria da Resposta ao Item (TRI), Bazán (2005) percebeu esta realidade e introduziu uma classe denominada PANA (Probito Assimétrico - Normal Assimétrica) a qual permite modelar possíveis comportamentos assimétricos de um modelo (uma probabilidade) de resposta ao item bem como a especificação de uma distribuição normal assimétrica para os traços latentes (unidimensionais) a qual é utilizada no processo de estimação. Motivado pela necessidade de melhor representar os fenômenos da área psicométrica (Heinen, 1996, p. 105) e da atual disponibilidade de distribuições elípticas assimétricas cujas propriedades são tão convenientes quanto aquelas devidas `a distribuição normal, a proposta do presente trabalho é apresentar uma extensão do modelo K-dimensional de 3 Parâmetros Probito (Kd3PP) com vetores de traços latentes normalmente distribuídos para o caso t-Assimétrico, gerando, assim, o que denominamos modelo Kd3PP-tA. Nossa proposta, portanto, pode ser considerada como uma extensão do trabalho desenvolvido por Bazán (2005) tanto no sentido de extender a distribuição unidimensional assimétrica dos traços latentes para o caso multidimensional quanto no que conscerne em considerar o achatamento (curtose) da distribuição. Nossa proposta também pode ser vista como uma extensão do trabalho de Béguin e Glas (2001) no sentido de desenvolver o método de estimação bayesiana dos modelos multidimensionais da TRI via DAGS (Dados Aumentados com Amostrador de Gibbs) para o caso em que os vetores de traços latentes comportam-se segundo uma distribuição multivariada t-Assimétrica. No desenvolvimento deste trabalho nos deparamos com uma das principais dificuldades encontradas no processo de estimação e inferência dos modelos multidimensionais da TRI que é a falta de identificabilidade e, com a intenção de ampliar e desmistificar nossos conhecimentos sobre um assunto ainda pouco explorado na literatura da TRI, apresentamos um estudo bibliográfico sobre este tema tanto sob o contexto da inferência clássica quanto bayesiana. Com o intuito de identificar situações particulares em que o uso de uma distribuição normal assimétrica para os traços latentes seja de maior relevância para a estimação e inferência dos parâmetros de item, bem como outros parâmetros relacionados à distribuição dos traços latentes, algumas análises sobre conjuntos de dados simulados são desenvolvidas. Como conclusão destas análises, podemos dizer que há uma melhora superficial quando a informação sobre uma possível assimetria na distribuição dos traços latentes não é ignorada. Além disso, os resultados favoreceram a seleção dos modelos que consideram distribuições assimétricas para os traços latentes, principalmente quando são considerados os modelos que possibilitam a estimação dos parâmetros de localização e escala da distribuição dos vetores de traços latentes. Duas principais contribuições que consideramos de ordem prática, são: a análise e a interpretação de testes através da estimação de modelos uni e multidimensionais da TRI que consideram tanto distribuições simétricas quanto assimétricas para os vetores de traços latentes e a disponibilização de uma função escrita em códigos R e C++ para a estimação dos modelos apresentados e desenvolvidos no presente trabalho. / The lack of alternatives to the univariate or multivariate normal model has been already solved because actually it has been possible to find several works that introduce and develop generalizations of the normal distribution in relation to the asymmetry, kurtosis and/or multimodality (Branco e Arellano-Valle (2004), Genton (2004), Arellano-Valle et al. (2006). In the context of unidimensional models of the Item Response Theory (IRT), Baz´an (2005) observed this fact and introduced a class called PANA (Probito Assimétrico - Normal Assimétrica) which allows to take account for asymmetry in the shape of an item response model (probability) and the specification of a skew normal distribution for unidimensional latent traits which is used in the estimation process. Motivated by the need to better represent the phenomenon of psychometric area (Heinen, 1996, p. 105) and the current availability of skew elliptical distributions whose properties are as convenient as those due to normal distribution, the proposal of this work is to provide an extension of multidimensional 3 Parameters Probit model (Kd3PP) where latent traits vectors are normally distributed for the case of Skew-t distribution (Sahu et al., 2003), generating therefore what we call Kd3PP-St model. Our proposal, therefore, can be regarded as an extension of the work of Bazán (2005) in two ways: the first is extending the unidimensional skew normal distribution of latent traits to the multidimensional case and second in the sense to consider the flattening (kurtosis) of this distribution. Our proposal can also be seen as an extension of the work of B´eguin e Glas (2001) in the sense that we develop the Bayesian estimation method of the 3 parameters multidimensional item response model by DAGS (Augmentated Data with Gibbs sampling) for the case where the latent trait vectors behave according to a Skew-t multivariate distribution. In the development of this work we come across one of the main difficulties encountered in the process of estimation and inference of multidimensional IRT models which is the lack of identifiabilitie and, with the intent to demystify and expand our knowledge on a subject still little explored in the literature of the IRT, we present a bibliographical study on this subject both in the context of classical and Bayesian inference. In order to identify particular situations where the use of a skew normal distribution is more relevant to the estimation and inference of item parameters as well as other parameters related to the distribution of latent traits, some analyses on simulated data sets are developed. As results of these analyses, we can say that there is a modest improvement when information about a possible asymmetry in the distribution of latent traits is not ignored. Moreover, the results favored the selection of models that consider asymmetric distributions for latent traits, especially when models that enable the estimation of parameters of location and scale from this distribution are considered. Two main contributions that we consider of pratical interest are: analysis and interpretations of tests using unidimensional and multidimensional IRT models that consider both simetric and skewed distributions for the vectors of latent traits and a function written in R and C++ language program that is made disponible for the estimation of models treated in this work.
|
43 |
Essay on Bayesian Estimation of DSGE ModelsFerroni, Filippo 25 May 2009 (has links)
Esta tesis presenta tres diferentes experimentos de política utilizando estimaciones Bayesianas de modelos DSGE. En la primera parte, se quiere demostrar que una política fiscal contracíclica es un instrumento importante para la estabilidad macroeconómica. Este resultado es robusto a diferentes controles. En la segunda parte, se demuestra las variaciones de las estimaciones de los parámetros estructurales según la descomposición ciclo-tendencia, si en uno o en dos estadios. Resulta que con un procedimiento a dos estadios la volatilidad del PIB es explicada mayormente por shocks nominales, mientras que con un procedimiento a un estadio por un shock a la inversión. Se argumenta que el procedimiento a un estadio proporciona una estructura probabilística más coherente. La tercera parte de la tesis propone una manera de estimar los parámetros estructurales utilizando la información procedente de distintos filtros. Mientras que con un tipo de estimación con un único filtro el dinero tiene poca influencia en las fluctuaciones de medio plazo, con un sistema de múltiples filtros el dinero tiene un papel importante en la transmisión de los shocks. / This thesis examines three different policy experiments using Bayesian estimates of DSGE models. First, we show that countercyclical fiscal policies are important to smooth fluctuations and that this is true regardless of how we specify the fiscal rule and several details of the model. Second, we show that the sources of output volatility obtained from a cyclical DSGE model crucially depend on whether estimation is done sequentially or jointly. In fact, while with a two step procedure, where the trend is first removed, nominal shocks drive output volatility, investment shocks dominate when structural and trend parameters are estimated jointly. Finally, we examine the role of money for business cycle fluctuations with a single and a multiple filtering approach, where information provided by different filters is jointly used to estimate DSGE parameters. In the former case, money has a marginal role for output and inflation fluctuations, while in the latter case is important to transmit cyclical fluctuations.
|
44 |
Inferência estatística em métodos de análise de ressonância magnética funcional / Statistical Inference in Methods of Analysis of Functional Magnetic ResonanceBrenno Caetano Troca Cabella 11 April 2008 (has links)
No presente trabalho, conceitos de inferência estatística são utilizados para aplicação e comparação de diferentes métodos de análise de sinais de ressonância magnética funcional. A idéia central baseia-se na obtenção da distribuição de probabilidade da variável aleatória de interesse, para cada método estudado e sob diferentes valores da relação sinal-ruído (SNR). Este objetivo é atingido através de simulações numéricas da função resposta hemodinâmica (HRF) acrescida de ruído gaussiano. Tal procedimento nos permite avaliar a sensibilidade e a especificidade dos métodos empregados através da construção das curvas ROC (receiver operating characteristic) para diferentes valores de SNR. Sob específicas condições experimentais, aplicamos métodos clássicos de análise (teste t de Student e correlação), medidas de informação (distância de Kullback-Leibler e sua forma generalizada) e um método Bayesiano (método do pixel independente). Em especial, mostramos que a distância de Kullback-Leibler (D) (ou entropia relativa) e sua forma generalizada são medidas úteis para análise de sinais dentro do cenário de teoria da informação. Estas entropias são usadas como medidas da \"distância\"entre as funções de probabilidade p1 e p2 dos níveis do sinal relacionados a estímulo e repouso. Para prevenir a ocorrência de valores divergentes de D, introduzimos um pequeno parâmetro d nas definições de p1 e p2. Estendemos a análise, apresentando um estudo original da distância de Kullback-Leibler generalizada Dq (q é o parâmetro de Tsallis). Neste caso, a escolha apropriada do intervalo 0 < q < 1 permite assegurar que Dq seja finito. Obtemos as densidades de probabilidade f (D) e f (Dq) das médias amostrais das variáveis D e Dq , respectivamente, calculadas ao longo das N épocas de todo o experimento. Para pequenos valores de N (N < 30), mostramos que f (D) e f (Dq) são muito bem aproximadas por distribuições Gamma (qui^2 < 0,0009). Em seguida, estudamos o método (Bayesiano) do pixel independente, considerando a probabilidade a posteriori como variável aleatória e obtendo sua distribuição para várias SNR\'s e probabilidades a priori. Os resultados das simulações apontam para o fato de que a correlação e o método do pixel independente apresentam melhor desempenho do que os demais métodos empregados (para SNR > -20 dB). Contudo, deve-se ponderar que o teste t e os métodos entrópicos compartilham da vantagem de não se utilizarem de um modelo para HRF na análise de dados reais. Finalmente, para os diferentes métodos, obtemos os mapas funcionais correspondentes a séries de dados reais de um voluntário assintomático submetido a estímulo motor de evento relacionado, os quais demonstram ativação nas áreas cerebrais motoras primária e secundária. Enfatizamos que o procedimento adotado no presente estudo pode, em princípio, ser utilizado em outros métodos e sob diferentes condições experimentais. / In the present work, concepts of statistical inference are used for application and comparison of different methods of signal analysis in functional magnetic resonance imaging. The central idea is based on obtaining the probability distribution of the random variable of interest, for each method studied under different values of signal-to-noise ratio (SNR). This purpose is achieved by means of numerical simulations of the hemodynamic response function (HRF) with gaussian noise. This procedure allows us to assess the sensitivity and specificity of the methods employed by the construction of the ROC curves (receiver operating characteristic) for different values of SNR. Under specific experimental conditions, we apply classical methods of analysis (Student\'s t test and correlation), information measures (distance of Kullback-Leibler and its generalized form) and a Bayesian method (independent pixel method). In particular, we show that the distance of Kullback-Leibler D (or relative entropy) and its generalized form are useful measures for analysis of signals within the information theory scenario. These entropies are used as measures of the \"distance\"between the probability functions p1 and p2 of the signal levels related to stimulus and non-stimulus. In order to avoid undesirable divergences of D, we introduced a small parameter d in the definitions of p1 and p2. We extend such analysis, by presenting an original study of the generalized Kullback-Leibler distance Dq (q is Tsallis parameter). In this case, the appropriate choice of range 0 < q < 1 ensures that Dq is finite. We obtain the probability densities f (D) and f (Dq) of the sample averages of the variables D and Dq, respectively, calculated over the N epochs of the entire experiment. For small values of N (N < 30), we show that f (D) and f (Dq) are well approximated by Gamma distributions (qui^2 < 0.0009). Afterward, we studied the independent pixel bayesian method, considering the probability a posteriori as a random variable, and obtaining its distribution for various SNR\'s and probabilities a priori. The results of simulations point to the fact that the correlation and the independent pixel method have better performance than the other methods used (for SNR> -20 dB). However, one should consider that the Student\'s t test and the entropic methods share the advantage of not using a model for HRF in real data analysis. Finally, we obtain the maps corresponding to real data series from an asymptomatic volunteer submitted to an event-related motor stimulus, which shows brain activation in the primary and secondary motor brain areas. We emphasize that the procedure adopted in this study may, in principle, be used in other methods and under different experimental conditions.
|
45 |
Influência da estrutura da vegetação sobre a diversidade e detectabilidade das espécies de aves do Cerrado / Influence of vegetation structure on the diversity and detectability of Cerrado birdsRodolpho Credo Rodrigues 12 August 2016 (has links)
Em diversos estudos ao redor do globo, a estrutura e heterogeneidade da vegetação têm se mostrado um fator determinante na diversidade de espécies de aves e também de outros grupos de animais. O Cerrado é o segundo mais extenso e mais ameaçado bioma de ocorrência no Brasil. Este bioma também é caracterizado por um evidente gradiente ambiental de estrutura e heterogeneidade de vegetação. Na presente tese analisamos a influência da estrutura e heterogeneidade da vegetação sobre a diversidade em comunidades de aves do Cerrado. Nossa expectativa era corroborar a “Hipótese de Heterogeneidade de Habitats”, que propõe que quanto maior a estrutura e heterogeneidade da vegetação, maior será a diversidade de espécies. No primeiro capítulo, realizamos uma compilação sistemática de estudos publicados sobre a diversidade de aves em áreas ocupadas por algumas fisionomias típicas de Cerrado lato sensu, com o intuito de analisar o conhecimento obtido até então acerca da relação entre diversidade de aves e a estrutura da vegetação no Cerrado. Foram selecionadas 72 amostras de 22 estudos, sendo que estas amostras variaram quanto ao tipo fisionomia amostrada e o método amostral empregado, além de também estarem disponíveis em diferentes artigos e serem realizadas em diferentes regiões geográficas. Para análises destes dados, utilizamos a análise de modelos lineares generalizados de efeitos mistos (modelo com distribuição de erros poisson), que permite analisar os efeitos de variáveis fixas e aleatórias sobre a variável explicativa (riqueza de espécies). As variáveis fixas foram o tipo de vegetação amostrada (vegetação campestre, savânica e florestal) e o método amostral empregado (ponto fixo, transecto e redes de neblina). Já as variáveis de efeito aleatório utilizadas foram o estudo onde os dados foram publicados, o autor de cada estudo e a localidade geográfica. O efeito destas variáveis aleatórias poderiam afetar somente os interceptos das relações entre as variáveis fixas e a variável explicativa ou poderiam alterar a relação entre as variáveis fixas e explicativa. Construímos diversos modelos a partir da combinação de variáveis de efeito fixo e aleatório e a seleção do modelo mais parcimonioso foi feito por meio do critério AICc (critério de informação de Akaike corrigido para pequenas amostras). O modelo que apresentou menor valor de AICc (mais parcimonioso) foi aquele que incluiu os efeitos de ambas variáveis de efeito fixo (fisionomia e método amostral) e também um efeito da interação entre estas duas variáveis. Neste modelo também foram incluídos os efeitos das variáveis aleatórias estudo e localidade geográfica sobre os interceptos das relações entre as variáveis de efeito fixo e a variável explicativa. Estes resultados mostraram que a riqueza de espécies de aves em nosso estudo variou não só em função da fisionomia e do método amostral empregado, mas dependendo do método amostral utilizado a relação entre riqueza e fisionomia também foi alterada. Portanto, esta interação não permitiu que fosse estimada a relação entre fisionomia e riqueza sem considerar o efeito dos métodos. Já os efeitos das variáveis aleatórias mostraram que a variação estimada nos interceptos entre estudos foi duas vezes maior do que a variação estimada entre localidades geográficas. O efeito da interação entre as variáveis fisionomia e método amostral apontou para a existência de heterogeneidade de detecção entre locais com diferentes fisionomias, além também de um efeito das fisionomias na efetividade dos diferentes métodos amostrais. A influência dos métodos amostrais no número de espécies observadas em cada fisonomia pode ser esperada devido às diferenças intrínsecas dos métodos, já que ponto fixo e transecto são baseados em contatos visuais e auditivos com as espécies, enquanto que o método de rede de neblina consiste na captura passiva das espécies que voam na altura das redes. Assim, redes de neblina podem ser mais efetivas em habitats menos estruturados (por ex. campos limpos e sujos), onde a rede alcança quase todo os estratos de vegetação. No entanto, o método de transecto pode ser mais efetivo que o método de ponto fixo em áreas de florestas, pois nestes hábitats as espécies tendem a ter territórios menores e o deslocamento do observador proporciona ao observador cobrir um maior número de terrítórios. Por outro lado, o ponto fixo pode ser mais vantajoso por não produzir ruído e afugentar as espécies, o que pode ser uma desvantagem do método de transecto. Outros fatores, como a experiência e número de observadores, número de pontos amostrais, número de redes utilizadas e comprimento de transectos, podem explicar a grande variação estimada entre os estudos. Uma das maneiras de se contornar estes efeitos metodológicos é utilizar métodos desenvolvidos especialmente para lidar com diferentes probabilidades de detecção entre espécies, entre sítios e até métodos amostrais, o que poderia render dados mais confiáveis para o estudo da ecologia das espécies e para a elaboração de planos de manejo e/ou conservação. No segundo capítulo, a relação entre diversidade de aves e estrutura da vegetação foi analisada a partir de dados coletados em campo e utilizando um protocolo de amostragem específico para se estimar e considerar os efeitos da vegetação sobre a detecção das espécies. As amostragens foram realizadas em um dos maiores e mais preservados remanescentes de Cerrado (Parque Nacional Grande Sertão Veredas-PARNA GSV) e consistiram do registro das espécies de aves em 32 áreas dispostas em um gradiente de vegetação de Cerrado, que variaram desde campos limpos e sujos, campos cerrado a cerrados sensu stricto. O cálculo da riqueza de espécies de aves em cada sítio foi realizado através de modelos de ocupação-detecção, adaptados para estimar a riqueza de espécies em comunidades. A vegetação, por sua vez, foi medida a partir de estimativas de presença da vegetação entre 0 e 4 m de altura (16 intervalos de 22,5 cm cada um) e duas variáveis de estrutura foram obtidas a partir de uma análise de componentes principais, que foi aplicada para resumir a variação da presença de vegetação nos 16 intervalos de altura. Estas variáveis de vegetação foram relacionadas tanto com a ocupação quanto com a detecção das espécies, já que a estrutura da vegetação poderia influenciar não só a ocorrência mas também a detecção das espécies. O dia da amostragem e também a temperatura no momento da amostragem também foram incluídas como covariáveis que poderiam afetar a detecção. Após a estimativa da riqueza de espécies pelo modelo de ocupação-detecção para comunidades, esta riqueza estimada foi relacionada por uma função quadrática com a estrutura da vegetação usando um modelo bayesiano de metanálise, que permitiu incluir a incerteza nas estimativas de riqueza na análise. A título de comparação, também foi ajustado um modelo quadrático GLM (distribuição de erros normal) aos dados de riqueza observada. Os resultados mostraram que a riqueza estimada a partir dos dados das 38 espécies mais detectadas durante as amostragens teve uma fraca relação com as duas covariáveis de estrutura de vegetação, sendo que houve uma maior riqueza de espécies em sítios com vegetação intermediária em altura e uma maior riqueza de espécies de aves em sítios onde houve maior presença de vegetação abaixo de 2 m de altura. No entanto, as relações entre riqueza estimada e estas covariáveis foi menos intensa mas qualitativamente similar às relações entre a riqueza observada e as covariáveis de vegetação. A menor intensidade nas relações da riqueza estimada foi evidenciada principalmente em ambos os extremos do gradiente de estrutura vertical da vegetação e também nas áreas com menor presença de vegetação abaixo de 2 m. Estes resultados mostraram que o efeito da detecção pode alterar o efeito da relação entre riqueza de espécies e estrutura de vegetação. Além disso, ao menos para as 38 espécies mais comumente encontradas na área de estudo, os resultados apontam para a importância de todo o gradiente de estrutura da vegetação para a manutenção da riqueza de espécies de aves no Cerrado. Futuros estudos que visem aprimorar o uso destes modelos de ocupação e detecção para comunidades são fundamentais para permitir o uso dos dados de todas as espécies da comunidade. Além disto, outros estudos que se proponham a analisar a dinâmica e composição das comunidades de aves nestes gradientes de estrutura de vegetação são fundamentais para um maior conhecimento sobre a ecologia e conservação das aves no Cerrado / In several studies around the globe, the structure and diversity of vegetation have been shown to be a determining factor in the diversity of species of birds and also other groups of animals. The Cerrado is the second most extensive and most threatened biome occurrence in Brazil. This biome is also characterized by an obvious environmental gradient of vegetation structure and heterogeneity. In this thesis we analysed the influence of the structure and diversity of the vegetation on the diversity in the Cerrado bird communities. Our expectation was to support the “Habitat Heterogeneity Hypothesis” which suggests that the higher the structure and diversity of vegetation, the greater the diversity of species. In the first chapter, we conducted a systematic compilation of published studies on the diversity of birds in areas occupied by some typical physiognomy of Cerrado textit lato sensu, in order to analyze the knowledge obtained so far about the relationship between diversity of birds and the structure of the vegetation in the Cerrado. We selected 72 samples from 22 studies, and these samples varied as the sampled vegetation physiognomy, the sampling method used, and they also are available in different articles and be carried out in different geographical regions. We performed the analysis of generalized linear mixed effects models (model poisson distribution errors), which allows us to analyse the effects of fixed and random variables on the explanatory variable (species richness). Fixed variables were the type of sampled vegetation (grassland, savanna and forest) and the sample method employed (fixed point, transect and mist nets). The random variables used were the study where the data were published, the author of each study and geographic location. These random variables could only affect the intercepts of the relationship between fixed and variable explanatory variable or could alter the relationship between fixed and explanatory variables. We built several models from the combination of fixed and random effects variables and selection the most parsimonious model was made by the AIC criterion (Akaike information criterion corrected for small samples). The model that showed lower value of AIC (more parsimonious) was the one that included the effects of both fixed effect variables (physiognomy and sampling method) and also an effect of the interaction between these two variables. In this model were also included the effects of random variables study and geographic location of the intercepts of the relationship between the fixed effect variables and the explanatory variable. These results showed that the bird species richness in our study varied not only in terms of physiognomy and sample method, but depending on the sampling method used the relationship between richness and physiognomy has also changed. Therefore, this interaction does not allowed us to estimate the relationship between physiognomy and richness without considering the effect of the methods. Since the effects of random variables showed that the variation in the estimated intercept between studies was twice larger than the estimated variation between geographic locations. The effect of interaction between the vegetation physiognomy and sampling method variables pointed to the existence of heterogeneity detection between locations with different physiognomies, in addition also of an effect of the physiognomies in the effectiveness of different sampling methods. The influence of the sampling method in the number of species observed in each physiognomy may be expected due to intrinsic differences in the methods, since fixed point counts and transect are based on visual and aural contacts with the species, while the mist net method consists in passive capture of species flying at the time of the networks. Thus, mist nets may be more effective in less structured environments (eg. Clean and dirty fields) where the net reaches virtually all vegetation layers. However, transect method can be more effective than the fixed point method in areas of forests since in these habitats species tend to have smaller territory areas, and the observer movement provides the observer cover greater areas. On the other hand, the point counts can be more advantageous not to produce noise and chase species, which may be a disadvantage of transect method. Other factors, such as experience and number of observers, the number of sampling points, the number of nets used and length of transects, may explain the wide variation between studies estimated. One of the ways to overcome these methodological effects is to use methods developed especially to deal with different probabilities of detection of species, between sites and sampling methods, which could yield more reliable data for the ecological study of the species and the development of management plans and/or conservation. In the second chapter, the relationship between diversity of birds and vegetation structure was analysed from data collected in the field and using a specific sampling protocol to estimate and consider the effects of vegetation on the detection of species. The samples were taken in one of the largest and well preserved remnants of Cerrado (Grande Sertão Veredas National Park-PARNA GSV) and consisted of the record of bird speciesin 32 areas arranged in a Cerrado vegetation gradient, ranging from grasslands, open and dense savannas. The calculation of the bird species richness at each site was conducted using occupancy-detection models adapted to estimate the number of species in communities. The vegetation, in turn, was measured from estimates of the presence of vegetation in height intervals between 0 and 4 m (16 intervals of 22.5 cm each) and two structure variables were obtained from a principal component analysis applied to summarize the variation of the vegetation presence in height intervals. These vegetation variables were related to both the occupation and detection of species, since the vegetation structure could influence not only the occurrence but also the detection of species. The day of sampling and also the temperature at the time of sampling were also included as covariates that may a_ect the detection. After the estimation of species richness by model occupancy detection for communities, this estimated richness was related by a quadratic function with the vegetation structure using a Bayesian meta-analysis model, which allowed us include uncertainty in richness estimates. By way of comparison, we also fit a quadratic model GLM (normal distribution errors) to the observed richness data. The results showed that the richness estimated from the data of the 38 most detected species during sampling had a weak relationship with both covariates vegetation structure, and there was a greater number of species at sites with intermediate vegetation height and greater bird species richness in places where there was a greater presence of vegetation below 2 m in height. However, relations between estimated richness and these covariates was less intense but qualitatively similar to the relationship between observed richness and vegetation covariates. The lowest intensity in the estimated richness relationship was observed mainly at both ends of the vertical gradient of vegetation and also in areas with less presence of vegetation below 2 m. These results showed that the effect of detection can change the effect of the relationship between species richness and vegetation structure. Moreover, at least for the 38 species most commonly found in the study area, the results point to the importance of the entire vegetation structure gradient to maintain the bird species richness in Cerrado. Future studies aiming to improve the use of these models of occupation and detection for communities are essential to allow the use of data of all species in the community. In addition, other studies that propose to analyse the dynamics and composition of bird communities in these vegetation structure gradients are fundamental for a better understanding of the ecology and conservation of Cerrado birds
|
Page generated in 0.0365 seconds