• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Befuktning av nedre luftvägarna hos patienter med artificiell andningsväg

Durakovic, Emin, Arvidsson, Daniella January 2010 (has links)
Felaktigt befuktningssätt av nedre luftvägarna via en artificiell andningsväg kan leda till allvarliga konsekvenser, såsom t ex ocklusion i trakealkanyl, lunginflammation eller försämrad lungfunktion. Det råder även delade meningar om hur befuktning hos patienter med artificiell andningsväg ska ske. Syftet med denna litteraturstudie var att undersöka på vilket/vilka sätt de nedre luftvägarna bör befuktas via artificiell andningsväg. Resultatet visar att koksaltinhalationer är ett effektivt sätt att befukta nedre luftvägarna och fördelas bättre i lungorna jämfört med koksaltinstillationer. Koksaltinstillationer visades både ha positiva och negativa effekter. De positiva effekterna var att koksaltinstillationerna stimulerade till en hostattack som ledde till att sekret lossnade och att risken för lunginflammation minskade. De negativa effekterna var minskad saturation, upplevd andfåddhet samt att största delen av koksaltet hamnade i högra lungan. Spray upplevdes av patienterna som ett lätthanterligt och effektivt befuktningssätt. Luftfuktare anses inte vara tillräckligt som befuktningssätt utan måste kombineras med andra befuktningssätt. Aktiv befuktning visades vara ett effektivt befuktningssätt men risken för bakteriell kontamination av utrustningen var stor. Resultatet i litteraturstudien indikerar att forskningsområdet är komplext och påverkas av många olika faktorer och detaljer, vilket gör det svårt att ge några rekommendationer för lämplig befuktning. / Improper humidification of the lower respiratory tract through an artificial airway can result in serious consequences, such as for example tracheal occlusion, pneumonia or impaired lung function. There is also a disagreement on how humidification in patients with artificial airways should be. The aim for this literature review was to find ways to humidify lower respiratory tracts of an artificial airway. The results show that saline nebulizations are an effective way to humidify the lower respiratory tract and the saline is better distributed in the lungs compared with saline instillation. Saline instillation was shown to have both positive and negative impacts. The positive impact was that saline instillation stimulated to cough which led to loosen secretions and that the risk of pneumonia decreased. The negative effects were decreased saturation, dyspnoea, and that the majority of the saline went to the right lung. Spray was by the patients experienced as a convenient and effective way to humidify. Heat and moisture exchangers are not considered as a sufficient way to humidify and must be combined with other ways of humidification. Heated humidifiers were shown to be an effective way of humidification, but the risk for bacterial contamination of the equipment was high. The results of this study indicate that the field of research is complex and influenced by numerous factors and details, which makes it difficult to give any recommendations for proper humidification.
2

Low Temperature Waste Heat Solutions : with proposals for energy technological actions based on Scania’s building 64 / Lågtemperaturlösningar : samt energitekniska åtgärdsförslag utifrån Scanias byggnad 64

Svensson, Klas, Wallenskog, Jonas January 2009 (has links)
<p>The report comprises two separate parts:</p><ul><li>part 1:  Temperature needs for district heating in the paint shop for axles in building 210</li><li>part 2:  Energy and low temperature waste heat solutions in heating and cooling systems for   building 64 with surroundings</li></ul><p>The paint shop for axles in part 1 has air quality requirements in places for coating of axles. Toachieve desired air properties there are different process ventilation systems, which consist ofventilation coils for heating and cooling, plus air humidifier. The ventilations coils for heating usedistrict heating. Today the ventilation coils use water of 100°C to achieve necessary air demands inthe coating boxes. This part of the report investigates whether the existing system would achievethe air requirements with a water temperature of 75°C instead of 100°C in the ventilation coilsduring the coldest parts of the year. The conclusion is that it is not possible; the existing system isadjusted for a water temperature of 100°C to achieve the air requirements. To use a watertemperature of 75°C, more or major ventilation coils are needed.</p><p>The focus of the report is at part 2. In this part, possibilities for low temperature waste heatsolutions are investigated. Those partly aim at specific local solutions for building 64 withsurroundings and on the other part of general waste heat solutions for new buildings andreconstructions in the future. To make these parts possible, the systems for heating and cooling inbuilding 64 have been identified. During this identification, potential savings that are not of wasteheat character have also been observed.</p><p>The most profitable saving concerns the control of temperature for the inner hardening vat. It isthe hardening vat for gas carburizing oven SV16838 that has been studied in this report. Today thetemperature of the hardening vat is controlled very ineffective. The conclusion is that a betteradjustment of the controller would save 180 000 SEK/year with a pay off time around two months.Worth mentioning (SV16838 included), is that there are at least five similar gas carburizing ovens atthe Scania area in Södertälje.</p><p>A pinch analysis has also been done for building 64, with it’s primarily conclusion that the groundheating is violating the pinch rules during long periods of the year. To remedy the ground heatingwill only need a different control and will lead to a saving between 20 000 – 75 000 SEK/year. Tomore accurate determine the saving, an investigation of the ground heating during winter time isneeded. Another conclusion concerning the pinch analysis is that the method for a real scenariorather shows the potential of the system than gives you an optimal solution possible to implement.More actions are to use the exhaustions of the endo gas generators and that the washing andrinsing systems if possible not should be heated with electricity. The exhaustions from the endo gasgenerators have a very high temperature, more then 300°C. If these, instead of hot water boilers,could warm the closely located water for the LPG (liquefied petroleum gas) evaporation, 125 000SEK/year can be saved. Today the hot water boilers are heated with electricity. If the washing andrinsing systems existing electricity heating instead can be heated with secondary heat (˜ districtheating), a save of 500 000 SEK/year is possible.</p><p>For waste heat solutions there are a few different approaches. Close to building 64, the largestpotential to use waste heat is in building 62 and 75, where air heaters are assessed with the largestpotential. In difference to other investigated buildings, building 210 has the possibility to use wasteheat even during the summer. This building is located 1 km from building 64. To use waste water inbuilding 210, a complex net of waste heating will be required where several buildings with asurplus of waste heat can be connected. A net like this has calculated pipe costs of 5, 2 million SEK.The saving for the use of waste heat only in building 210 will be around 1,4 million SEK/year. Thissave corresponds to the air handling systems that occur in part 1.</p>
3

Befuktning : Installationer, processer och hälsofördelar. / Humidification : Installations, processes and health benefits.

Cavallius, Matilda, Rehnstedt, Oskar January 2017 (has links)
Det finns tydliga hälsofördelar med en relativ fuktighet på 40–60% inomhus. Trots detta finns det idag inga direktiv på hur man ska styra den relativa fuktigheten inomhus. Många gånger diskuteras det kring avfuktning men i denna rapport tas befuktning upp ur ett hälsoperspektiv.I denna studie har det undersökts huruvida befuktningssystem skulle kunna användas i större utsträckning till fördel för människors hälsa.I rapporten redogörs för olika befuktningmetoder samt deras termofysiska processer - adiabatisk eller isotermisk. Dessutom undersöks vad som händer med energin i luften och vattenångan vid olika temperaturer samt vad olika relativ fuktighet har för hälsomässiga för- och nackdelar.Resultatet visar på att det finns både etablerade befuktningssystem samt ett behov av befuktning. Däremot är efterfrågan av befuktning inte speciellt stor i bostäder och branschen ställer sig negativ till befuktning i ventilationssystem. / There are clear health benefits of having a relative humidity between 40–60% indoors. Despite this, there are currently no directives on what level the relative humidity should be indoors. Today dehumidification is a common matter but this report is about humidification, from a health perspective.In this study, it has been investigated whether humidification could be used to a greater extent, to the benefit of humans’ health.This report describes various humidification methods and their thermophysical processes - adiabatic and isothermal. It is also explained what happens to the energy in the air and water vapor at different temperatures and how the relative humidity affects our health at different levels.The result shows that there is a need for humidification and that there are several technical solutions available today. However, the demand is low and the industry is not very positive to the idea of humidification in ventilation systems.
4

Aktiv befuktning vid mekaniskventilation : En integrerad litteraturstudie / Active humidification in mechanical ventilation : An integrated literature review

Lindström, Karl-Johan, Carling, Anna January 2017 (has links)
Introduktion: Befuktning vid mekanisk ventilation är nödvändigt för att inte skador skall uppstå i luftvägarna. Luften kan befuktas aktivt eller passivt och då tekniken ständigt utvecklas kan tidigare riktlinjer för vilken metod som är bäst behöva revideras. Syfte: Studiens syfte var att undersöka evidensen för användning av aktiv befuktning hos intuberade eller trakeostomerade patienter. Metod: I enlighet med Whittemore &amp; Knafls metod utfördes en integrerad litteraturstudie. Litteratursökning gjordes i databaserna PubMed, CINAHL och Cochrane. Även en manuell sökning i referenslistor utfördes och ledde till att totalt 14 artiklar valdes ut, varav 13 var kvantitativa och 1 kvalitativ. Resultat: Analysen av de 14 artiklarna resulterade i fyra huvudkategorier med efterföljande underrubriker: Aktiv befuktnings påverkan på nosokomiala infektioner: Infektionsincidens och Infektionstyp; Aktiv befuktnings påverkan på luftvägsproblem: Ocklusionsproblemoch Sekretviskositet/sekretmängd; Aktiv befuktnings påverkan på mekanisk ventilation: Vårdtid med mekanisk ventilation och Påverkan på andningsarbete;Upplevelse av aktiv befuktning: Upplevd påverkan på hälsa och Negativ påverkanpå vårdmiljön. Konklusion: Denna studie var att aktiv befuktning har en viktigfunktion att fylla hos vissa patienter, men borde inte användas slentrianmässigt.Sjuksköterskan har en viktig roll i att hitta de patienter som är mest hjälpta av det. / Introduction: Humidification during mechanical ventilation is necessary to avoid damage in the airways. The air can be humidified actively or passively and since thetechnique is constant developing the guidelines for which of the alternative that’sthe best may need to be revised. Aim: The aim of the study was to examine the evidence of using active humidification in intubated patients or in patients withtracheostomy. Method: An integrated literature review according to Whittemore &amp;Knafl was carried through. The literature search was done in the databases PubMed, CINAHL and Cochrane. A manual search in reference lists was also made and resulted in a total of 14 articles whereof 13 were quantitative and one was qualitative. Result: The analysis of the 14 articles led to four main categories with the following subcategories: Active humidifications influence on nosocomial infections: Infectionincidence and Infection type; Active humidifications influence on airway problems: Occlusion problems and Mucus viscosity/mucus volume; Active humidifications influence on mechanical ventilation: Time on mechanical ventilation and Influenceon respiratory work; Experience of active humidification: Experienced influence on health and Negative impact on hospital environment. Conclusion: The conclusion of this study was that active humidification is the better choice among certain patientgroups but should not be used routinely. The nurse plays an important role in finding the patients who can benefit the most of it.
5

Low Temperature Waste Heat Solutions : with proposals for energy technological actions based on Scania’s building 64 / Lågtemperaturlösningar : samt energitekniska åtgärdsförslag utifrån Scanias byggnad 64

Svensson, Klas, Wallenskog, Jonas January 2009 (has links)
The report comprises two separate parts: part 1:  Temperature needs for district heating in the paint shop for axles in building 210 part 2:  Energy and low temperature waste heat solutions in heating and cooling systems for   building 64 with surroundings The paint shop for axles in part 1 has air quality requirements in places for coating of axles. Toachieve desired air properties there are different process ventilation systems, which consist ofventilation coils for heating and cooling, plus air humidifier. The ventilations coils for heating usedistrict heating. Today the ventilation coils use water of 100°C to achieve necessary air demands inthe coating boxes. This part of the report investigates whether the existing system would achievethe air requirements with a water temperature of 75°C instead of 100°C in the ventilation coilsduring the coldest parts of the year. The conclusion is that it is not possible; the existing system isadjusted for a water temperature of 100°C to achieve the air requirements. To use a watertemperature of 75°C, more or major ventilation coils are needed. The focus of the report is at part 2. In this part, possibilities for low temperature waste heatsolutions are investigated. Those partly aim at specific local solutions for building 64 withsurroundings and on the other part of general waste heat solutions for new buildings andreconstructions in the future. To make these parts possible, the systems for heating and cooling inbuilding 64 have been identified. During this identification, potential savings that are not of wasteheat character have also been observed. The most profitable saving concerns the control of temperature for the inner hardening vat. It isthe hardening vat for gas carburizing oven SV16838 that has been studied in this report. Today thetemperature of the hardening vat is controlled very ineffective. The conclusion is that a betteradjustment of the controller would save 180 000 SEK/year with a pay off time around two months.Worth mentioning (SV16838 included), is that there are at least five similar gas carburizing ovens atthe Scania area in Södertälje. A pinch analysis has also been done for building 64, with it’s primarily conclusion that the groundheating is violating the pinch rules during long periods of the year. To remedy the ground heatingwill only need a different control and will lead to a saving between 20 000 – 75 000 SEK/year. Tomore accurate determine the saving, an investigation of the ground heating during winter time isneeded. Another conclusion concerning the pinch analysis is that the method for a real scenariorather shows the potential of the system than gives you an optimal solution possible to implement.More actions are to use the exhaustions of the endo gas generators and that the washing andrinsing systems if possible not should be heated with electricity. The exhaustions from the endo gasgenerators have a very high temperature, more then 300°C. If these, instead of hot water boilers,could warm the closely located water for the LPG (liquefied petroleum gas) evaporation, 125 000SEK/year can be saved. Today the hot water boilers are heated with electricity. If the washing andrinsing systems existing electricity heating instead can be heated with secondary heat (˜ districtheating), a save of 500 000 SEK/year is possible. For waste heat solutions there are a few different approaches. Close to building 64, the largestpotential to use waste heat is in building 62 and 75, where air heaters are assessed with the largestpotential. In difference to other investigated buildings, building 210 has the possibility to use wasteheat even during the summer. This building is located 1 km from building 64. To use waste water inbuilding 210, a complex net of waste heating will be required where several buildings with asurplus of waste heat can be connected. A net like this has calculated pipe costs of 5, 2 million SEK.The saving for the use of waste heat only in building 210 will be around 1,4 million SEK/year. Thissave corresponds to the air handling systems that occur in part 1.

Page generated in 0.2146 seconds