421 |
Nodal Discontinuous Galerkin Spectral Element Method for Advection-Diffusion Equations in Chromatography / Nodal Diskontinuerlig Galerkin Spektralelementmetod för Advektions-Diffusionsekvationer i KromatografiSehlstedt, Per January 2024 (has links)
In this thesis, we mainly investigate the application of a nodal discontinuous Galerkin spectral element method (DGSEM) for simulating processes in column liquid chromatography. Additionally, we investigate the effectiveness of a total variation diminishing in the mean (TVDM) limiter in controlling spurious oscillations related to the Gibbs phenomenon. With an order-of-accuracy test, we demonstrated that our nodal DGSEM achieved and, in multiple instances, even exceeded theoretical convergence rates, especially with an increased number of elements, validating the use of high-order basis functions for achieving high-order accuracy. We also demonstrated how setup parameters could affect process outcomes, which suggests that numerical simulations can help guide the development of experimental methods since they can explore the solution space of an optimization problem much faster than experimental procedures by leveraging computational speed. Finally, we showed that the TVDM limiter successfully eliminated severe oscillations and negative concentrations near shock regions but introduced significant smearing of the shocks. These findings validate the nodal DGSEM as a highly accurate and reliable tool for detailed modeling of column liquid chromatography, which is essential for improving efficiency, yield, and product quality in biopharmaceutical manufacturing.
|
422 |
A weighted particle approach to non-linear diffusion equations : On the convergence of a particle approximation of the qudratic porous medium equation / En partikelmetod for icke-linjära diffusionsekvationer : Om konvergens för en partikel-approximation av den kvadratiska porös-medium-ekvationenLieback, Erik January 2024 (has links)
In this thesis we design and study a particle method that can be used to numericallyapproximate solutions to the quadratic porous medium equation. The idea consists offirst approximating the porous medium equation using a non-local transport equation,to which we approximate the solution with a particle method. We prove that theparticle method converges, in a suitable norm, to the solution to the non-localtransport equation. We provide numerical simulations to illustrate this convergenceand estimate the order of convergence. In particular, we use the particle method toapproximate the Barenblatt solutions to the quadratic porous medium equation. Theanalysis of the partial differential equations is to a large extent carried out in the senseof integrable functions, while the analysis of the particle method relies on a dualityapproach on the space of finite signed Radon measures. / Vi konstruerar och undersöker en partikelmetod som kan användas för att lösaden kvadratiska porös-medium-ekvationen numeriskt. Huvudidén är att förstapproximera ekvationen med en icke-lokal transportekvation, som vi sedan lösernumeriskt med en partikelmetod.Vi bevisar att partikelmetoden konvergerar, i en passande norm, till lösningen tillden icke-lokala transport-ekvationen. Vi presenterar numeriska simulationer föratt illustera denna konvergens och estimera hur snabb konvergensen är. För attgöra detta försöker vi använda partikelmetoden för att approximera Barenblattslösningar till den kvadratiska porös-medium-ekvationen. Vår analys av de partielladifferentialekvationerna görs till stor del i rummet av Lebesgue-integrerbarafunktioner, medan vår analys av partikelmetoden är baserad på att se rummet avändliga Radon-mått som ett underrum till ett dualrum.
|
423 |
Integration of Simulation Models with Optimization Packages to Solve Optimal Control ProblemsVestman, Klara January 2024 (has links)
Simulation modeling is important for resource management and operational strategy within the industry. Optimation AB specializes in modeling and simulation of complex systems using Dymola, but also offers solutions for decision support by solving simplified optimal control problems (OCPs). Since simulation models can be exported as functional mock-up units (FMUs), interfacing the underlying equations, this thesis explores the use of FMUs to formulate and solve OCPs in Python, proposing a workflow based on the softwares CasADi, Rockit and IPOPT. Test cases of increasing complexity, including a cogeneration plant OCP, were employed to evaluate the workflow. Promising results were obtained for simplified models, though scaling, initial guesses and solver settings require further consideration. Collocation demonstrated the fastest convergence time and overall robustness. It could be concluded that integrating FMUs into OCPs is feasible, although complex models require modifications. This suggest that creating simplified component libraries in Dymola, tailored for optimization, could improve method implementation and re-usability.
|
424 |
Is pseudo time stepping a good iterative solver for non-uniform meshes?Jonsson, Jakob, Leo, Svanfeldt January 2024 (has links)
This thesis investigates pseudo time stepping as an implicit solver for non-uniform meshes. Specifically, on meshes with small cells. Regions with small cells can be treated with a time stepping scheme known as mixed explicit implicit time stepping, which treats small cells implicitly to ensure stability. The goal of this thesis is to examine whether pseudo time stepping is a good solver for the implicit part. To investigate this, results from pseudo time stepping on a uniform mesh are first compared with a direct implicit solver. This is done to ensure that both methods produce the same results. Then, tests are conducted on a non-uniform mesh, featuring one small cell in the center of the domain. The aim of these tests is to evaluate how the parameters in pseudo time stepping contribute to the accuracy and number of iterations in a small mesh. With respect to this, the thesis aims to answer whether and when pseudo time stepping is a feasible solver. The results show promising potential in pseudo time stepping, as similar results to the direct solver on the uniform mesh are achieved with few iterations. It also shows feasible iteration numbers for the non-equidistant case, nearly regardless of number of grid points or the size of the small cell.
|
425 |
Numeriska fouriertransformen och dess användning : En introduktion / Numerical fourier transform and its usage : An introductionTondel, Kristoffer January 2022 (has links)
The aim of this bachelor's thesis is to use three variants of the discrete Fourier transform (DFT) and compare their computational cost. The transformation will be used to numerically solve partial differential equations (PDE). In its simplest form, the DFT can be regarded as a matrix multiplication. It turns out that this matrix has some nice properties that we can exploit. Namely that it is well-conditioned and the inverse of the matrix elements is similar to the original matrix element, which will simplifies the implementation. Also, the matrix can be rewritten using different properties of complex numbers to reduce computational cost. It turns out that each transformation method has its own benefits and drawbacks. One of the methods makes the cost lower but can only use data of a fixed size. Another method needs a specific library to work but is way faster than the other two methods. The type of PDE that will be solved in this thesis are advection and diffusion, which aided by the Fourier transform, can be rewritten as a set of ordinary differential equations (ODE). These ODEs can then be integrated in time with a Runge-Kutta method. / Detta kandidatarbete går ut på att betrakta tre olika diskreta fouriertransformer och jämföra deras beräkningstid. Fouriertransformen används sedan också för att lösa partiella differentialekvationer (PDE). Fouriertransformerna som betraktas kan ses som en matrismultiplikation. Denna matrismultiplikation visar sig har trevliga egenskaper. Nämligen att matrisen är välkonditionerad och att matrisinversen element liknar ursprungsmatrisens element, vilket kommer underlätta implementationen. Matrisen kan dessutom skrivas om genom diverse samband hos komplexa tal för att få snabbare beräkningstid. PDE:na som betraktas i detta kandiatarbete är advektions och diffusions, vilket med speciella antaganden kan skrivas om till en ordinär differentialekvation som löses med en Runge-Kutta metod. Fouriertransformen används för att derivera, då det motsvarar en multiplikation. Det visar sig att alla metoder har fördelar och nackdelar. Ena metoden gör beräkningen snabbare men kan endast använda sig av datamängder av viss storlek. Andra metoden kräver ett specifikt bibliotek för att fungera men är mycket snabbare än de andra två.
|
426 |
Admissible transformations and the group classification of Schrödinger equationsKurujyibwami, Celestin January 2017 (has links)
We study admissible transformations and solve group classification problems for various classes of linear and nonlinear Schrödinger equations with an arbitrary number n of space variables. The aim of the thesis is twofold. The first is the construction of the new theory of uniform seminormalized classes of differential equations and its application to solving group classification problems for these classes. Point transformations connecting two equations (source and target) from the class under study may have special properties of semi-normalization. This makes the group classification of that class using the algebraic method more involved. To extend this method we introduce the new notion of uniformly semi-normalized classes. Various types of uniform semi-normalization are studied: with respect to the corresponding equivalence group, with respect to a proper subgroup of the equivalence group as well as the corresponding types of weak uniform semi-normalization. An important kind of uniform semi-normalization is given by classes of homogeneous linear differential equations, which we call uniform semi-normalization with respect to linear superposition of solutions. The class of linear Schrödinger equations with complex potentials is of this type and its group classification can be effectively carried out within the framework of the uniform semi-normalization. Computing the equivalence groupoid and the equivalence group of this class, we show that it is uniformly seminormalized with respect to linear superposition of solutions. This allow us to apply the version of the algebraic method for uniformly semi-normalized classes and to reduce the group classification of this class to the classification of appropriate subalgebras of its equivalence algebra. To single out the classification cases, integers that are invariant under equivalence transformations are introduced. The complete group classification of linear Schrödinger equations is carried out for the cases n = 1 and n = 2. The second aim is to study group classification problem for classes of generalized nonlinear Schrödinger equations which are not uniformly semi-normalized. We find their equivalence groupoids and their equivalence groups and then conclude whether these classes are normalized or not. The most appealing classes are the class of nonlinear Schrödinger equations with potentials and modular nonlinearities and the class of generalized Schrödinger equations with complex-valued and, in general, coefficients of Laplacian term. Both these classes are not normalized. The first is partitioned into an infinite number of disjoint normalized subclasses of three kinds: logarithmic nonlinearity, power nonlinearity and general modular nonlinearity. The properties of the Lie invariance algebras of equations from each subclass are studied for arbitrary space dimension n, and the complete group classification is carried out for each subclass in dimension (1+2). The second class is successively reduced into subclasses until we reach the subclass of (1+1)-dimensional linear Schrödinger equations with variable mass, which also turns out to be non-normalized. We prove that this class is mapped by a family of point transformations to the class of (1+1)-dimensional linear Schrödinger equations with unique constant mass.
|
427 |
Quantum scattering and interaction in graphene structuresOrlof, Anna January 2017 (has links)
Since its isolation in 2004, that resulted in the Nobel Prize award in 2010, graphene has been the object of an intense interest, due to its novel physics and possible applications in electronic devices. Graphene has many properties that differ it from usual semiconductors, for example its low-energy electrons behave like massless particles. To exploit the full potential of this material, one first needs to investigate its fundamental properties that depend on shape, number of layers, defects and interaction. The goal of this thesis is to perform such an investigation. In paper I, we study electronic transport in monolayer and bilayer graphene nanoribbons with single and many short-range defects, focusing on the role of the edge termination (zigzag vs armchair). Within the discrete tight-binding model, we perform an-alytical analysis of the scattering on a single defect and combine it with the numerical calculations based on the Recursive Green's Function technique for many defects. We find that conductivity of zigzag nanoribbons is practically insensitive to defects situated close to the edges. In contrast, armchair nanoribbons are strongly affected by such defects, even in small concentration. When the concentration of the defects increases, the difference between different edge terminations disappears. This behaviour is related to the effective boundary condition at the edges, which respectively does not and does couple valleys for zigzag and armchair ribbons. We also study the Fano resonances. In the second paper we consider electron-electron interaction in graphene quantum dots defined by external electrostatic potential and a high magnetic field. The interaction is introduced on the semi-classical level within the Thomas Fermi approximation and results in compressible strips, visible in the potential profile. We numerically solve the Dirac equation for our quantum dot and demonstrate that compressible strips lead to the appearance of plateaus in the electron energies as a function of the magnetic field. This analysis is complemented by the last paper (VI) covering a general error estimation of eigenvalues for unbounded linear operators, which can be used for the energy spectrum of the quantum dot considered in paper II. We show that an error estimate for the approximate eigenvalues can be obtained by evaluating the residual for an approximate eigenpair. The interpolation scheme is selected in such a way that the residual can be evaluated analytically. In the papers III, IV and V, we focus on the scattering on ultra-low long-range potentials in graphene nanoribbons. Within the continuous Dirac model, we perform analytical analysis and show that, considering scattering of not only the propagating modes but also a few extended modes, we can predict the appearance of the trapped mode with an energy eigenvalue close to one of the thresholds in the continuous spectrum. We prove that trapped modes do not appear outside the threshold, provided the potential is sufficiently small. The approach to the problem is different for zigzag vs armchair nanoribbons as the related systems are non-elliptic and elliptic respectively; however the resulting condition for the existence of the trapped mode is analogous in both cases. / Sedan isoleringen av grafen 2004, vilket belönades med Nobelpriset 2010, har intresset för grafen varit väldigt stort på grund av dess nya fysikaliska egenskaper med möjliga tillämpningar i elektronisk apparatur. Grafen har många egenskaper som skiljer sig från vanliga halvledare, exempelvis dess lågenergi-elektroner som beter sig som masslösa partiklar. För att kunna utnyttja dess fulla potential måste vi först undersöka vissa grundläggande egenskaper vilka beror på dess form, antal lager, defekter och interaktion. Målet med denna avhandling är att genomföra sådana undersökningar. I den första artikeln studerar vi elektrontransporter i monolager- och multilagergrafennanoband med en eller flera kortdistansdefekter, och fokuserar på inverkan av randstrukturen (zigzag vs armchair), härefter kallade zigzag-nanomband respektive armchair-nanoband. Vi upptäcker att ledningsförmågan hos zigzag-nanoband är praktiskt taget okänslig för defekter som ligger nära kanten, i skarp kontrast till armchairnanoband som påverkas starkt av sådana defekter även i små koncentrationer. När defektkoncentrationen ökar så försvinner skillnaden mellan de två randstrukturerna. Vi studerar också Fanoresonanser. I den andra artikeln betraktar vi elektron-elektron interaktion i grafen-kvantprickar som definieras genom en extern elektrostatisk potential med ett starkt magnetfält. Interaktionen visar sig i kompressibla band (compressible strips) i potentialfunktionens profil. Vi visar att kompressibla band manifesteras i uppkomsten av platåer i elektronenergierna som en funktion av det magnetiska fältet. Denna analys kompletteras i den sista artikeln (VI), vilken presenterar en allmän feluppskattning för egenvärden till linjära operatorer, och kan användas för energispektrumav kvantprickar betraktade i artikel II. I artiklarna III, IV och V fokuserar vi på spridning på ultra-låg långdistanspotential i grafennanoband. Vi utför en teoretisk analys av spridningsproblemet och betraktar de framåtskridande vågor, och dessutom några utökade vågor. Vi visar att analysen låter oss förutsäga förekomsten av fångade tillstånd inom ett specifikt energiintervall förutsatt att potentialen är tillräckligt liten.
|
428 |
Creating Interactive Visualizations for Twitter Datasets using D3Björck, Olof January 2018 (has links)
Project Meme Evolution Programme (Project MEP) is a research program directed by Raazesh Sainudiin, Uppsala University, Sweden, that collects and analyzes datasets from Twitter. Twitter can be used to understand how ideas spread in social media. This project aims to produce interactive visualizations for datasets collected in Project MEP. Such interactive visualizations will facilitate exploratory data analysis in Project MEP. Several technologies had to be learned to produce the visualizations, most notably JavaScript, D3, and Scala. Three interactive visualizations were produced; one that allows for exploration of a Twitter user timeline and two that allows for exploration and understanding of a Twitter retweet network. The interactive visualizations are accessible as Scala functions and in a website developed in this project and uploaded to GitHub. The interactive visulizations contain some known bugs but they still allow for useful exploratory data analysis of Project MEP datasets and the project goal is therefore considered met. / Project Meme Evolution Programme
|
429 |
Advanced Kalman Filtering Approaches to Bayesian State EstimationRoth, Michael January 2017 (has links)
Bayesian state estimation is a flexible framework to address relevant problems at the heart of existing and upcoming technologies. Application examples are obstacle tracking for driverless cars and indoor navigation using smartphone sensor data. Unfortunately, the mathematical solutions of the underlying theory cannot be translated to computer code in general. Therefore, this thesis discusses algorithms and approximations that are related to the Kalman filter (KF). Four scientific articles and an introduction with the relevant background on Bayesian state estimation theory and algorithms are included. Two articles discuss nonlinear Kalman filters, which employ the KF measurement update in nonlinear models. The numerous variants are presented in a common framework and the employed moment approximations are analyzed. Furthermore, their application to target tracking problems is discussed. A third article analyzes the ensemble Kalman filter (EnKF), a Monte Carlo implementation of the KF that has been developed for high-dimensional geoscientific filtering problems. The EnKF is presented in a simple KF framework, including its challenges, important extensions, and relations to other filters. Whereas the aforementioned articles contribute to the understanding of existing algorithms, a fourth article devises novel filters and smoothers to address heavy-tailed noise. The development is based on Student’s t distribution and provides simple recursions in the spirit of the KF. The introduction and articles are accompanied by extensive simulation experiments.
|
430 |
A Comparison of Three Time-stepping Methods for the LLG Equation in Dynamic MicromagneticsWredh, Simon, Kroner, Anton, Berg, Tomas January 2017 (has links)
Micromagnetism is the study of magnetic materials on the microscopic length scale (of nano to micrometers), this scale does not take quantum mechanical effects into account, but is small enough to neglect certain macroscopic effects of magnetism in a material. The Landau-Lifshitz-Gilbert (LLG) equation is used within micromagnetism to determine the time evolution of the magnetisation vector field in a ferromagnetic solid. It is a partial differential equation with high non linearity, which makes it very difficult so solve analytically. Thus numerical methods have been developed for approximating the solution using computers. In this report we compare the performance of three different numerical methods for the LLG equation, the implicit midpoint method (IMP), the midpoint with extrapolation method (MPE), and the Gauss-Seidel Projection method (GSPM). It was found that all methods have convergence rates as expected; second order for IMP and MPE, and first order for GSPM. Energy conserving properties of the schemes were analysed and neither MPE or GSPM conserve energy. The computational time required for each method was determined to be very large for the IMP method in comparison to the other two. Suggestions for different areas of use for each method are provided.
|
Page generated in 0.0989 seconds