• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 41
  • 12
  • 12
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 146
  • 74
  • 38
  • 28
  • 17
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Phosphorus Sorption Dynamics in Shallow Groundwater, Coastal Everglades, Florida, USA

Flower, Hilary 08 November 2015 (has links)
For this dissertation I studied phosphorus (P) sorption dynamics in the shallow groundwater of the southern Everglades. In particular, I examined how the ambient water type governs soluble reactive P (SRP) availability through adsorption/desorption reactions with the aquifer matrix. Chapter 2 investigated how P sorption dynamics of the mangrove root zone sediment are affected by high bicarbonate brackish groundwater compared to both fresh groundwater and saltwater. The results from chapter 2 show that the sediment exhibited exceptionally low sorption efficiency in the high bicarbonate brackish water, which would allow ambient water SRP concentration to be maintained at a higher level. Chapter 3 is a detailed analysis of how P sorption dynamics in two bedrock samples are affected by incremental increases in saltwater content in a freshwater-saltwater transition zone. The results of chapter 3 indicate that a sorption edge occurs at 3 mM Cl- concentration. In water exceeding this Cl- concentration, SRP would be expected to desorb from the bedrock due to a sharp decrease in sorption efficiency between the freshwater saltwater. These results suggest that SRP is active in the ion exchange front of saltwater intrusion, with a rapid increase in SRP availability expected at the leading edge of saltwater intrusion. A landward incursion of 3 mM Cl- concentration water would be expected to raise ambient SRP concentration along the affected aquifer zone, in turn increasing SRP availability in the ecosystem where the transitional waters discharge to the surface. Chapter 4 investigates the kinetics SRP release accompanying saltwater intrusion using a column of carbonate aquifer solids and alternating inflow between fresh groundwater and saltwater. The results show an immediate and high magnitude increase in SRP concentration when saltwater flows into the column. The combined results of this dissertation show that, in the southern Everglades and possibly other carbonate coastlines as well, water type strongly controls P sorption behavior of the sediment and bedrock, and may have a direct influence on the local ecology through increased P availability. A fundamental understanding of the abiotic exchange mechanisms between SRP and the aquifer solids can aid in the successful management and protection of this unique and important ecosystem.
92

The roles of orexins on sleep/wakefulness, energy homeostasis and intestinal secretion

Mäkelä, K. A. (Kari Antero) 30 November 2010 (has links)
Abstract Orexins, or hypocretins, are peptides originally found in the hypothalamus, and have been shown to be involved in the stabilization and maintenance of sleep and wakefulness. In addition, these peptides are known for their actions on energy homeostasis by increased heat production or physical activity. Previous results suggest them to be also involved in peripheral actions on the regulation of intestinal secretion, depending on the subject’s nutritional status (fasted-fed). Orexin-A and Orexin-B peptides, are derived from the prepro-orexin precursor protein. These ligands bind to two G-protein-coupled receptors, orexin-1 and -2 -receptors. Despite intensive research, the role of orexins has not yet been clarified. The aim of the present study was to investigate the role of orexins and their receptors on sleep and wake patterns, energy homeostasis and intestinal secretion. The effects of orexins on sleep and wakefulness, and energy homeostasis were studied in a novel transgenic mouse line, overexpressing the human prepro-orexin gene. The overexpression of prepro-orexin and orexin-A was confirmed in the hypothalami of transgenic mice. The transgenic mice showed a significant reduction in their REM sleep during day and night time, and differences in their vigilance states in the light/dark transition periods. In addition, the mice demonstrated a significantly elevated day time food intake at room temperature, and an increased metabolic heat production independent of uncoupling protein 1 mediated thermogenesis in brown adipose tissue. Instead, transgenic mice showed increased levels of uncoupling protein 2 in white adipose tissue. Furthermore, transgenic mice significantly decreased their total locomotor activity during the first two nights in response to cold exposure (+4°C). The effect of orexins and their receptors on duodenal HCO3– secretion were studied after an overnight (16 h) food deprivation in an in situ perfused organ. Fasting decreased the expression of orexin receptors in rat duodenal mucosa and in acutely isolated duodenal enterocytes. Furthermore, food deprivation abolished OXA induced duodenal mucosal HCO3– secretion in rats, and intracellular calcium signalling in isolated rat and human duodenal enterocytes. In conclusion, the present thesis demonstrates that orexins inhibit REM sleep. In addition, peptides affect increasingly on metabolic heat production, independent of uncoupling protein 1 mediated thermogenesis. Furthermore, the orexin system has a significant role in duodenal bicarbonate secretion, which is regulated by the presence of food in the intestine.
93

Carbonic anhydrase in normal and neoplastic gastrointestinal tissues:with special emphasis on isoenzymes I, II, IX, XII, and XIV

Kivelä, A. (Antti) 13 June 2003 (has links)
Abstract The carbonic anhydrases (CAs) catalyse the hydration of CO2 to bicarbonate at physiological pH. This chemical interconversion is crucial since HCO3- is the substrate for several biosynthetic reactions. Carbonic anhydrases are involved in many physiological processes connected with respiration and transport of CO2/bicarbonate between metabolising tissues and the lungs, pH homeostasis and electrolyte secretion in a variety of tissues/organs. The present work was undertaken to study the distribution and expression of CA isoenzymes in the normal and neoplastic gastrointestinal tissues. The expression of CA I, II, IX and XII in the human intestine and colorectal tumours was investigated by immunohistochemistry and western blotting. In the present study, immunohistochemical methods were also used to examine the location of CA IX and XII in the human pancreas and pancreatic tumours. The expression of CA XIV in the murine liver and intestine was studied using immunostaining and northern blotting. The present results suggest that transmembrane CA XII is absent from the small intestine, but is expressed in all segments of the normal large intestine. The positive signal for CA XII was confined to the basolateral plasma membranes of the epithelial cells of the surface epithelial cuff. In tumours, the signal for CA XII became stronger in the deep part of the lesion. The intensity of the immunostaining for CA I and II was clearly found to decrease in benign lesions and became very weak in malignant colorectal tumours. The reciprocal pattern of expression observed for membrane-associated (CA IX and XII) and cytoplasmic (CA I and II) isoenzymes in intestinal samples suggests that CA IX and XII may be functionally involved in tumour progression to malignancy and/or in invasion. CA I and II, which are thought to play important physiological roles in the normal colorectal mucosa, may not be required for growth of colorectal cancers and their expression consistently diminishes with progression to malignancy. In the human pancreas CA IX and XII appeared to be sporadically expressed in the basolateral plasma membrane of the normal acinar and ductal epithelium. The increased expression of CA IX in hyperplastic ductal epithelium may contribute to the pancreatic tumourigenesis. CA XIV was expressed in the hepatocyte plasma membrane and its localization on both apical and basolateral membrane domains suggests an important role for this isoenzyme in the regulation of ion and pH homeostasis in the liver.
94

Dietas catiônicas no desempenho e parâmetros ácido-base de vacas em lactação / Cationic diets on performance and acid-basic parameters of dairy cows

Lisia Bertonha Correa 10 August 2006 (has links)
Foram utilizadas 8 vacas Holandesas em lactação, distribuídas em um quadrado latino (4x4), replicado, conduzidos durante o verão, por um período de 72 dias. O objetivo desse trabalho foi estudar quatro níveis de dietas catiônicas, sobre a IMS, produção, composição e propriedades físico-químicas do leite, pH urinário, temperatura corporal e parâmetros ácido-base do sangue, em vacas após o pico de lactação. Para a manipulação do BCAD, foram adicionadas diferentes concentrações de bicarbonato de sódio nas dietas, obtendo-se os seguintes tratamentos: +150, +250, +400 e +500mEq/kg MS. A temperatura corporal das vacas não foi afetada pelo balanço cátion-aniônico da dieta. O bicarbonato, o pH, o CO2 total e a pCO2 do sangue aumentaram linearmente com o aumento do BCAD. A concentração de cálcio no sangue apresentou resposta quadrática, com maior valor para o menor BCAD. As concentrações de sódio e potássio do sangue não foram modificadas significativamente pelo BCAD e a concentração de cloro diminuiu linearmente com o aumento do BCAD. O aumento do BCAD resultou em aumento da ingestão de matéria seca e produção de leite. Não houve diferença significativa para as variáveis: porcentagem de gordura, densidade e índice crioscópico, do leite. O pH do leite aumentou linearmente e a acidez apresentou resposta cúbica, com o aumento do BCAD. Conclui-se que a manipulação do BCAD afeta o equilíbrio ácido-base das vacas, mesmo dentro de variação positiva. Devido ao aumento da IMS e da produção de leite, verificou-se efeito benéfico do uso de dietas catiônicas, para vacas após o pico de lactação. / Eight lactating Holsteins cows were distributed in 4 x 4 replicated Latin square, during the summer, for a period of 72 days. The objective of this research was to study the effect of four cationic diets levels, on the dry matter intake, milk production, composition, and physico-chemical parameters, urinary pH, body temperature and blood acid-base parameters, in cows, after the lactation peak. For DCAB manipulation were added different concentrations of sodium bicarbonate in the diets and the following treatments were obtainned: +150, +250, +400 e +500mEq/kg DM. The cows body temperature was not affected by dietary cation-anion balance. Blood bicarbonate, pH, total CO2 and pCO2 increased linearly with the increase of dietary CAB. Calcium concentration in the blood decreased quadratically with dietary CAB increased. Sodium and potassium concentration in the blood were not modified significantly with the DCAB and concentration of chloride decreased linearly with increase of DCAB. Increasing BCAD resulted in higher DM intake and milk yield. The diets did not affect milk fat percentage, density and crioscopic index. Milk pH increased linearly and acidity decreased cubically with the increase of dietary CAB. It was concluded that DCAB manipulation affected the acid-base status of cows, even inside of positive variation. Due to the increase of DM intake and milk yield, it was verified a beneficial effect of the cationic diets for cows after the lactation peak.
95

A calcium-binding protein CAS regulates the CO2-concentrating mechanism in the green alga Chlamydomonas reinhardtii / 緑藻クラミドモナスにおいてカルシウム結合タンパク質CASはCO2濃縮機構を制御する

Wang, Lianyong 23 January 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(生命科学) / 甲第20099号 / 生博第359号 / 新制||生||47(附属図書館) / 33215 / 京都大学大学院生命科学研究科統合生命科学専攻 / (主査)教授 福澤 秀哉, 教授 佐藤 文彦, 教授 河内 孝之 / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DFAM
96

Technical Feasibility of an Intensified Absorption Process for Bioenergy Carbon Capture and Storage (BECCS) / Teknisk genomförbarhet av en intensifierad absorptionsprocess för bioenergi med koldioxidavskiljning och -lagring (BECCS)

Sarby, Alva, Ljungquist, Edvin, Loman, Ville January 2022 (has links)
This project aims to evaluate the technical feasibility of an absorption process for carbon capture and storage (CCS). Currently, the CCS process commonly used in the industry is energy and cost-intensive, making its large-scale development a difficult task. The process under evaluation in this project is labeled as an intensified CCS process as it is more energy-efficient, theoretically, compared to the current standard process. The intensified process is based on absorption with aqueous K2CO3/KHCO3 followed by cristallization of KHCO3. The project aims to show the technical feasibility of two parts of the intensified process, the cooling crystallization in the reactor and the regeneration of carbon dioxide through calcination. The cooling crystallization was conducted at different cooling rates for two different solution compositions, while the calcination was conducted the same for all tests. Microscopic images were utilized to examine the relationship between cooling rates, solution composition, crystal size, and clustering. Thermogravimetric analysis was used to simulate the calcination and to analyze the crystals' decomposition and purity. The report concludes that none clustered selective crystallization of potassium bicarbonate and the total regeneration of carbon dioxide through calcination were achieved. A conclusive correlation between cooling rates and crystal yields could not be proven. And the relationship between crystal size and cooling rates substantially deviated from what was expected. Based on the results the intensified process is deemed technically feasible. / Syftet med detta projekt är att utvärdera den tekniska genomförbarheten av en “carbon capture and storage” (CCS) absorptionsprocess. CCS-processen som nuvarande förekommer i industrin är både energi- och kostnadskrävande, detta förhindrar möjligheten till vidare uppskalning. Processen som utvärderas i detta projekt kallas för en intensifierad CCS-process vilket innebär att den är teoretiskt mer energieffektiv jämfört med nuvarande standardprocess. Den intensifierade processen är baserad på absorption med en K2CO3/KHCO3 vattenlösning följt av en kristallisation av KHCO3. Projektet ämnar att visa den tekniska genomförbarheten av specifikt två delar av den intensifierade processen, kylningskristalliseringen i reaktorn samt regenereringen av koldioxid genom kalcinering. Kylningskristalliseringen genomfördes med olika kylningshastigheter för två olika lösningskompositioner medan kalcineringen utfördes likadant för samtliga tester. Mikroskopiska bilder nyttjades för att undersöka förhållandet mellan kylningshastigheten, lösningens sammansättning, kristallstorlek och kristallkluster. Termogravimetrisk analys användes för att efterlikna kalcineringen samt analysera kristallernas sönderdelning och renhet. Rapporten fastställer att selektiv kristallisering av kaliumbikarbonat uppnåddes utan signifikant kluster. En definitiv korrelation mellan kylningshastighet och kristallutbyte kunde ej påvisas. Förhållandet mellan kristallstorlek och kylningshastighet avvek betydande från vad som förväntades. Baserat på resultaten bedömdes den intensifierade processen vara tekniskt genomförbar.
97

The Effects of a Combined Supplementation of Creatine and Sodium Bicarbonate on Repeated Sprint Performance

Barber, James Jeremy, Hagobian, Todd, McGaughey, Karen, McDermott, Ann Yelmokas, Olmstead, Jennifer Davis 01 September 2010 (has links) (PDF)
Abstract The Effects of a Combined Supplementation of Creatine and Sodium Bicarbonate on Repeated Sprint Performance James Jeremy Barber There is well-established research that suggests both creatine and sodium bicarbonate are effective ergogenic aids. However, only one published study has examined the combined effects of creatine and sodium bicarbonate. The primary purpose of this study was to determine if a combined supplementation of creatine monohydrate and sodium bicarbonate would further enhance the well-documented effects of creatine supplementation alone on repeated sprint performance. Thirteen healthy and fit males (Mean age = 21.15 ± 0.65 years and mean VO2 max = 66.72 ± 5.78) participated in this experimental study using a double-blinded crossover study design in which each subject was used as his own control. All subjects completed 3 conditions, followed by a 3-week washout period between each condition: 1) Placebo (Pl; 5 g maltodextrin + 0.5 g/kg maltodextrin), 2) Creatine (Cr; 5 g + 0.5 g/kg maltodextrin), and 3) Creatine plus sodium bicarbonate (Cr+Sb; 5g + 0.5 g/kg sodium bicarbonate). Each condition was a 2-day supplementation. In the morning after each supplementation, peak power, RPP, mean power, RMP, fatigue index, and perceptions of fatigue and GI distress were assessed during six 10-second repeated Wingate tests. Blood bicarbonate, pH, and lactate were measured 5 minutes before testing and immediately after the last Wingate sprint. The main findings were; 1) Cr+Sb produced 7% greater relative peak power and 4.6% greater peak power values than placebo, and 2) Cr+Sb demonstrated the greatest attenuation of decline in relative peak power over six repeated sprints. However, in contrast to our hypotheses, no benefits from either supplementation were observed for relative mean power, fatigue index, and perception of fatigue. Considering that this current study found benefits from combining creatine and sodium bicarbonate, it suggests that combining the supplements may improve repeated sprint performance. Future research on a greater sample size, a specific athletic population, various exercise modes, and comparing results with a sodium bicarbonate alone supplementation would be beneficial in determining if this combined supplementation is worthwhile.
98

The Effects of 8 Weeks of Low Dose Supplementation of Creatine and Sodium Bicarbonate on Exercise Performance

Morris, Amanda Jessica 01 December 2013 (has links) (PDF)
Short-term (3-7 days), high doses of creatine (20g/d) and/or sodium bicarbonate (0.5g/kg body weight) supplementation increase exercise performance during short term high intensity activities; however, it remains unclear whether long-term, low doses of these supplements have a positive impact on exercise performance. The purpose of this study was to determine the effects of long-term (8 weeks), low dose creatine supplementation on exercise performance, and whether combining creatine and sodium bicarbonate supplementation has an additive effect. Sixty-three healthy, habitually active, adults (28 M, 35 W; 22+2 years; 23+ 3 BMI) were randomly assigned by sex to one of three supplement groups: placebo (PL), creatine only (3g/day; Cr), or creatine plus sodium bicarbonate (3g creatine plus 1g sodium bicarbonate; Cr+Sb) for 8 weeks. Before and after supplementation subjects completed two exercise performance tests on separate days. Subjects completed repeated Wingate sprint tests (6 x 10 second sprints) and changes in the slope across the 6 sprints (rate of decline) was analyzed between groups. We also collected 5 km time-trial and the data were analyzed using repeated measures ANOVA. In the repeated sprint test, peak power output slope was significantly decreased (P=0.04) in PL (-83%) and Cr+Sb (-82%) but did not change in Cr alone and was significantly better (P=0.03) than Pl and Cr+Sb. Similarly, mean power output slope significantly decreased (P0.05) in time to completion. However, Cr alone significantly improved time to completion (-3%; P=0.01). Taken together, these data suggest that long-term, low dose creatine supplementation increases exercise performance but adding sodium bicarbonate supplementation has no beneficial impact on exercise performance.
99

FTIR mätningar av absorptionsvätskor i Bioenergy Carbon Capture and Storage processer / FTIR Measurement of Absorption Solvents in Bioenergy Carbon Capture and Storage processes

Pettersson Haag, Isa, Hedberg, Emma, Svahn, Oliver, Danielsen, David January 2023 (has links)
The effects of global warming are well understood. In order to combat this, society must move towards net zero emissions of green house gases, where carbon dioxide (CO2) plays a key role. In several IPCC climate scenarios that meet the Paris agreement, negative emission technologies that effectively remove CO2 from the atmosphere are included. Of several different technologies, bioenergy with carbon capture and storage (BECCS) is one of the most mature. This technology utilises an absorption-desorption process where CO2 is solved in liquid, producing a rich solvent, and later desorbed, resulting in pure CO2. There are, however, still challenges to implement this technology on a large scale, and one such issue is the monitoring of process streams to gain control over process conditions and system parameters.  In this project, the absorption solvent in BECCS processes were mimicked in order to determine if FTIR spectroscopy could be used to produce process parameters that are accurate, sensitive and robust. Accuracy and sensitivity are defined as the ability to correctly predict the presence and amount of species of interest in the absorption liquid. Robustness on the other hand is defined as the ability to produce precise measurements in the presence of pollutants. To evaluate how accurate and sensitive the measurements are, two different numerical models were developed and calibrated using prepared samples mimicking an absorption solvent. One model was solely based on the least square method, whereas the other was based on principal component analysis (PCA). These models were then tested on clean validation samples, as well as pilot plant samples from Stockholm Exergi, in a case study. An analysis of FTIR spectra from simulated absorption liquids showed that it could distinguish between the species of interest. Furthermore, the spectra showed that pollutants did not impact the readings in a major way. The results showed that both models produced accurate predictions of process parameters.
100

Dynamics of Interal Phosporus Cycling in a Highly Eutrophic, Shallow, Fresh Water Lake in Utah Lake State Park, Utah, USA

Smithson, Sheena Marie 10 August 2020 (has links)
Eutrophication is an increasing global concern as human effluent saturates lakes with an over abundance of nutrients. Phosphorus, generally being the limiting nutrient, is often the most impactful, allowing cyanobacteria populations to grow out of control leading to harmful blooms that can produce cyanotoxins, anoxic lake conditions, and mass fish kills. Utah Lake, a shallow highly eutrophic fresh water lake located in central Utah Valley, has experienced these harmful algal blooms for the last several years. The internal phosphorus cycle is a significant driver in Utah Lake's eutrophication, as the sediments act as both a sink and a source for phosphorus. Most of the phosphorus originates from external sources, gets captured by the sediment, and then through several physiochemical and biological process, gets released back into the surface water as a self sustaining eutrophication system. To determine the effects of the different physiochemical processes that drive the internal phosphorus system, we incubated 72 total sediment cores taken from two locations, chosen to best represent the lake's chemical and spatial variability, under aerobic, anaerobic, pH=9.5 and pH=7 conditions with various P concentrations (ambient, 0.5X, 2X, 4X) taking water samples at 0, 12, 24, and 72 hours. Dissolved oxygen (DO), pH, soluble reactive phosphorus (SRP), total dissolved phosphorus (TDP), and other major ions were measured for each sample. The highest P sediment release occurred under aerobic conditions, while the highest P sediment uptake occurred under anaerobic conditions. While pH did appear to have a mild effect on P flux, our study showed the lake has a remarkably stable bicarbonate buffer system making it unlikely that pH would contribute significantly under natural settings. Under all conditions the 2X and 4X cores experienced the highest P uptake, but final elevated P concentrations were still higher than initial ambient concentrations, indicating a probable delayed recovery time after external reductions occur.

Page generated in 0.1672 seconds