Spelling suggestions: "subject:"geochemistry"" "subject:"biogeochemical""
641 |
Biodegradation of Bisphenol-A and 17B-Estradiol in Soil Mesocosms Under Alternating Aerobic/Anoxic/Anaerobic ConditionsKim, Won-Seok 01 January 2011 (has links)
Soil-aquifer treatment (SAT) has been proposed as a method for reusing treated municipal wastewater. SAT is characterized by alternating cycles of aerobic and anaerobic conditions in the subsurface, in response to alternating cycles of flooding and drainage of a surface impoundment. It is not yet known how these alternating redox conditions affect the removal of potentially harmful endocrine-disrupting compounds (EDCs) from treated effluent.
The overall objective of my doctoral research is to determine the fate of EDCs in alternating aerobic/anoxic/anaerobic conditions under simulated SAT conditions. To assess the fate of EDCs in simulated SAT conditions, I first had to develop appropriate analytical methods. Prior researchers have developed sophisticated analytical methods for measuring low concentrations of EDCs in water. However, it is not inherently clear which of these methods is preferable for analysis of any particular set of environmental samples. Therefore, in order to compare the analytical methods, solid-phase extraction (SPE) and solid-phase micro-extraction (SPME) were compared for the analysis of two EDCs, bisphenol-A (BPA) and 17B-estradiol (E2), in water samples of water. Following extraction by SPE or SPME, the target EDCs were derivatized (silylated) and then analyzed by gas chromatography (GC) with mass spectrometry (MS). Also, the performance of two candidate derivatization agents, N,O-bis-(trimethylsiyl) trifluoroacetamide (BSTFA), N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), was compared. SPME is more convenient, is less labor-intensive, and allows for analysis of smaller sample volumes, but it is expensive because fibers need frequent replacement, and the range of linearity was limited. SPE has a lower material cost and allows for the analysis of a broader range of concentrations, but it is more labor-intensive and large sample volumes may be required. Therefore, the selection of which method is "best" depends upon the constraints (time, money, sample volume, acceptable detection limit) associated with any particular set of samples. The two derivatization agents performed equally when used in conjunction with SPE, but MSFTA yielded higher peak areas for headspace (on-fiber) derivatization during SPME.
To investigate how alternating redox conditions of SAT may affect the removal of harmful EDCs, a simulated SAT systems were constructed in 4-L reactors with 500 g of sediment (collected from a wetland) and 3 L of treated effluent from a municipal wastewater treatment plant; then BPA and E2 were spiked into reactors, two common EDCs often found in treated wastewater. Redox conditions in the mesocosms were controlled by switching the air between air (to induce aerobic conditions) and nitrogen (to induce anaerobic conditions); the length of the anoxic/anaerobic cycles was varied to determine how this affects biodegradation of the target EDCs. The mesocosm environment was supplemented with either nitrate or sulfate to serve as potential electron acceptors during the anoxic/anaerobic cycles. In addition to monitoring the concentrations of the target EDCs in the mesocosms over time, I also monitored the concentration of dissolved oxygen in the water; the redox potential; the concentrations of nitrate, nitrite, and sulfate; and the concentration of bacteria in the water (estimated via flow cytometry).
BPA was biodegraded only during aerobic cycles, but E2 was biodegraded during both aerobic and anoxic/anaerobic cycles. Whenever the redox conditions in the system were switched, there was a temporary drop in the bacterial population, followed by a recovery of the population. When redox conditions were switched from anoxic/anaerobic to aerobic, biodegradation of the target EDCs commenced after a lag period during which no biodegradation was observed. The lag time for biodegradation in the aerobic cycle was longer when the anaerobic cycles were longer in duration. More biodegradation of E2 was observed under anoxic conditions than under anaerobic conditions.
SPE and SPME methods that included derivatization agent are useful method for detection and quantification of EDCs in water. I concluded that SAT is a viable technology to produce potable water from treated WWTP effluent, but the optimal length of flooding and drying cycles of SAT required removing the targeted contaminants during infiltration through the vadose zone.
|
642 |
Seasonal Changes in the Sinking Particulate Flux and in the Nitrogen Cycle within the Euphotic and Twilight Zones of the Cariaco Basin, VenezuelaMontes-Herrera, Enrique 01 January 2011 (has links)
This study explored the effects of seasonal variability on the geochemistry of sinking pthesiss and on the nitrogen cycle of the Cariaco Basin. Pthesis fluxes were measured at the base of the euphotic zone (the depth of 1% of photosynthetically active radiation - PAR) with drifting sediment traps during months of upwelling and non-upwelling regimes from March 2007 to November 2009. Flux estimates were analyzed in the context of seasonal variations in sea surface temperature, primary productivity, and chlorophyll a concentrations using data generated by the CARIACO Time-series Program as well as satellite data. Additionally, nine years (1996-2000 and 2004-2007) of nutrients, phytoplankton taxonomy and δ15N of sinking pthesis data within the twilight zone (225 m) from the CARIACO Time-series Program were examined. Results showed that the flux of organic matter responded to changes in surface chlorophyll a but not to primary production. Sinking organic matter decreased by an order of magnitude from the base of the euphotic zone to the oxic-anoxic interface; most of the organic matter produced in surface waters was remineralized before leaving the upper 50-100 m. Lithogenic material often represented a large fraction of the flux. Isotopic analyses showed that 13C/12C ratios of sinking organic carbon were enriched (~-19‰) during the upwelling period and depleted during relaxation (~-23‰). This reflects seasonal changes in inorganic carbon utilization by phytoplankton and suggests that the δ13C of organic carbon in Cariaco sediments can be used as a proxy for carbon fixation by primary producers. The δ15N of the settling flux was influenced by the strength of the upwelling and the presence of the nitrogen fixer Trichodesmium thiebautii in the basin in different seasons; the 15N/14N ratio of sinking nitrogen reflects both imported and local nitrogen fixation signals. This result argues against previous interpretations of the δ15N from the basin's sedimentary record, which suggested that the nitrogen isotopic composition of flux is influenced by denitrification at the oxic-anoxic interface.
Dissolved gas samples from the Cariaco eastern and western sub-basins from September 2008 (non-upwelling) and March 2009 (upwelling) were studied to assess the production of biogenic nitrogen gas through mass spectrometric N2/Ar ratiometry. Excess nitrogen gas indicated that upwelling affects the intensity of denitrification at the oxic-anoxic interface. In four of the six stations the concentration of biogenic nitrogen gas at the oxic-anoxic interface was 2.7-6.1 µM N higher during the upwelling period than during the relaxation season (p< 0.001), implying that denitrification in the basin was stimulated by the vertical flux of organic matter and/or the ventilation of the oxic-anoxic interface by oxygenated and nutrient-rich intermediate Caribbean waters.
|
643 |
A Geochemical Analysis of Fulgurites: from the inner glass to the outer crustJoseph, Michael L 01 January 2012 (has links)
Cloud-to-ground lightning strikes produce natural glasses on the surface of the Earth, called fulgurites. These natural glasses are tubular in shape with a central void surrounded by an inner glass, and the inner glass is surrounded by an outer crust or toasted region. Previous studies report different kinds of melts existing in several different types of fulgurites; however, little to no chemical data has been collected that tracks chemical variations from the inner glass to the outer crust of a fulgurite. This study uses microprobe and laser ablation inductively coupled plasma mass spectrometer analytical techniques to collect transects of chemical composition from the inner glass to the outer crust of eleven fulgurites. Five of the eleven fulgurite samples show a well-mixed, volatile-depleted inner glass, enclosed in a poorly mixed volatile enriched outer melt, suggesting that these fulgurites formed from the vaporization and condensation of materials on the inner fulgurite wall. The remaining six fulgurites show poorly mixed melts in both the inner glass and outer crust regions, and most likely originated as lightning-produced melting phenomena. These data suggest that certain enigmatic natural glasses, such as Edeowie, Dakhleh and other unknown desert glasses, may be lightning-produced, in contrast to the meteorite burst or impact related origins that have commonly been propounded.
|
644 |
Ocean biogeochemistry in the northern Gulf of Mexico, the East/Japan Sea, and the South Pacific with a focus on denitrificationKim, Il Nam, 1976- 12 July 2012 (has links)
Ocean nitrogen fixation and denitrification are crucial nitrogen source and sink mechanisms for the global ocean environment. While recent studies have reported that oceanic denitrification has increased over the last few decades, others have suggested that global ocean nitrogen fixation rates have been underestimated, and still others that anthropogenic perturbations have altered the global nitrogen cycle. This implies that the current estimates of the oceanic nitrogen inventory are incomplete and they need to be revised with more information. In addition, current denitrification estimates need to be reexamined due to their large associated uncertainties. Thus, I have conducted research estimating denitrification rates in three different locations: the northern Gulf of Mexico (GOM), the East/Japan Sea (EJS), and the South Pacific: from coastal to marginal to open ocean scale in different oceanographic conditions. Denitrification rates in the bottom layer (including bottom waters+sediments) at the shallow and often hypoxic northern GOM ranged from 103-544 [mu]mol N m⁻² d⁻¹ (=1.4 to 7.4 Gg N mon⁻¹ with area=3.24x10¹⁰m²), and were controlled not only by biogeochemical factors (i.e. organic matter supply and remineralization), but also by physical factors (i.e. stratification and relative contributions from different water masses). Despite high dissolved oxygen concentrations, the significant decrease in nitrate concentrations below the expected levels, low N/P ratio (<12.4), and deep nitrite peak in the bottom layer indicate a presence of denitrification in EJS, confined at the Tatar Strait and the Ulleung Basin areas. The estimated denitrification rates range from 0.3 to 33.2 [mu]mol N m⁻² d⁻¹, and was comparable to the directly measured denitrification rates from sediment samples. The high-quality repeat hydrographic datasets observed at 32°S of the South Pacific Ocean offer an opportunity to estimate water column denitrification rates on a basin-scale in the open ocean away from the Eastern Tropical Pacific oxygen minimum zones. The mean water column denitrification rates in the oxygen minimum layer of P06 line (32°S) were estimated to range between 7.1 and 18.5 [mu]mol N m⁻² d⁻¹. The results imply that, although very small at any particular site, once integrated over a basin-scale, the open ocean water column denitrification can be a significant component of the oceanic nitrogen budget. Denitrification is subject to seasonal, decadal and possibly climate scale variations. While it is commonly estimated at the oxygen minimum zones or sediments, denitrification is not merely confined to such regions only, and small amounts of denitrification occur in other oceanic parts. Once integrated, it may be quantitatively significant for the world's oceans. Denitrification is playing a significant role in local, regional, and global ocean scales. In the future, we need to consider variability of denitrification in coastal regions, and to investigate denitrification in unexpected and unexplored regions, in order to improve our knowledge on global oceanic mass balance. / text
|
645 |
Variability in Hydrology and Ecosystem Properties and Their Role in Regulating Soil Organic Matter Stability in Wetlands of West-Central FloridaFeit, Sharon Jean 01 January 2012 (has links)
Soil organic matter (SOM) provides many ecosystem services that are necessary for continued ecosystem function. The accumulation of SOM in an ecosystem is a function of its persistence time which can range from days to thousands of years. Ecosystem properties including dominant vegetation type, soil texture, and soil moisture in various habitats can regulate the persistence time of SOM.
Wetlands, because of their associated ecosystem properties, promote SOM accumulation, but little has been done to determine the ecosystem properties that regulate its persistence over time. In west-central Florida, urbanization and increased water demands have suppressed water tables in isolated wetland ecosystems via hydrological connectivity between ground and surficial waters. In this study, variability in wetland ecosystem properties, in particular dominant vegetation type and hydrological parameters, were tested as mechanisms driving SOM accumulation and stability.
Cypress wetlands had significantly more organic matter, carbon (C), and nitrogen (N) than herbaceous marshes. In addition, increased wetland inundation promoted stable SOM accumulation in forested wetlands. By increasing the percent time a forested wetland spent aerobic, decreases occurred in both labile and stable C and N pools. As large storage units of SOM, the decreases in both labile and stable C and N pools in wetland soils have large implications for global C and N cycling. Increased manipulation of wetland water levels, especially in short time scales, can mineralize both short-term and long-term storage units of C and N. Globally, the increase mineralization of large SOC and SON stocks would exacerbate the release of air and water quality pollutants. The sensitivity of both labile and stable SOM pools draws concern when anticipating continued water demands and land use changes of the Tampa Bay region.
|
646 |
Sedimentology, Geochemistry, and Geophysics of the Cambrian Earth SystemCreveling, Jessica 01 November 2012 (has links)
Within this dissertation, I document how—and hypothesize why—the quirks and qualities of the Cambrian Period demarcate this interval as fundamentally different from the preceding Proterozoic Eon and succeeding periods of the Phanerozoic Eon. To begin, I focus on the anomalous marine deposition of the mineral apatite. Sedimentary sequestration of phosphorus modulates the capacity for marine primary productivity and, thus, the redox state of the Earth system. Moreover, sedimentary apatite minerals may entomb and replicate skeletal and soft-tissue organisms, creating key aspects of the fossil record from which paleontologists deduce the trajectory of animal evolution. I ask what geochemical redox regime promoted the delivery of phosphorus to Cambrian seafloors and conclude that, for the case of the Thorntonia Limestone, apatite nucleation occurred under anoxic, ferruginous subsurface water masses. Moreover, I infer that phosphorus bound to iron minerals precipitated from the water column and organic-bound phosphorus were both important sources of phosphorus to the seafloor. Petrographic observations allow me to reconstruct the early diagenetic pathways that decoupled phosphorus from these delivery shuttles and promoted the precipitation of apatite within the skeletons of small animals. Together, mechanistic understandings of phosphorus delivery to, and retention within, seafloor sediment allow us to constrain hypotheses for the fleeting occurrence of widespread apatite deposition and exquisite fossil preservation within Cambrian sedimentary successions. Next, I describe and quantify the nature of carbonate production on a marine platform deposited at the hypothesized peak of Cambrian skeletal carbonate production. I find that fossils represent conspicuous, but volumetrically subordinate components of early Cambrian carbonate reef ecosystems and that despite the evolution of mineralized skeletons, Cambrian carbonate platforms appear similar to their Neoproterozoic counterparts, primarily reflecting abiotic and microbial deposition. Finally, I investigate the geodynamic mechanism responsible for rapid, oscillatory true polar wander (TPW) events proposed for the Neoproterozoic and Phanerozoic Earth on the basis of paleomagnetic data. Using geodynamic models, I demonstrate that elastic strength in the lithosphere and stable excess ellipticity of Earth’s figure provided sufficient stabilization to return the pole to its original state subsequent to convectively-driven TPW. / Earth and Planetary Sciences
|
647 |
Toward an improved understanding of the global biogeochemical cycle of mercuryAmos, Helen Marie 06 June 2014 (has links)
Mercury (Hg) is a potent neurotoxin, has both natural and anthropogenic sources to the environment, and is globally dispersed. Humans have been using Hg since antiquity and continue its use in large quantities, mobilizing Hg from stable long-lived geologic reservoirs to actively cycling surface terrestrial and aquatic ecosystems. Human activities, such as mining and coal combustion, have perturbed the natural biogeochemical cycle of Hg. However, the distribution of natural versus anthropogenic Hg in the environment today and the extent of anthropogenic perturbation (i.e., enrichment) are uncertain. Previous model estimates of anthropogenic enrichment have been limited by a lack of information about historical emissions, examined only near-term effects, or have not accounted for the full coupling between biogeochemical reservoirs. Presented here is a framework that integrates recently available historical emission inventories and overcomes these barriers, providing an improved quantitative understanding of global Hg cycling. / Earth and Planetary Sciences
|
648 |
Cellular and Biochemical Events in Toll-like Receptor SignalingBonham, Kevin Scott 04 December 2014 (has links)
In multicellular organisms, communication between cells relies on transmitting information across membrane barriers. Different cell types interrogate particular aspects of their surrounding environment through protein receptors that span membranes and upon ligand binding, trigger enzymatic signaling cascades that culminate in the activation of one or more transcription factors. Information transmission is bidirectional, as individual cells must be able to sense unique aspects of their surroundings, relay their specialized knowledge with others, and receive the collective knowledge of surrounding cells and tissues. This two-way communication is particularly important in the innate immune system, where potentially infectious organisms must be readily detected and identified, and their presence communicated to other cells in the vicinity. Because of the rapid generation time of microorganisms, delays between any of these steps - detection, information processing or information transmission - can make the difference between successful control of infection and pathogen outgrowth. For this reason, the receptors that identify potential pathogens must be able to detect pathogens wherever they are found, be exquisitely sensitive, and initiate a robust response. At the same time, the inflammatory response to infection is itself damaging. This requires that the same receptors are tightly controlled, both by modulating their sensitivity and by rapidly turning off responses through negative feedback pathways. Here, I show that the toll/interleukin-1 receptor domain-containing adaptor protein (TIRAP) plays a critical role in controlling the sensitivity of toll-like receptor (TLR) signaling. First, TIRAP controls the assembly of the myddosome, a protein complex that activates signal transduction, from both the plasma membrane and within endosomes of macrophages. Though TIRAP's role at the cell surface was previously described, its endosomal function was previously unknown. Second, TIRAP is an important target for negative regulation. After stimulation with the TLR4 ligand lipopolysaccharide (LPS), macrophages induce a state known as endotoxin tolerance, in which they are refractory for additional LPS stimulation. Many mechanisms for endotoxin tolerance have been proposed, but here I show that TIRAP is degraded in endotoxin tolerance, and that the mechanism of TIRAP degradation also has implications for viral/bacterial superinfection.
|
649 |
The origin, transformation and deposition of sediments in Lake Bosomtwe/Bosumtwi (Ghana, West Africa)Otu, Megan Kristin January 2010 (has links)
Recent drought over West Africa (1970s-present) has been a global concern, and the ability to predict the frequency and severity of future droughts is important to mitigate the devastating socio-economic effects of drought. The Sahel region, situated at 10-20°N just south of the arid Sahara Desert and north of the forested Guinea Coast, is particularly vulnerable to drought periodicity because rainfall is already low at 400 mm yr-1. The ability to predict future climate variability depends on adequate knowledge of fluctuations in the past. In West Africa, meteorological records are too sparse and too short in duration to characterize the drought frequency. Consequently, climate reconstructions from lacustrine sediment records are increasingly recognized as an important source of information on past climate variability. Lake Bosomtwe, Ghana (6o30N and 1o25W) was formed over one million years ago by a meteorite impact crater in the Guinea Coast region, just south of the Sahel region. Lake Bosomtwe has a closed-drainage hydrology and lake levels are known to fluctuate with the net flux in rainfall inputs relative to evaporative outputs. In 2004, the International Continental Scientific Drilling Program recovered the complete sediment record for paleoclimatic reconstructions. However, very little has been studied of the limnological conditions that lead to the formation of laminated sediments in Lake Bosomtwe. This thesis has set out to understand the influence climate has on the physical, chemical and biological in-lake processes that generate sedimenting materials, which are preserved as laminated sediment layers. Two years of water column sampling of temperature, oxygen and nutrients at a central deep-water site (78 m water depth maximum) found that this quiescent crater lake is thermally stratified during much of the year, with anoxia persisting below 35 m water depth. During the short dry season of July and August, the monsoon rains that are associated with the intertropical convergence zone (ITCZ) are displaced northwards over the Sahel region (and away from lake Bosomtwe), and cool air temperatures and clear night skies lead to the disruption of the thermocline and circulation of dissolved nutrients nitrogen (N) and phosphorus (P) in Lake Bosomtwe. Phytoplankton primary productivity, as measured by particulate carbon and chlorophyll a concentrations, was found to increase markedly following the nutrient upwelling event in August. Sediment trap samplers deployed at 20 and 30 m water depth captured the pattern of organic matter deposition and a high flux of organic sediment was deposited shortly after the nutrient upwelling episode in August. The composition of these organic-rich sediments was distinguished by a marked depletion in δ13C and enrichment of δ15N, as compared to sediments deposited before and after this event. Spatial assessment of sediment cores identified that presently, visible laminations were preserved at and below 35 m water depth, but, not at shallower depths. Water depth was also positively correlated with the organic matter content in sediment records and could be used to reconstruct pre-historic lake levels down core. The relationship between lake level and organic content in sediments predicted that water levels were likely 22 m lower than present levels during the period ~1425-1610 CE, which corresponds with a climatic periods known as the Little Ice Age (LIA). The spatial sediment trends also revealed that inorganic sedimentation rates had increased since the onset of recent land clearance and road construction in the catchment, particularly to the north, near the town of Abono. For this reason, two cores from the central deep-water region of Lake Bosomtwe were analysed for organic and carbonate content, δ13C and δ15N, nutrients (C, N, P), magnetic susceptibility, greyscale imagery of the x-radiograph and micro-X-ray analysis of elemental constituents. Paleoenvironmental reconstructions during the past 550 years found that climate-driven lake level change was a prominent factor contributing to the organic content of sediments. High inorganic content, iron concentrations and depleted δ13C distinguished a low stand during the LIA (~1425-1610) when pelagic sediments were likely exposed to periodic oxygenation. High concentrations of organic matter, calcium (Ca) and strontium (Sr), enrichment of δ13C and low C:N ratios were indicative of wet years that likely increased lake levels and the depth of water column mixing. However, sediments with high organic content, depleted δ13C signatures and reduced Ca and Sr concentrations were suggestive of drought years that restricted the depth of seasonal water column mixing and nutrient circulation and did not necessarily result in pronounced lake-level change. During the past century, δ13C of bulk matter was positively correlated with the rainfall anomalies (r2 = 0.45, P < 0.002), indicating that droughts can result in reduced primary productivity, which may ultimately lower fishery yields. The communities living within the crater are dependent on subsistence fishing and farming, and predicting the drought frequency and magnitude in this region is essential to protecting both the ecosystem and the human population. Long-range climate forecasts for West Africa predict greater drought and increasing air temperature. However, with a detailed long-term paleoclimatic reconstruction from Lake Bosomtwe sediment records, potentially the accuracy of these predictions can be improved and better equip policy makers to enact a viable action plan in the best interests of the people.
|
650 |
Carbon Cycling in Canadian Coastal Waters: Process Studies of the Scotian Shelf and the Southeastern Beaufort SeaShadwick, Elizabeth Henderson 18 August 2010 (has links)
Much research has been devoted to understanding the ocean carbon cycle because of its
prominent role in controlling global climate. Coastal oceans remain a source of uncertainty
in global ocean carbon budgets due to their individual characteristics and their high spatial and temporal variability. Recent attempts to establish general patterns suggest that temperate and high-latitude coastal oceans act as sinks for atmospheric carbon dioxide (CO2). In this thesis, carbon cycling in two Canadian coastal ocean regions is investigated, and the uptake of atmospheric CO2 is quantified.
A combination of ship-board measurements and highly temporally resolved data from
an autonomous mooring was used to quantify the seasonal to multi-annual variability in the inorganic carbon system in the Scotian Shelf region of the northwestern Atlantic for
the first time. The Scotian Shelf, unlike other shelf seas at similar latitude, acts as a source of CO2 to the atmosphere, with fluxes varying over two orders of magnitude in space and time between 1999 and 2008.
The first observations of the inorganic carbon system in the Amundsen Gulf region of the southern Beaufort Sea, covering the full annual cycle, are also presented. Air-sea CO2 fluxes are computed and a carbon budget is balanced. The Amundsen Gulf system acts as
a moderate sink for atmospheric CO2; seasonal ice-cover limits winter CO2 uptake despite
the continued undersaturation of the surface waters. Biological production precedes the ice break-up, and the growth of under-ice algae constitutes nearly 40% of the annual net community production.
The Scotian Shelf may be described as an estuarine system with an outflow of surface water, and intrusion of carbon-rich subsurface water by a combination of wind-driven
mixing, upwelling and convection, which fuels the CO2 release to the atmosphere. In
contrast, Amundsen Gulf may be described as an anti-estuarine, or downwelling, system,
with an inflow of surface waters and an outflow of subsurface waters. Wind-driven and
convective mixing are inhibited by ice-cover and restrict the intrusion of carbon- and
nutrient-rich waters from below, maintaining the CO2 uptake by the surface waters. / PhD Thesis
|
Page generated in 0.0792 seconds