Spelling suggestions: "subject:"geochemistry"" "subject:"biogeochemical""
621 |
The dynamics and chemistry of dissolved organic carbon in upland and wetland catchments, Experimental Lakes Area, Ontario /Matos, Laudalino January 1994 (has links)
No description available.
|
622 |
A portable profiling system for determining horizontal and vertical carbon dioxide advection /Lizotte, Pierre-Luc. January 2007 (has links)
No description available.
|
623 |
Modeling Chloride Retention in Boreal Forest Soils - synergy of input treatments and microbial biomassOni, Stephen Kayode January 2007 (has links)
<p>The hypothetical assumption that chloride is conservative in the soil has been debated for the last decade. The results of the recent years of study in chlorine biogeochemistry show that chloride is non-conservative but rather participates in complex biogeochemical reactions in the soil. These interactions in nature inform the development of simplified hydrochemical model of chloride dynamics in the soil that is driven on soil routine component of HBV hydrological model. This novel attempt affords the opportunity to explore chlorine biogeochemistry further by evaluating the biological processes such as microbial biomass that predominate chlorine cycles in the same order of magnitude as earlier studied abiotic factors. Data from soil lysimeter experiment with different inputs treatments were used in the calibration and validation of both the hydrological and biogeochemical model. The results show that (1) model efficiency reduces with decreasing water residence and with increasing soil organic matter. (2) Longer water residence time (low water input), high chloride and high nitrogen input loads relatively enhance maximum biomass accumulation in a shorter time span. (3) Chloride retention time reduces with increasing chloride loads under short water residence. (4) Microbial biomass growth rate is highest under high chloride input treatments. (5) Biomass death rates shows reducing trend under short water residence (High water input). Further researches are therefore suggested for possible model expansion and to make the results of this model plausible under field conditions.</p>
|
624 |
Interactions between microbial dynamics and transport processes in soilsRockhold, Mark L. 17 May 2002 (has links)
An experimental and numerical modeling investigation was conducted to
study interactions between microbial dynamics and transport processes in variably
saturated porous media. These interactions are important in a variety of applied
problems such as water and wastewater treatment, bioremediation, and oil-field
recovery operations. These processes and interactions also have great ecological
significance, with global scale implications for carbon cycling in the environment
and the related issue of climate change.
Experiments were conducted under variably saturated flow conditions in
columns and 2D light-transmission chambers packed with translucent quartz sand.
A bioluminescent Pseudomonas fluorescens bacterium was utilized in the
experiments and bioluminescence was used as a non-destructive measure of
bacterial density and distribution. In the column experiments, pressure heads
increased (became less negative) at all measured depths, but significant changes in
apparent volumetric water contents were only observed in the upper 5 cm of the
columns. Permeability was reduced by a factor of 40 within one week during
growth on glucose. In the chamber experiments, aqueous-phase saturations
decreased by 7-9% in the region of primary colonization and the capillary fringe
dropped by 5 cm during the 6-day experiment. The colonized region expanded
laterally by 15 cm and upward against the flow by about 7-8 cm. The desaturation
phenomenon resulted in increased lateral spreading of solutes around the colonized
region.
A numerical model was developed and used to help interpret the experimental
data. Water flow was modeled using the single-phase Richards equation. Solute and
bacterial transport, cell growth, substrate consumption, and gas diffusion were
modeled using advection-dispersion-reaction equations. Observed changes in
saturations and pressure heads were reproduced approximately using fluid-media
scaling to represent an apparent surface-tension lowering effect, which was
assumed to be due to sorption of cells and/or biosurfactants at gas-liquid interfaces.
Microbial dynamics, and substrate and oxygen consumption were represented using
first-order reversible kinetics for cell attachment/detachment, and dual Monod-type
kinetics for cell growth and substrate and oxygen consumption. Reasonably good
matches were obtained between the observed and simulated results. / Graduation date: 2003
|
625 |
A Morphological and Geochemical Investigation of Grypania spiralis: Implications for Early Earth EvolutionHenderson, Miles Anthony 01 August 2010 (has links)
Macroscopic “carbonaceous” fossils such as Grypania, Katnia, Chuaria, and Tawuia play a critical role in our understanding of biological evolution in the Precambrian and their environmental implications. Unfortunately, understanding of these fossils remains limited by their relative simplicity of form, mode of preservation, and broad taphonomic variability. As a result, debate continues as to even the fundamental taxonomic affinity of the organisms. Megascopic coiled forms (i.e. Grypania and Katnia), for instance, have been interpreted as trace fossils, multicellular algae, prokaryotic filaments, macroscopic bacteria, cyanobacteria, or a transitional form from macroscopic to megascopic bacterial life. Similarly, Chuaria and Tawuia have been interpreted as compressed prokaryotic colonies, algae or algal reproductive stages, and multicellular plant material. Accessibility of new material and increasingly sophisticated means of analysis warrant a new look at these ancient fossils. Understanding the biological affinity of Grypania, in particular, is critical because current opinion is split as to whether these megascopic structures are more likely represent either multicellular bacteria or multicellular algae. Confirmation of either a bacterial or algal affinity would strongly influence fundamental understanding of biospheric evolution, particularly in terms of ocean oxygenation and the availability of bioessential trace metals. Although estimates for the degree of oxygenation required for a Grypania-like multicellular algae are only about 10 % present atmospheric levels (PAL), this estimate is still substantially higher than estimates based on geochemical data suggesting that oxygen levels may not have reached 10% PAL until the latter Neoproterozoic. It has been hypothesized that protracted oxygen of the Proterozoic biosphere may have played a critical role in the availability of redox-sensitive nutrients necessary for bacterial nitrogen fixation and the limiting of eukaryotic evolution. Within this context, our understanding of the taxonomic affinity of Grypania may profoundly affect our understanding of Earth’s biospheric evolution. This thesis provides morphological and geochemical analyses of Grypania spiralis from more than 100 newly collected specimens from the Belt Supergroup for comparison to previously collected specimens from all other known Grypania-bearing localities. Data is used to explore questions regarding the morphology, structural complexity, mode of preservation, and chemistry of fossil material, and to hypothesize on the taxonomic affinity of Grypania spiralis and its implications for biospheric evolution.
|
626 |
Étude du comportement biogéochimique du carbone dans le lac Kivu au nord-ouest du RwandaRwabuhungu Rwatangabo, Digne Edmond 22 October 2008 (has links)
Résumé
Le Rift Est-Africain comprend plusieurs grands lacs, dont le lac Kivu situé entre 1°34’
et 2°30’ de latitude Sud et compris entre 28°50’ et 29°23’ de longitude Est. Ce lac,
localisé au nord-ouest du Rwanda à la frontière avec la République Démocratique du
Congo, présente une spécificité unique au monde: ses eaux profondes contiennent
une gigantesque quantité de gaz dissous (3/4 de dioxyde de carbone (CO2), 1/4 de
gaz méthane (CH4)).
Les études antérieures indiquent que les eaux du lac Kivu présentent une structure
stratifiée particulière qui se décline en 13 couches dans le bassin principal. Nous
avons établi une nouvelle stratification, en quatre couches de la colonne d’eau dans
ce bassin sur base des données physico-chimiques mais aussi, en tenant compte
tout particulièrement du comportement biogéochimique du carbone. Cette structure
simplifiée permettra une meilleure évaluation de l’impact environnemental et une
gestion durable de l’exploitation du gisement de gaz méthane du lac Kivu.
Un suivi détaillé de plusieurs paramètres physico-chimiques, biogéochimiques ainsi
que des éléments majeurs, mineurs et en trace, présents dans le bassin principal du
lac, dans sa partie rwandaise en un point fixe au large de Kibuye, durant la petite
saison sèche, apporte un éclairage plus précis de leur distribution dans la colonne
d’eau. Une étude de la variation spatio-temporelle de ces paramètres est réalisée
aussi bien à Kibuye qu’à Gisenyi et ce durant les différentes saisons pour, entre
autres, servir de base de données nécessaire à toute comparaison ultérieure.
L’origine des gaz dissous dans le lac Kivu a fait l’objet de plusieurs études et
hypothèses. Les deux principaux gaz dissous du lac ont un élément biogéochimique
en commun: le carbone. Par des mesures isotopiques et par comparaison avec le
système limnologique du lac Tanganyika voisin, la correspondance de l’allure
générale de la distribution comparée du carbone inorganique dissous (DIC), de
l’alcalinité totale et du δ13CDIC dans les deux lacs indique notamment que les
processus à l’origine du gaz méthane du lac Kivu ne sont pas liés au magmatisme, ni
à des phénomènes thermocatalytiques. Nous pensons que le carbone, et par
conséquent le gaz méthane du lac Kivu, est d’origine phytoplanctonique.
L’explication par une étude hydrogéologique et pédologique de l’origine de la
stratification pérenne de la colonne d’eau du lac Kivu constitue un point de vue
intéressant. Une autre perspective serait, celle visant à établir par des données
biogéochimiques, le taux de régénération du gaz méthane du lac Kivu afin d’en
déterminer la durée d’exploitabilité réelle.
|
627 |
Modeling Chloride Retention in Boreal Forest Soils - synergy of input treatments and microbial biomassOni, Stephen Kayode January 2007 (has links)
The hypothetical assumption that chloride is conservative in the soil has been debated for the last decade. The results of the recent years of study in chlorine biogeochemistry show that chloride is non-conservative but rather participates in complex biogeochemical reactions in the soil. These interactions in nature inform the development of simplified hydrochemical model of chloride dynamics in the soil that is driven on soil routine component of HBV hydrological model. This novel attempt affords the opportunity to explore chlorine biogeochemistry further by evaluating the biological processes such as microbial biomass that predominate chlorine cycles in the same order of magnitude as earlier studied abiotic factors. Data from soil lysimeter experiment with different inputs treatments were used in the calibration and validation of both the hydrological and biogeochemical model. The results show that (1) model efficiency reduces with decreasing water residence and with increasing soil organic matter. (2) Longer water residence time (low water input), high chloride and high nitrogen input loads relatively enhance maximum biomass accumulation in a shorter time span. (3) Chloride retention time reduces with increasing chloride loads under short water residence. (4) Microbial biomass growth rate is highest under high chloride input treatments. (5) Biomass death rates shows reducing trend under short water residence (High water input). Further researches are therefore suggested for possible model expansion and to make the results of this model plausible under field conditions.
|
628 |
Visualization, integration and analysis of multi-element geochemical dataGrünfeld, Katrin January 2005 (has links)
generated large databases containing information on the concentrations of chemical elements in rocks, surface sediments and biogeochemical materials. Regional geochemical data being imprecise, multivariate, spatially auto-correlated and non-normally distributed pose specific problems to the choice of data analysis methods. Commonly several methods are combined, and the choice of techniques depends on the characteristics of data as well as the purpose of study. One critical issue is dealing with extreme data values (or outliers) in the initial stages of analysis. Another common problem is that integrated analysis of several geochemical datasets is not possible without interpolating the point data into surfaces. Finally, separation of anthropogenic influences from natural geochemical background in the surface materials is an issue of great importance for environmental studies. This study describes an approach to address the above-mentioned problems by a flexible combination and use of GIS and multivariate statistical techniques with high-dimensional visualization. Dynamically linked parallel coordinate and scatterplot matrix display techniques allow simultaneous presentation of spatial, multi-element and qualitative information components of geochemical data. The plots not only display data in multi-dimensional space, but also allow detailed inspection of the data with interactive multi-dimensional brushing tools. The results of the study indicate that these simple high-dimensional visualization techniques can successfully complement the traditional statistical and GIS analysis in all steps of data processing, from data description and outlier identification through data integration, analysis, validation, and presentation of results. The outcomes of the study include: a visual procedure towards intelligent data cleaning where potentially significant information in very high element concentrations is preserved, methods for integration and visual analysis of geochemical datasets collected in different grids, estimation of geochemical baseline concentrations of trace metals in till geochemistry of southeastern Sweden, use of multi-element spatial fingerprints to trace natural geochemical patterns in biogeochemistry, and a new graphical approach to present multi-element geochemical data summaries and results from numerical analysis. / QC 20100609
|
629 |
Connectivity Drives Function: Carbon and Nitrogen Dynamics in a Floodplain-Aquifer EcosystemAppling, Alison Paige January 2012 (has links)
<p>Rivers interact with their valleys from headwaters to mouth, but nowhere as dynamically as in their floodplains. Rivers deliver water, sediments, and solutes onto the floodplain land surface, and the land in turn supplies solutes, leaves, and woody debris to the channel. These reciprocal exchanges maintain both aquatic and terrestrial biodiversity and productivity. In this dissertation I examine river-floodplain exchanges on the well-studied Nyack Floodplain, a dynamic, gravel-bedded floodplain along the Middle Fork Flathead River in the mountains of northwest Montana. I quantify exchanges at multiple timescales, from moments to centuries, to better understand how connectivity between aquatic and terrestrial habitats shapes their ecology.</p><p>I first address connectivity in the context of a long-standing question in ecosystem ecology: What determines the rate of ecosystem development during primary succession? Rivers have an immediate effect on floodplains when scouring floods remove vegetation and nutrients such as nitrogen (N) and leave only barren soils, but they might also affect the ensuing primary succession through the gradual delivery of N and other materials to floodplain soils. I quantify N inputs to successional floodplain forest soils of the Nyack Floodplain and find that sediment deposition by river flood water is the dominant source of N to soils, with lesser contributions from dissolved N in the river, biological N fixation, and atmospheric deposition. I also synthesize published rates of soil N accumulation in floodplain and non-floodplain primary-successional systems around the world, and I find that western floodplains often accumulate soil N faster than non-floodplain primary successional systems. My results collectively point to the importance of riverine N inputs in accelerating ecosystem development during floodplain primary succession.</p><p>I next investigate the role of river-floodplain exchanges in shaping the spatial distribution of a suite of soil properties. Even after flood waters have receded, dissolved N, carbon (C), and moisture could be delivered from the river to floodplain soils via belowground water flow. Alternatively, C inputs and N withdrawals by floodplain vegetation might be a dominant influence on soil properties. To test these hypotheses, I excavated and sampled soil pits from the soil surface to the water table (50-270 cm) under forests, meadows, and gravel bars of the Nyack Floodplain. Near-surface soils had C and N pools and N flux rates that varied predictably with vegetation cover, but soil properties below ~50 cm reflected influence by neither vegetation cover nor aquifer delivery. Instead, soil properties at these depths appear to relate to soil texture, which in turn is structured by the river's erosional and depositional activities. This finding suggests the revised hypothesis that soil properties in gravel-bedded alluvial floodplains may depend more on the decadal-scale geomorphic influences of floods than on short-term vertical interactions with floodplain vegetation or aquifer water. </p><p>Lastly, I explore the potential sources of organic C to the diverse and active community of aquatic organisms in the floodplain aquifer, where the lack of light prohibits in-situ organic C production by photosynthesis. I quantify floodplain carbon pools and the fluxes of organic carbon connecting the aquifer, river, and overlying forest. Spring flood waters infiltrating the soil are responsible for the largest dissolved carbon flux into the aquifer, while very large floods are essential for the other major C input, the burial of woody carbon in the aquifer. These findings emphasize the importance of a dynamic river hydrograph - in particular, annual floods and extreme annual floods - in delivering organic C to the aquifer community. </p><p>Overall, this dissertation draws our attention not just to the current exchanges of C, N, water, and sediment but to the episodic nature of those exchanges. To fully understand floodplain ecosystems, we have to consider not just present-day interactions but also the legacies of past floods and their roles in delivering solutes, eroding forests, depositing sediments, and physically shaping the floodplain environment.</p> / Dissertation
|
630 |
Biogeochemical factors affecting mercury methylation in high arctic soils on Devon Island, CanadaOiffer, Lindsay 02 January 2008
Recent research has shown that the Arctic may be a sink for mercury, however, the fate of this deposited mercury in the environment is not known. The objective of this project was to determine the factors affecting methyl mercury (MeHg) production in Arctic organic soil on the Truelove Lowlands, Devon Island, Canada. In the field we observed a steady decrease in MeHg over time, with MeHg concentration at many sampling locations declining below detection limits. This decrease did not correlate to any chemical or biophysical parameter measured. During the study the Lowlands appeared to be mildly reducing with dissolved Fe(II) being present in the porewater, however, no correlation was observed between MeHg production and the variables measured. The dissolved organic matter concentration of the porewater was quite high, the pH was circumneutral and it would seem that in the absence of more highly reducing conditions that mercury would be unavailable for methylation.<p> It seems likely under field conditions MeHg was much more bioavailable then inorganic mercury. This would lead to a higher rate of demethylation then methylation and a net decrease in MeHg. Little research has been done on demethylation and the effect of environmental conditions on demethylation, especially in arctic environments. However, it is possible that the rate of demethylation was not affected by changes in temperature or any other parameter measured over the course of the field study. <p> Laboratory microcosm studies using saturated soil from the organic horizons demonstrated little potential for unspiked organic soil to produce significant amounts of MeHg. The spiked treatment, however, had an eight fold increase in MeHg concentration and the sterile treatment showed no change in MeHg concentration over 40 days of freeze (-5 0C) and 59 days of thaw (4 oC). <p> Our data suggests that a combination of atmospheric and in-situ processes maintain a cycle of MeHg production (spring) and loss (summer) in arctic soils. It would seem that Arctic wetland soils are not a significant source of MeHg to the Arctic ecosystem and that snowmelt is the dominant source.
|
Page generated in 0.0858 seconds