• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 178
  • 155
  • 19
  • 18
  • 12
  • 12
  • 12
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 455
  • 80
  • 63
  • 61
  • 56
  • 48
  • 43
  • 38
  • 38
  • 34
  • 33
  • 32
  • 30
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

"Obtenção dos sistemas bioconjugados Crotoxina/PEBD-g-Phema e Crotoxina/PCL" / OBTAINMENT OF CROTOXIN/PHEMA-G-LDPE AND CROTOXIN/PCL SYSTEMS

Lorenzetti, Solange Gubbelini 20 July 2006 (has links)
A finalidade deste trabalho de pesquisa foi a obtenção de matrizes poliméricas imobilizadas com a crotoxina, proveniente do veneno bruto de cascavel. Foram obtidas duas matrizes: (a) copolímero de enxerto para a imobilização da crotoxina, (b) micro-esferas de épisolon-policaprolactona (PCL) com crotoxina encapsulada. A crotoxina, proveniente da serpente Crotalus durissus terrificus (cascavel da América do Sul), após a sua purificação, foi caracterizada bioquímica e biologicamente. O resultado da avaliação da dose letal média (DL50) da toxina foi de 0,09mg/Kg de animal. O teste de citotoxicidade apresentou resultados semelhantes entre as células tumorais e os respectivos controles das células normais. Copolímeros de polietileno de baixa densidade enxertado com poli(metacrilato de 2-hidroxietila) (PEBD-g-PHEMA) foram utilizados como suportes para a imobilização química da crotoxina purificada. Para tal utilizou-se o polietileno de baixa densidade (PEBD) juntamente com o monômero hidrofílico metacrilato de 2-hidroxietila (HEMA). Os copolímeros foram obtidos via radiação ionizante, em fonte de cobalto 60 (60Co), e apresentaram graus de enxertia que variaram de 2 a 50%. Na caracterização por espectroscopia em infravermelho (ATR) observou-se os grupos funcionais principais do copolímero, em relação ao polímero base e PHEMA formado na irradiação. No perfil espectroscópico do copolímero estavam presentes bandas atribuídas aos grupos C=O (carbonila) e –OH (hidroxil), provenientes do homopolímero PHEMA. As micrografias do MEV do PEBD apresentaram superfícies lisas, enquanto que PEBD-g-PHEMA com alto grau de enxertia (32 %) revelou superfície rugosa devido à presença de PHEMA. O copolímero foi caracterizado fisicamente com o teste de hidrofilicidade, no qual o conteúdo de água foi determinado gravimetricamente. Com o coeficiente de difusão obtido pôde-se notar vii que a partir de 30 % de enxertia o copolímero torna-se menos hidrofílico, devido ao aumento das ligações cruzadas entre as cadeias de PHEMA. O teste de citotoxicidade revelou que PEBD-g-PHEMA pode ser utilizado como biomaterial. O copolímero imobilizado, crotoxina encapsulada e a crotoxina livre foram avaliados “in vivo" em camundongos da linhagem C3H. Durante 20 dias foram observados alterações de peso e comportamento, além das funções motoras. Os resultados demonstraram que o grupo injetado com crotoxina teve uma perda de peso maior do que os demais grupos. Concluindo, a crotoxina imobilizada nos copolímeros poderia ser utilizada pela sua ação catalítica foslipásica, na hidrólise dos fosfolipídeos presente nas lipoproteínas de baixa densidade (LDL) do soro humano. Por outro lado, a crotoxina encapsulada nas micro-esferas de poli(épsilon-caprolactona) (PCL) poderia ser utilizada como sistema de liberação dirigida (local) da crotoxina, destinada a terapia tumoral. / The aim of the work was the obtainment of polymeric matrices immobilized with crotoxin purified from crude venom of rattle snake. A matrix was processed by gamma irradiation by the grafting of a hydrogel onto a polymeric film which resulted in a copolymer for the chemical immobilization of crotoxin. The second matrix was attainned by the entrapment of crotoxin in microspheres of epsilon-polycaprolactone. After the purification, the crotoxin proceeding from the snake Crotalus durissus terrificus was evaluated biochemical and biologically. The letal dose (LD50%) of the toxin was 0.09/kg animal. The test of cytotoxicity not revealed any significant difference between the tumoral cells and the respective normal control cells in culture. Grafting copolymers were used as scaffold for the chemical immobilization of the purified crotoxin. For this purpose the low density polyethylene (LDPE) and the hydrophilic monomer 2-hydroxy-ethyl-methacrylate (HEMA) were copolymerized in a 60Co source. The copolymers (LDPE-g-PHEMA) showed grafting levels in the range of 2 and 50 %. In the infrared spectroscopy analysis (FTIR-ATR) it was observed in the copolymer, carbonyl groups (C=O) and hydroxyl groups –OH due to the grafting of PHEMA. The MEV micrographies showed a smooth surface for the virgin LDPE and a rough surface for the LDPE-g-PHEMA, owing to the presence of grafted PHEMA. The hydrophilicity was observed by the determination of water content in the copolymer after immersion in water. By the diffusion coefficient it was noted that from 30 % grafting degree, the copolymers become less hydrophilic due to the crosslinking increase among the chains in PHEMA. The biocompatibility of the LDPE-g-PHEMA was proved by the cytoxicity test. At the end, the immobilized copolymer, the entraped crotoxin and the free crotoxin was tested “in vivo". During 20 days, C3H strain mouses were observed in ix their weight, behavior and motor changes. The results demonstrated that the group injected with crotoxin had visible loss of weight higher than the other groups. It was concluded that, potentially the immobilized crotoxin could be used by its catalitic phospholipase action, possibily for the hydrolysis of phopholipids present in human serum low density lipoproteins (LDL). By the other side, the entraped crotoxin in the microspheres of epsilon-polycaprolactone could be employed in the managed drug delivered system for the tumoral therapy.
152

Viabilidade das matrizes de colágeno derivadas do pericárdio e da serosa de intestino bovino no reparo de defeitos cranianos em ratas ovariectomizadas / Viability of collagen matrices derived from bovine intestine pericardium and serous repair in cranial defects in ovariectomized rats

Hirata, Helton Hiroshi 13 December 2013 (has links)
O desenvolvimento e aperfeiçoamento de biomateriais têm aumentado consideravelmente, devido às limitações clínicas do uso do enxerto ósseo autólogo em casos de reparo de graves lesões ósseas. Porém, as condições de saúde do tecido ósseo podem influenciar na capacidade osteogênica desses implantes como nos casos de osteoporose provocada por deficiência hormonal. Objetivos: O presente trabalho avaliou a capacidade osteogênica de matrizes de colágeno aniônicas derivadas do pericárdio bovino e da serosa do intestino bovino, quando implantadas em lesões cranianas de ratas ovariectomizadas. Material e Métodos: Foram utilizadas 30 ratas (Rattus norvegicus, Wistar), com aproximadamente, 12 semanas de idade e peso médio de 300 gramas. Os animais foram submetidos ao procedimento cirúrgico com a finalidade de criação de um defeito na calota craniana. As ratas foram distribuídas em grupo controle (não ovariectomizados) e grupo ovariectomizado. Cada grupo foi dividido em 3 subgrupos, sendo que um deles teve as falhas não preenchidas com biomateriais e os outros 2 subgrupos receberam as matrizes de colágeno de pericárdio bovino e da serosa de intestino bovino, respectivamente. O sacrifício dos animais ocorreu 8 semanas pós-cirúrgico da calota craniana. Em seguida, as amostras foram fotodocumentadas, radiografadas e submetidas aos procedimentos histotécnicos de rotina para a confecção das lâminas histológicas. A pesquisa foi aprovada pelo Comitê de Ética da Faculdade de Medicina de Jundiaí, protocolo nº 301/12. Resultados: As análises macroscópica, radiológica e microscópica demonstraram a biocompatibilidade das matrizes de colágeno implantadas. Histologicamente, observou-se que nas ratas não ovariectomizadas, houve discreta neoformação óssea na área cirúrgica preenchida com as matrizes sendo ainda menor nas ratas ovariectomizadas. O volume de osso formado com defeito, nos grupos não ovariectomizados, foi 7,83±1,32, 21,33±1,96, 22,83±0,98, sendo estatisticamente maiores ao comparar com os valores dos grupos ovariectomizados que foram 3,16±0,75, 16,83±0,98 e 16,16±0,75. Conclusões: As matrizes de colágeno utilizadas foram biocompatíveis com o tecido ósseo receptor, porém com baixa capacidade osteogênica, não ocorrendo sua osteointegração. Nos animais ovariectomizados, ficou ainda mais acentuado o comprometimento do reparo ósseo. / The development and improvement of biomaterials have increased considerably due to the limitations of the clinical use of autologous bone graft in cases of serious repair bone injuries. However the health of the bone can influence the osteogenic capacity of these implants as in osteoporosis caused by hormone deficiency. Objectives: This study evaluated the osteogenic capacity of anionic collagen sponges derived from the bovine pericardium and serous bovine intestine when implanted in head injuries of ovariectomized rats. Material and Methods: We used 30 female rats (Rattus norvegicus, Wistar), with approximately 12 weeks of age and weighing 300 grams. The animals underwent the surgical procedure for the purpose of creating a defect in the skull. The rats were divided into control group (non-ovariectomized) and ovariectomized group. Each group was divided into 3 subgroups, one of which had not filled the gaps with biomaterials and the other two subgroups received the collagen sponges bovine pericardium and serous bovine intestine, respectively. The animals were sacrificed 8 weeks after surgery of the skull. Then the samples were photo documented, radiographed and submitted to routine histotechnical procedures for the preparation of histological slides. The study was approved by the Ethics Committee of the Faculty of Medicine of Jundiaí, protocol number 301/12. Results: The macroscopic, microscopic and radiological demonstrated the biocompatibility of collagen sponges implanted. Histologically, it was observed that the non-ovariectomized rats, there was a slight new bone formation at the surgical site filled with mothers being even lower in ovariectomized rats. The volume of bone formed defective, non-ovariectomized groups groups was 7.83±1:32, 21:33±1.96, 22.83±0.98, being statistically higher when compared with the values of ovariectomized animals that were 3.16±0.75, 16.83±0.98 and 0.75±16:16. Conclusions: Collagen sponges were biocompatible with bone tissue receptor, but with lower osteogenic capacity, not its osseointegration occurring. In ovariectomized animals, became even more pronounced impairment of bone repair.
153

Correlation of ligand density with cell behavior on bioactive hydrogel layers / Korrelation der Ligandendichte mit Zellverhalten auf bioaktivierten Hydrogelschichten

Beer, Meike Vanessa January 2011 (has links) (PDF)
Diese Arbeit beschäftigte sich mit der Quantifizierung von Zelladhäsion vermittelnden Liganden in und auf dünnen Hydrogelschichten, die zur Oberflächenmodifizierung auf Biomaterialien aufgebracht wurden. Das bereits etablierte und gut charakterisierte inerte NCO-sP(EO-stat-PO) Hydrogelsystem, das eine einfache und reproduzierbare Bioaktivierung mit Peptiden erlaubt, wurde als Basis für diese Arbeit verwendet. Diese Hydrogele können auf zwei Weisen funktionalisiert werden. Liganden können entweder mit der Prepolymerlösung vor der Beschichtung gemischt (Einmischmethode) oder frische Hydrogelschichten mit einer Ligandenlösung inkubiert werden (Inkubationsmethode). Der erste Teil dieser in drei Hauptteile unterteilten Arbeit, beschäftigte sich mit der Konzentrationsbestimmung der Liganden in der gesamten Tiefe der Hydrogelschicht, während sich der zweite Teil auf die oberflächensensitive Quantifizierung von Zelladhäsion vermittelnden Molekülen an der biologischen Grenzfläche konzentrierte. Die Ergebnisse wurden mit Zelladhäsionskinetiken verglichen. Der dritte Teil dieser Arbeit beschäftigte sich mit der biochemischen als auch strukturellen Nachahmung der komplexen Extrazellulärmatrix (ECM). Das ECM Protein Fibronektin (FN) wurde über Zucker-Lektin Anbindung präsentiert und Zellverhalten auf diesen biomimetischen Oberflächen untersucht. Ebenfalls wurde Zellverhalten in einer dreidimensionalen Faserumgebung mit identischer Oberflächenchemie wie in den beiden ersten Teilen dieser Arbeit untersucht und mit der Peptidkonzentration korreliert. Insgesamt, war die Hauptfragestellung in dieser Arbeit ‘Wie viel?’, d.h. einerseits die Ermittlung der maximalen, als auch der für Zelladhäsion optimalen Ligandendichte. Im ersten praktischen Teil der vorliegenden Arbeit (Klassische Quantifizierung) wurden Liganden in der gesamten Hydrogelschicht, als auch speziell in oberen Bereichen der Schichten quantifiziert. Die Untersuchung der Hydrogelschichten in Wellplatten und auf Glas funktionalisiert mit GRGDS und 125I-YRGDS erfolgte in Kapitel 3 mittels Radioaktivmessung. Wurden Hydrogelschichten mittels Inkubationsmethode funktionalisiert, konnte eine Sättigung mit Liganden bei etwa 600 µg/mL ermittelt werden. Mittels Einmischmethode funktionalisierte Hydrogele erreichten keine maximale Ligandenkonzentration in den Schichten, mit dem Verhältnis 2/1 als maximales verwendetes Verhältnis. Höhere Liganden zu Prepolymer Verhältnisse als 2/1 wurden jedoch nicht verwendet, um eine ausreichende Vernetzung der Hydrogele nicht zu gefährden. Zur Detektion mittels Röntgenphotoelektronenspektroskopie (XPS) und Flugzeit-Sekundärionen-Massen-spektrometrie (TOF-SIMS) (Kapitel 4) wurden eine fluorierte Aminosäure und ein iodiertes Peptid mit den Prepolymeren in molaren Verhältnissen von 1/2, 1/1 und 2/1 gemischt. Beide Methoden ermittelten eine maximale Ligandenkonzentration bei Verhältnissen von 1/1. Zusätzliche Liganden (2/1) führten zu keiner vermehrten Anbindung. Wesentlich im Zusammenhang mit der Ligandenquantifizierung auf Biomaterialien ist, diese an der Oberfläche, die für Zellen zugänglich ist, durchzuführen. Im zweiten Teil dieser Arbeit (Oberflächensensitive Quantifizierung) kamen daher Methoden zum Einsatz, die Liganden ausschließlich auf der Oberfläche quantifizierten. Zur Detektion mit Oberflächenplasmon-resonanz (SPR) und akustischer Oberflächenwellentechnologie (SAW) in Kapitel 5 musste die Standardbeschichtung der Hydrogele von Glas und Silikon auf Cystamin funktionalisierte Goldoberflächen übertragen werden. Mittels Ellipsometrie und Rasterkraftmikroskopie (AFM) konnte nur eine dünne und inhomogene Hydrogelbeschichtung nachgewiesen werden. Dennoch zeigten SPR und SAW die Unterbindung von Serum und Streptavidin (SA) Adsorption auf nicht funktionalisierten Schichten, jedoch eine spezifische und konzentrationsabhängige SA Bindung auf Hydrogelschichten, die mit Biocytin und GRGDSK-biotin funktionalisiert wurden. Die Ligandenquantifizierung mittels Enzymgekoppeltem Immunadsorptionstest (ELISA) und Enzymgekoppelten Lektinadsorptionstest (ELLA) (Kapitel 6) wurde auf Hydrogelschichten in Wellplatten und auf Glas angewendet, die mit verschiedenen Liganden mittels Inkubation und Einmischung funktionalisiert wurden. Das Modellmolekül Biocytin, das biotinylierte Peptid GRGDSK-biotin, das ECM Protein Fibronektin (FN), als auch die Modellzucker N-Acetyl-glukosamin (GlcNAc) und N-Acetyllaktosamin (LacNAc) konnten spezifisch in verschiedenen Konzentrationen nachgewiesen werden. Beispielhaft seien hier Schichten auf Glas genannt, die mittels Einmischmethode mit GRGDSK-biotin funktionalisiert wurden, da diese zum Vergleich in Kapitel 8 herangezogen wurden. Auf diesen Oberflächen wurde eine maximale Peptidkonzentration auf der Oberfläche bei einem Peptid zu Prepolymer Verhältnis von 1/5 ermittelt. Neben diesen verschiedenen Quantifzierungsmethoden ist die in vitro Analyse mit Zellen nicht zu vernachlässigen (Kapitel 7). Hierzu wurden Hydrogele auf Glas aufgebracht und mit GRGDS mittels Einmischmethode funktionalisiert. Durch Zählen adhärenter primärer humaner dermaler Fibroblasten (HDF) auf Mikroskopbildern wurde eine maximale Zelladhäsion bei dem Peptid zu Prepolymer Verhältnis von 1/5 festgestellt. Hingegen wurde ein Verhältnis von 1/2 für optimale Zelladhäsion ermittelt, wenn Zellen zur Quantifizierung von den Hydrogelen abgelöst und im CASY® Zellzähler quantifiziert wurden. Zusätzlich wurde die Zellvitalität durch Messung intrazellulärer Enzymaktivitäten gemessen, jedoch konnte kein Zusammenhang zwischen Zellvitalität und GRGDS Konzentration hergestellt werden. Adhärente HDFs waren in allen Fällen vital, unabhängig von der Ligandenkonzentration auf der Oberfläche. Auch die Mausfibroblasten Zelllinie NIH L929 wurde auf Hydrogelen mit verschiedenen GRGDS zu Prepolymer Verhältnissen durch Zählen adhärenter Zellen auf Mikroskopbildern untersucht. Diese im Verhältnis zu HDFs wesentlich kleineren Mauszellen benötigten höhere GRGDS Konzentrationen (2/1) für maximale Zelladhäsion. Nach der Ligandenquantifizierung in Kapitel 3 bis 7, wurden diese Ergebnisse in Kapitel 8 miteinander verglichen. Hierzu wurden Messungen auf Hydrogelschichten verwendet, die mittels Einmischmethode funktionalisiert wurden. Während die Quantifizierung mittels Radioaktivmessung in der gesamten Tiefe der Hydrogelschichten keine maximale Ligandenkonzentration ermitteln konnte, war in den oberen Bereichen der Schicht ein Maximum an Liganden bei 1/1 festzustellen (XPS, TOF-SIMS). SPR und SAW wurden zum Vergleich nicht herangezogen, da die Beschichtung auf Gold erst optimiert werden muss. Oberflächensensitive Quantifizierung mittels ELISA und Zelladhäsion, die lediglich die sterisch zugänglichen Liganden auf einer Oberfläche nachweisen, ergaben übereinstimmend eine optimale Ligandenkonzentration für SA Bindung und Zelladhäsion bei einem Peptid zu Prepolymer Verhältnis von 1/5. Dies unterstreicht, wie wichtig der Vergleich der Methoden, als auch die Verwendung von oberflächensensitiven Methoden ist. Der dritten Teil dieser Arbeit beschäftigte sich mit der biochemischen und strukturellen Nachahmung der komplexen extrazellulären Umgebung (Advanced ECM engineering), ein wichtiger Aspekt in der Biomaterialforschung, da zum größten Teil zwei-dimensionale Biomaterialien zum Einsatz kommen, die direkt mit Liganden kovalent funktionalisiert werden. Die ECM ist jedoch um ein Vielfaches komplexer und die bestmögliche Nachahmung ist Voraussetzung für eine bessere Akzeptanz durch Zellen und Gewebe. In Kapitel 9 wurde eine Möglichkeit aufgezeigt, das ECM Protein FN nicht-kovalent über Zucker-Lektinbindungen zu immobilisieren. Ein Schichtaufbau von Hydrogel, dem darauf durch Mikrokontakt-druckverfahren (MCP) kovalent gebundenen Zucker Poly-N-Acetyllaktosamin (polyLacNAc) und den darauf nicht-kovalent gebundenen Galektin His6CGL2 und FN, konnte mit Fluoreszenzfärbung elegant nachgewiesen werden. Optimale Konzentrationen für den Schichtaufbau wurden mittels ELLA/ELISA auf Hydrogelschichten ermittelt, die durch Inkubation mit dem Zucker funktionalisiert wurden. Nur der komplette Schichtaufbau konnte zufriedenstellende HDF Adhäsion vermitteln und im Vergleich zu Zellkulturpolystyrol (TCPS) Oberflächen konnten HDFs auf dem biomimetischen Schichtaufbau schneller adhärieren und spreiten. Zudem wurde die Umorganisierung von auf Glas adsorbiertem FN, auf NCO-sP(EO-stat-PO) kovalent gebundenem FN und biomimetisch über polyLAcNAc-His6CGL2 gebundenem FN durch HDFs verglichen. Nur auf den biomimetischen Oberflächen schien eine Umorganisation durch die Zellen möglich, wie sie auch in der ECM zu finden ist. Diese biomimetische und flexible Präsentation eines Proteins erwies sich als vielversprechende Möglichkeit eine biomimetischere Oberfläche für Zellen zu schaffen, die eine optimale Biokompatibilität ermöglichen könnte. Auch die strukturelle Nachahmung der ECM ist eine vielversprechende Strategie zum Nachbau der ECM. In Kapitel 10 wurde ein Einschrittverfahren zur Herstellung synthetischer, bioaktiver und degradierbarer Faserkonstrukte durch Elektrospinnen zur Nachahmung der ECM präsentiert. In diesem System wurden durch Zugabe von NCO-sP(EO-stat-PO) als reaktives Additiv zu Poly(D,L-laktid-co-Glycolid) (PLGA) Fasern hergestellt, die mit einer ultradünnen, inerten Hydrogelschicht versehen waren. Es konnte gezeigt werden, dass durch die Verwendung von NCO-sP(EO-stat-PO) als Additiv die Adsorption von Rinderserumalbumin (BSA) im Vergleich zu PLGA um 99,2% reduziert, die Adhäsion von HDFs verhindert und die Adhäsion von humanen mesenchymalen Stammzellen (MSC) minimiert werden konnten. Spezifische Bioaktivierung wurde durch Zugabe von Peptidsequenzen zur Spinlösung erreicht, welche kovalent in die Hydrogelschicht eingebunden werden konnten und kontrollierte Zell-Faser Interaktionen ermöglichten, Um die spezifische Zelladhäsion an solchen inerten Fasern zu erzielen, wurde GRGDS kovalent auf der Faseroberfläche gebunden. Dies erfolgte durch Zugabe des Peptids zur Polymerlösung vor dem Elektrospinnen. Als Negativkontrolle wurde die Peptidsequenz GRGES an die Faseroberfläche gebunden, welche durch Zellen nicht erkannt wird. Während die Verhinderung unspezifischer Proteinadsorption für die Peptidmodifizierten Fasern erhalten blieb, konnten HDFs lediglich auf den mit GRGDS Peptid modifizierten Fasern adhärieren, proliferieren und nach zwei Wochen eine konfluente Zellschicht aus vitalen Zellen bilden. Zusätzlich konnten MSCs auf GRGDS funktionalisierten Fasern adhärieren. Liganden konnten auf Fasern quantifiziert werden, indem die ELISA Technik aus Kapitel 6 auf Faseroberflächen transferiert wurde. Um das Potential der biochemischen und strukturellen Nachbildung der ECM aufzuzeigen, wurden beide Ansätze miteinander kombiniert. Die Immobilisierung von polyLacNAc auf die Hydrogelfasern durch Inkubation und der Schichtaufbau mit His6CGL2 und FN resultierte in HDF Adhäsion. / This thesis concerned the quantification of cell adhesion molecules (CAM) in and on thin hydrogel films as surface modification of biomaterials. The established and well characterized, per se inert NCO-sP(EO-stat-PO) hydrogel system which allows the easy and reproducible bioactivation with peptides was used as basis for this thesis. Two methods can be used to functionalize the coatings. Ligands can either be mixed into the prepolymer solution in prior to layer formation (mix-in method), or freshly prepared coatings can be incubated with ligand solution (incubation method). Divided into three major parts, the first part of the thesis dealt with the concentration of ligands in the bulk hydrogel, whereas the second part of the thesis focused on the surface sensitive quantification of CAMs at the biointerface. The results were correlated with cell adhesion kinetics. The third part of this thesis investigated the biochemical and the structural mimicry of the extracellular matrix (ECM). ECM proteins were presented via sugar-lectin mediated binding and cell behavior on these surfaces was analyzed. Cell behavior on three-dimensional fibers with identical surface chemistry as the coatings in the previous sections of the thesis was analyzed and correlated with the amount of peptide used for bioactivation. Overall, the main question of this work was ‘How much?’ regarding maximal as well as optimal ligand concentrations for controlled cell-hydrogel interactions. The focus in the first practical part of this thesis was to analyze the amount of ligands in NCO-sP(EO-stat-PO) hydrogels using classical quantification methods. Coatings in 96-well plates as well as on glass were functionalized with GRGDS and 125I-YRGDS for radioisotopic detection (Chapter 3). Using the incubation method for functionalization, a maximal ligand binding using peptide concentrations of 600 µg/mL could be determined. When functionalization was introduced via the mix-in method, a clear tendency for higher ligand concentrations with increasing ligand to prepolymer ratio was observed, but no maximal ligand binding could be detected with a ligand to prepolymer ratio of 2/1 being the highest ratio investigated. This ratio of 2/1 was not exceeded to ensure that complete crosslinking of the hydrogel was not affected. In Chapter 4, a fluorinated amino acid and an iodinated peptide were immobilized to the hydrogels using the mix-in method and were detected by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In these measurements, maximal ligand binding was detected for a ligand to prepolymer ratio of 1/1. Higher ligand to prepolymer ratios did not result in any significant increase in ligand concentrations in the surface near regions of the crosslinked hydrogels. To address the question of how many ligands were actually accessible for cell interaction at the interface, surface sensitive quantification methods were applied in the second part of this thesis. For the quantification with surface plasmon resonance (SPR) and surface acoustic wave technology (SAW) (Chapter 5), the hydrogel coating procedure needed to be transferred onto cystamine functionalized gold surfaces. Characterization with ellipsometry and atomic force microscopy (AFM) revealed inhomogeneous cystamine binding to the activated surfaces, which resulted in inhomogeneous coatings. Nevertheless, it could be shown that SPR as well as SAW were suitable methods for the surface sensitive quantification of the ligand concentration on NCO-sP(EO-stat-PO) hydrogels. Non-functionalized coatings resisted non-specific serum as well as streptavidin (SA) adsorption. Coatings functionalized with biocytin and GRGDSK-biotin introduced specific SA binding that was dependent on the biotin concentration at the surface. Additionally, enzyme linked immunosorbent assay (ELISA) and enzyme linked lectin assay (ELLA) (Chapter 6) were applied to coatings in 96-well plates and on glass. Coatings were functionalized with the model molecule biocytin, the biotinylated peptide GRGDSK-biotin, the ECM protein fibronectin (FN), as well as the carbohydrates N-acetylglucosamine (GlcNAc) and N-acetyllactosamine (LacNAc). All ligands could be successfully detected with antibodies or SA via ELISA or ELLA. Maximal GRGDSK-biotin binding to the hydrogel coatings on glass was achieved at a peptide to prepolymer ratio of 1/5, which was used as reference value in Chapter 8. Last but not least, cell adhesion (Chapter 7) was quantified depending on the GRGDS concentration on hydrogel coatings on glass. Maximal adhesion of primary human dermal fibroblast (HDF) was observed at GRGDS to prepolymer ratios of 1/5, when adherent cells were counted on life cell images. Quantification of adherent cells using the CASY® cell counter revealed maximal HDF adhesion at molar ligand to prepolymer ratios of 1/2. However, cell vitality detected by intracellular enzyme activities was not dependent on the GRGDS concentration. Cells which managed to adhere were vital regardless of the amount of ligands present. Additionally, adhesion of fibroblasts from the murine cell line NIH L929 was analyzed by counting on life cell images. These cells, being much smaller than the HDF cells, needed higher GRGDS to prepolymer ratios (2/1) for proper cell adhesion. All quantification methods applied to analyze hydrogels which were functionalized by the mix-in method in Chapter 3, 4, 6 and 7, were compared in Chapter 8. Radiodetection gave information about the ligand concentrations throughout the whole hydrogel and no maximal amount of ligands could be detected when increasing the peptide to prepolymer ratio. In contrast, XPS and TOF-SIMS which only penetrated the surface near regions of the coating, a maximal ligand binding to the hydrogel was detected for 1/1 ratios. SPR and SAW were not included in this comparison, as the coatings on gold need to be optimized first. The two surface sensitive quantification methods (ELISA and HDF adhesion) could give information about the quantity of peptide which was sterically available for SA or cell binding. With these methods, maximal SA and cell binding was detected at ratios of 1/5. These results underline the importance of carefully compare the different methods. Beside ligand quantification on hydrogels, the third part of this thesis was concerned with the biochemical and structural mimicry of the ECM by advanced ECM engineering to design biomimetic biomaterials that are better accepted by cells and tissue. The subject of Chapter 9 was the biomimetic and flexible presentation of the ECM protein FN. FN was attached via sugar-lectin mediated binding to NCO-sP(EO-stat-PO) hydrogels. The build-up of the covalently immobilized sugar poly-N-acetyllactosamine (polyLacNAc), the subsequent non-covalent binding of the fungal galectin His6CGL2, and FN could be elegantly proven by fluorescent staining on coatings which were functionalized with the sugar by micro contact printing (MCP). Further experiments were carried out on build-ups, where polyLacNAc was immobilized on the hydrogel by incubation. Optimal parameters for the layer build-up were determined by ELLA/ELISA. Only the complete build-up induced proper adhesion of HDFs. Compared to tissue culture polystyrene (TCPS), cells adhered and spread faster on the biomimetic surfaces. The flexible presentation of FN allowed HDFs to rearrange homogenously immobilized FN into fibrillar structures, which seemed not to be possible when FN was adsorbed on glass or covalently bound directly to the hydrogel coatings. This new approach of a flexible and biomimetic presentation of an ECM protein allows new ways to design biomaterials with best possible cell-material interactions. The work described in Chapter 10 focused on the structural mimicry of the fibrous ECM structures by electrospinning of synthetic, bioactive, and degradable fibers. Poly(D,L-lactide-co-glycolide) (PLGA) and NCO-sP(EO-stat-PO) were electrospun out of one solution in an easy one-step preparation resulting in fibers with an ultrathin inert hydrogel layer at the surface. By adding GRGDS to the solution prior to electrospinning, specifically interacting fibers could be obtained. In comparison to PLGA, the adsorption of bovine serum albumin (BSA) could be reduced by 99.2%. As a control, the non-active peptide GRGES was immobilized to the fiber. These fibers did not allow cell adhesion, showing that the integrity of the hydrogel coated fibers was not affected by the immobilization of peptides. HDF adhesion was obtained by functionalization with GRGDS, leading to the adhesion, spreading, and proliferation of HDFs. Also mesenchymal stem cells (MSC) could adhere to GRGDS functionalized fibers. Additionally, for ligand quantification, the ELISA technique was successfully transferred to fiber substrates. To highlight the potential of the approaches for the biochemical and structural mimicry of the ECM, the sugar polyLacNAc was immobilized on the PLGA/sP(EO-stat-PO) fibers followed by the subsequent layer build-up with His6CGL2 and FN. These fibers triggered HDF adhesion.
154

Tissue Engineering eines Meniskus - Vom Biomaterial zum Implantat / Tissue Engineering of a meniscus - from a biomaterial to the implant

Weyhmüller Reboredo, Jenny January 2014 (has links) (PDF)
Der Meniskus, ein scheibenförmiger Faserknorpel, spielt im Kniegelenk eine bedeutende Rolle, weil er Kräfte und Druck im Kniegelenk gleichmäßig verteilt, Stöße dämpft sowie der Kraftübertragung und Stabilisierung dient. Durch die Entfernung des Gewebes, der sogenannten Totalmeniskektomie, nach einer Meniskusverletzung oder einem Riss, verändern sich die mechanischen Eigenschaften des Gelenks stark und verursachen durch die erhöhte Belastung der Gelenkflächen Arthrose. Arthrose ist weltweit die Häufigste aller Gelenkerkrankungen. Der Erhalt der körperlichen Leistungsfähigkeit und Mobilität bis ins hohe Alter sowie die Bewahrung der Gesundheit von Herz-Kreislauf- und Stoffwechselorganen zählen aufgrund des demografischen Wandels zu den großen medizinischen Herausforderungen. Die Erkrankung des muskuloskelettalen Systems stellte 2010 im Bundesgebiet die am häufigsten vorkommende Krankheitsart dar. Während Risse in den äußeren Teilen des Meniskus aufgrund des Anschlusses an das Blutgefäßsystem spontan heilen können, können sie dies in tieferen Zonen nicht. Durch die begrenzte Heilungsfähigkeit des Knorpels bleibt langfristig der Einsatz eines Ersatzgewebes die einzige therapeutische Alternative. In der vorliegenden Arbeit wurde als therapeutische Alternative erfolgreich ein vaskularisiertes Meniskusersatzgewebe mit Methoden des Tissue Engineering entwickelt. Es soll in Zukunft als Implantat Verwendung finden. Tissue Engineering ist ein interdisziplinäres Forschungsfeld, in dem Gewebe außerhalb des Körpers generiert werden. Schlüsselkomponenten sind Zellen, die aus einem Organismus isoliert werden, und Trägerstrukturen, die mit Zellen besiedelt werden. Die Biomaterialien geben den Zellen eine geeignete Umgebung, die die Extrazelluläre Matrix (EZM) ersetzen soll, um die Funktion der Zellen beizubehalten, eigene Matrix zu bilden. Zum Erhalt eines funktionelles Gewebes werden oftmals dynamische Kultursysteme, sogenannte Bioreaktoren, verwendet, die natürliche Stimuli wie beispielsweise den Blutfluss oder mechanische Kompressionskräfte während der in vitro Reifungsphase des Gewebes, zur Verfügung stellen. Das Gewebekonstrukt wurde auf Basis natürlicher Biomaterialien aufgebaut, unter Verwendung ausschließlich primärer Zellen, die später direkt vom Patienten gewonnen werden können und damit Abstoßungsreaktionen auszuschließen sind. Da der Meniskus teilvaskularisiert ist und die in vivo Situation des Gewebes bestmöglich nachgebaut werden sollte, wurden Konstrukte mit mehreren Zelltypen, sogenannte Ko-Kulturen aufgebaut. Neben mikrovaskulären Endothelzellen (mvEZ) und Meniskuszellen (MZ) erfolgten Versuche mit mesenchymalen Stammzellen (MSZ). Zur Bereitstellung einer zelltypspezifischen Matrixumgebung, diente den mvEZ ein Stück Schweinedarm mit azellularisierten Gefäßstrukturen (BioVaSc®) und den MZ diente eine geeig- nete Kollagenmatrix (Kollagen Typ I Hydrogel). Die Validierung und Charakterisierung des aufgebauten 3D Meniskuskonstrukts, welches in einem dynamischen Perfusions-Bioreaktorsystem kultiviert wurde, erfolgte mit knorpeltypischen Matrixmarkern wie Aggrekan, Kollagen Typ I, II und X sowie mit den Transkriptionsfaktoren RunX2 und Sox9, die in der Knorpelentstehung von großer Bedeutung sind. Zusätzlich erfolgten Auswertungen mit endothelzellspezifischen Markern wie vWF, CD31 und VEGF, um die Vaskularisierung im Konstrukt nachzuweisen. Analysiert wurden auch die Zellvitalitäten in den Konstrukten. Aufgrund einer nur geringen Verfügbarkeit von MZ wurden Kulturansätze mit alternativen Zellquellen, den MSZ, durchgeführt. Dafür erfolgte zunächst deren Isolation und Charakterisierung und die Auswahl einer geeigneten 3D Kollagenmatrix. Die beste Zellintegration der MSZ konnte auf einer eigens hergestellten elektrogesponnenen Matrix beobachtet werden. Die Matrix besteht aus zwei unterschiedlichen Kollagentypen, die auf insgesamt fünf Schichten verteilt sind. Die Fasern besitzen weiter unterschiedliche Ausrichtungen. Während die Kollagen Typ I Fasern in den äußeren Schichten keiner Ausrichtung zugehören, liegen die Kollagen Typ II Fasern in der mittleren Schicht parallel zueinander. Der native Meniskus war für den Aufbau einer solchen Kollagen-Trägerstruktur das natürliche Vorbild, das imitiert werden sollte. Nach der Besiedelung der Matrix mit MSZ, konnte eine Integration der Zellen bereits nach vier Tagen bis in die Mittelschicht sowie eine spontane chondrogene Differenzierung nach einer insgesamt dreiwöchigen Kultivierung gezeigt werden. Das Biomaterial stellt in Hinblick auf die Differenzierung der Zellen ohne die Zugabe von Wachstumsfaktoren eine relevante Bedeutung für klinische Studien dar. Zur Kultivierung des 3D Meniskuskonstrukts wurde ein Bioreaktor entwickelt. Mit diesem können neben Perfusion der Gefäßsysteme zusätzlich Kompressionskräfte sowie Scherspannungen auf das Ersatzgewebe appliziert und die Differenzierung von MZ bzw. MSZ während der in vitro Kultur über mechanische Reize stimuliert werden. Ein anderes Anwendungsfeld für den neuartigen Bioreaktor ist seine Verwendung als Prüftestsystem für die Optimierung und Qualitätssicherung von Gewebekonstrukten. / The meniscus, a disk-shaped fibrous cartilage, plays an important role in the equal distribution of pressure, shock absorption, power transmission and stability within the knee joint. After a meniscus injury or a meniscus tear, a total meniscectomy is done where the complete tissue is removed. This leads to a change of mechanical properties in the joint and causes arthrosis by an increased strain on the joint surfaces. Wordwide arthrosis is the most frequent of all joint diseases. Due to the demographic change, maintaining physical fitness and mobility up to an old age are the main challenges besides ensuring health of the heart and circulatory system and of the metabolic organs. Musculoskeletal disorders represented the most frequent type of disease in Germany in 2010. While tears in the outer zone of the meniscus heal spontaneously because of its connection to the blood vessel system, tears in the deeper zones do not heal. Due to the limited healing capacity of cartilage the use of a replacement tissue is the only therapeutic alternative in the long run. In the present work a vascularized meniscus construct as therapeutic alternatives has been developed with the Tissue Engineering method for the further use as an implant. Tissue En- gineering is an interdisciplinary research field to generate tissues outside the body. The key components are isolated cells from an organism, and scaffolds, which are seeded with cells. Biomaterials provide a suitable environment that replaces the extracellular matrix (ECM) to maintain cell functionality to let cells build up their own matrix. To maintain a functional tissue during in vitro dynamic culture, bioreactor systems are used to provide natural stimuli such as blood flow or mechanical compression forces. The tissue construct is based on natural biomaterials and solely on primary cells, which later can be isolated directly from the patient and thereby exclude repulsion reactions. Due to its limited vascularity of the meniscus and the aim to build up at its best the in vivo situation more than one cell type is used to generate constructs, so called co-culture systems. Mesen- chymal stem cells (MSZ) besides microvascular endothelial cells (mvEZ) and meniscus cells (MZ) were used in the experiments. To supply a cell type specific matrix environment, a segment of a porcine jejunum with decellularized vascular structures (BioVaSc®) for the mvEZ and a collagen based matrix (collagen type I hydrogel) for the MZ were employed. The validation and characterization of the de- veloped 3D meniscus construct, that was cultured in a dynamic perfusion bioreactor system, was performed by using cartilage matrix specific markers, such as aggrecan, collagen type I, II and X, as well as the transcription factors RunX2 and Sox9 that are of major importance for cartilage development. Further analysis with endothelial cell specific markers, such as vWF, CD31 and VEGF were performed to evaluate the vascularization of the construct. Furthermore, cell vitality tests of the construct were made. Because of the limited availability of primary MZ, culture approaches with MSZ as an alter- native cell source were investigated. Cell isolation and characterization were performed and a suitable 3D collagen matrix was selected. The best cell integration of the MSZ could be observed on a specifically engineered electrospun matrix. The matrix consists of two different collagen types that are arranged in a total of five layers. The fibers are further orientated in different directions. While outer layers consist of randomly-aligned collagen type I fibers, the collagen type II fibers in the middle layer are aligned parallel to each other. The native meniscus tissue serves as natural example and its structure is replicated in such a collagen scaffold. After seeding the scaffold with MSZ, cell integration into the middle layer could be observed after four days, as well as a spontanous chondrogenic differentation after three weeks of culture. The biomaterial developed in this work has to be considered as relevant for clinical studies with regard to cell differentiation without adding growth factors to the culture. For the culture of 3D meniscus construct a bioreactor was successfully developed, that can apply compressive strength and shear stress to the tissue model in addition to perfusing the vascular system. With these measures the differentiation of MZ or MSZ could be induced with mechanical strains during the in vitro culture. Another field of application for the new bioreactor is its use as a test system for the optimization and quality control of the tissue models.
155

Evaluation of Novel Materials for Wound Healing

Jacobsson, Lena January 2009 (has links)
<p>Rapid wound healing is important to regain the skins protective function after injury. Studies have shown that enamel matrix proteins (EMP) have many desirable effects which may accelerate wound healing [Bosshardt <em>et al.</em> 2008].</p><p> </p><p>Polymers (Polymer A, B and C) were formed into a mat form, with or without incorporated enamel matrix derivative (EMD) (Collaboration partner). The materials may be suitable for wound care and drug delivery systems.</p><p> </p><p>Protein release tests were performed on samples incubated in physiological-like solution using pyrogallol red staining, ultraviolet (UV) spectrophotometer and high-performance liquid chromatography (HPLC). Protein was detected in Polymer A material samples, compared to a reference material sample, using pyrogallol red staining. An in vitro experiment showed that normal human dermal fibroblasts (NHDF) cultivated with Polymer A material (with EMD) had significantly higher viability than NHDF cultivated with reference material (Polymer A without EMD) and comparable viability to fibroblasts grown with either 0.1 mg EMD in solution or with 10% fetal calf serum. Images taken of Polymer A material, with incorporated Fluorescein isothiocyanate- (FITC) labeled EMD, indicate a homogenous distribution of EMD peptides and/or EMD aggregates throughout the material. A dressing which contains an active substance may have clinical promise for wound care applications.</p>
156

Characterization of Surfaces Designed for Biomedical Applications

Kristensen, Emma January 2006 (has links)
<p>In order to develop blood biocompatible materials a heparin surface and a phosphorylcholine (PC) functionalized polymer surface were characterized using photoelectron spectroscopy (PES). The formation of the heparin surface was studied by quartz crystal microbalance with dissipation monitoring (QCM-D). This heparin surface consists of heparin conjugates deposited on a conditioning layer, applied once or twice. The PC functionalized polymer, poly(trimethylene carbonate), was linked to a silicon substrate through 3-amino- propyltrimethoxysilane (APTMS), also studied using PES. </p><p>Synchrotron radiation based PES showed that the thicker heparin film resulted in complete coverage of the substrate, while the thinner did not. This could explain the difference in blood biocompatibility between the two films, as observed by others. It was also found that the heparin chains bend down towards the substrate (under vacuum). </p><p>For the thinner heparin film the modifications, resulting from extensive irradiation of the sample, were studied with synchrotron radiation based PES. This was done at a pressure of about 10<sup>-7</sup> mbar and in 0.5 mbar water vapor. It was found that the modification is slower under water vapor than at low pressures and that the damaged film incorporates water upon exposure.</p><p>The heparin coating was found to be stable and wear resistant enough to still be present on artificial heart valves after three weeks testing in circulating plasma. It then had about the same antithrombin uptake as a non-tested surface. The film was, however, partly destroyed by the durability test and plasma proteins were deposited. </p><p>The PC functionalized, APTMS linked polymer was found to be much shorter than could be expected from random reactions. One plausible explanation is an interaction between the PC group and the silane surface, favoring aminolysis close to the PC group. This is consistent with our finding that the PC group bends down towards the surface.</p>
157

Characterization of Surfaces Designed for Biomedical Applications

Kristensen, Emma January 2006 (has links)
In order to develop blood biocompatible materials a heparin surface and a phosphorylcholine (PC) functionalized polymer surface were characterized using photoelectron spectroscopy (PES). The formation of the heparin surface was studied by quartz crystal microbalance with dissipation monitoring (QCM-D). This heparin surface consists of heparin conjugates deposited on a conditioning layer, applied once or twice. The PC functionalized polymer, poly(trimethylene carbonate), was linked to a silicon substrate through 3-amino- propyltrimethoxysilane (APTMS), also studied using PES. Synchrotron radiation based PES showed that the thicker heparin film resulted in complete coverage of the substrate, while the thinner did not. This could explain the difference in blood biocompatibility between the two films, as observed by others. It was also found that the heparin chains bend down towards the substrate (under vacuum). For the thinner heparin film the modifications, resulting from extensive irradiation of the sample, were studied with synchrotron radiation based PES. This was done at a pressure of about 10-7 mbar and in 0.5 mbar water vapor. It was found that the modification is slower under water vapor than at low pressures and that the damaged film incorporates water upon exposure. The heparin coating was found to be stable and wear resistant enough to still be present on artificial heart valves after three weeks testing in circulating plasma. It then had about the same antithrombin uptake as a non-tested surface. The film was, however, partly destroyed by the durability test and plasma proteins were deposited. The PC functionalized, APTMS linked polymer was found to be much shorter than could be expected from random reactions. One plausible explanation is an interaction between the PC group and the silane surface, favoring aminolysis close to the PC group. This is consistent with our finding that the PC group bends down towards the surface.
158

Interfacial Interactions between Biomolecules and Materials

Rocha-Zapata, Aracely 2011 August 1900 (has links)
This research investigates the interfacial interactions between biological entities and synthetic materials at two length scales: bulk and nanometer size. At the bulk scale, biomolecule adhesion is key for synthetic material incorporation in the body. Quantifying the adhesion strength becomes necessary. For the nanometer scale, the nanoparticles are generally delivered through the blood stream and their effect on the blood flow must be studied. An experimental approach was taken to study interaction at both material length scales. The cell/protein adhesion strength to bulk-sized materials was studied. The goal was to identify the most influential factor affecting adhesion: chemistry or surface roughness. The effects of nanoparticles on the viscosity of protein and amino acid solutions were measured. A statistical thermodynamic analysis was focused on the entropy change induced by the addition of gold nanoparticles to protein/amino acid solutions. Rheological studies were applied. A rheometer with a parallel plate was used to quantify the adhesion strength of cells and proteins to synthetic surfaces at the bulk scale. The adhesion strength depends on the applied shear stress and the radius of cells or proteins that remained attached to the surface after testing. At the nanometer scale, the viscosity of the nanoparticle enhanced protein or amino acid solutions were measured with a cone and plate. The adhesion studies were conducted with the following biological entities: fibroblasts, egg-white protein, and neurons. The fibroblast adhesion to poly(carbonate) and poly(methyl methacrylate) demonstrate fibroblasts are strongly attached to highly polar materials. Protein adhesion to titanium and chromium nitride coatings showed that chemical composition is the most influential factor. The neuron adhesion to poly-D-lysine coated glass demonstrated that neuron strengthening was due to an increase in adhesion molecules at the neuron/material interface. For nanoparticulates, it was found that the charged nanoparticles affect the protein and amino acid conformation and the potential energy of the solutions. Quantifying biomolecule adhesion to surfaces and predicting the behavior of nanoparticles inside a biological system are crucial for material selection and application. The major impact of this research lies in observing the interaction mechanisms at the interfaces of material-biological entities.
159

Potential Applications of Silk Fibroin as a Biomaterial

Bailey, Kevin 07 June 2013 (has links)
Fibroin is a biopolymer obtained from the cocoons of the Bombyx mori silkworm that offers many unique advantages. In this thesis work, fibroin was processed into a regenerated film and examined for potential biomaterial applications. The adsorption of bovine serum albumin onto the fibroin film was investigated to examine the biocompatibility of the film, and it was found that BSA adsorption capacity increased with an increase in BSA concentration. At 10 mg/mL of BSA, the BSA sorption reached 0.045 mg/cm2. This level of BSA is indicative of good blood compatibility and biocompatibility of the fibroin. The gas permeabilities of oxygen, nitrogen, and carbon dioxide were tested for potential applications in contact lenses and wound dressings. Over a pressure range of 70 – 350 psig, the permeability of oxygen and nitrogen was 5 Barrer, while that of carbon dioxide ranged from 26 to 37 Barrer. The oxygen transmissibility of the fibroin films prepared in this study was on the low end required for use in daily wear contact lenses, but sufficient to aid the healing process for use in wound dressings. The permeability and diffusivity of four model drugs in the fibroin film was investigated for potential applications in controlled drug release. The permeability at higher source concentrations leveled out to 0.8 – 4.3 x 10-7 cm2/s depending on the drug tested. The diffusion coefficient determined from sorption experiments was approximately 1.8 x 10-9 cm2/s, while the diffusion coefficients from desorption experiments were determined to be 0.8 – 2.7 x 10-9 cm2/s. The magnitude of the drug permeability and diffusivity are consistent with many other controlled release materials, and the fibroin film showed good potential for use in controlled release.
160

Evaluation of Novel Materials for Wound Healing

Jacobsson, Lena January 2009 (has links)
Rapid wound healing is important to regain the skins protective function after injury. Studies have shown that enamel matrix proteins (EMP) have many desirable effects which may accelerate wound healing [Bosshardt et al. 2008]. Polymers (Polymer A, B and C) were formed into a mat form, with or without incorporated enamel matrix derivative (EMD) (Collaboration partner). The materials may be suitable for wound care and drug delivery systems. Protein release tests were performed on samples incubated in physiological-like solution using pyrogallol red staining, ultraviolet (UV) spectrophotometer and high-performance liquid chromatography (HPLC). Protein was detected in Polymer A material samples, compared to a reference material sample, using pyrogallol red staining. An in vitro experiment showed that normal human dermal fibroblasts (NHDF) cultivated with Polymer A material (with EMD) had significantly higher viability than NHDF cultivated with reference material (Polymer A without EMD) and comparable viability to fibroblasts grown with either 0.1 mg EMD in solution or with 10% fetal calf serum. Images taken of Polymer A material, with incorporated Fluorescein isothiocyanate- (FITC) labeled EMD, indicate a homogenous distribution of EMD peptides and/or EMD aggregates throughout the material. A dressing which contains an active substance may have clinical promise for wound care applications.

Page generated in 0.1077 seconds