• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 179
  • 155
  • 19
  • 18
  • 12
  • 12
  • 12
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 457
  • 81
  • 65
  • 61
  • 56
  • 48
  • 45
  • 38
  • 38
  • 34
  • 34
  • 32
  • 31
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

The biological and physical performance of high strength dicalcium phosphate cement in physiologically relevant models

Pujari-Palmer, Michael January 2017 (has links)
The chemical properties of calcium phosphate cements (CPCs) are very similar to the mineral phase of bone. CPCs are, consequently, very effective substrates (scaffolds) for tissue engineering; bone and stem cells attach readily, and can proliferate and differentiate to form new bone tissue. Unlike other CPCs that may remain largely unchanged in the body for years, such as hydroxyapatite, dicalcium phosphates are remodelled by the body and rapidly converted to new bone. Unfortunately, the dicalcium phosphates are also typically too weak to support load bearing in the human body. Our laboratory has recently developed a novel, high strength brushite CPC, (hsCPC), which can reach 10-50 fold higher failure strength than many commercially available CPCs. The aim of this thesis was to investigate the physical, chemical and biological performance of hsCPCs in physiologically relevant model of drug release, load bearing, osteoconductivity, and as a scaffold for bone tissue engineering. Multiple CPCs were compared in a model of screw augmentation to determine whether the physical properties of the cement, such as bulk strength and porosity, affected orthopedic screw holding strength. In an in vitro model of bone regeneration stem cells were grown on macroporous scaffolds that were fabricated from hsCPC. Drug releasing scaffolds were fabricated to examine whether the low porosity of hsCPC impeded drug release during a 4 week incubation period. The biological activity of an incorporated drug, Rebamipide, was examined after acute and chronic incubation periods. In the drug release study it was noted that the biological response to hsCPC was significantly better than tissue culture grade polystyrene, even in groups without drug. The mechanism underlying this biological response was further investigated by testing the effect of pyrophosphate, a common cement additive, on bone cell proliferation and differentiation. This thesis concludes that a high strength cement can produce significant improvement in screw augmentation strength, if there is sufficient cortical bone near the augmentation site. The hsCPC is also cytocompatible, and can support bone and stem cell proliferation and differentiation. hsCPC scaffolds stimulated osteogenic gene expression comparable to native bone scaffolds. hsCPC scaffolds are also capable of delivering drug for up to 4 weeks, in vitro. Finally, a cement additive, pyrophosphate, stimulated differentiation, but not proliferation of bone cells.
382

Développement de composites nanostructurés à base de biopolyesters et de nanoparticules de chitosane générées par des procédés assistés par CO2 supercritique / Development of nanostructured composites based on biopolyesters and chitosan nanoparticles generated by supercritical CO2 assisted processes

Hijazi, Nibal 11 December 2014 (has links)
Dans une logique d’éco-conception et de développement durable, de nombreux travaux ont pour objectif l’étude de polymères biosourcés. Parmi les recherches menées à ce jour, une piste d’étude consiste à les structurer aux échelles micro et nanoscopiques tout en valorisant certaines de leurs propriétés spécifiques, l’objectif étant la création de matériaux à propriétés fonctionnelles originales et performantes. Dans ce contexte, une attention particulière a été portée sur l’utilisation du dioxyde de carbone supercritique (CO2-sc). En effet, sa capacité à se solubiliser en grande quantité dans de nombreux polymères et donc d’en modifier les propriétés (viscosité, tension interfaciale, …) peut permettre une amélioration des matériaux composites fabriqués. Ce projet s’intéresse plus particulièrement à l’élaboration d’assemblages de biopolymères nanostructurés et revêt deux enjeux principaux : (1) la synthèse de nanoparticules de biopolymères (dans notre cas, du chitosane), (2) l’élaboration d’assemblages de biopolymères nanostructurés. La première étape a consisté à concevoir et développer de nouveaux procédés de génération de nanoparticules de chitosane par des procédés utilisant le CO2-sc soit comme antisolvant soit comme agent de dissolution et d'atomisation. Pour la deuxième étape, des films composites à base de poly (acide lactique) PLA et de poly (hydroxybutyrate-co-valérate) PHBV ont été préparés par la voie hot-melt par extrusion bi-vis. Des analyses thermiques, moléculaires et structurales, morphologiques et de granulométrie ont permis de caractériser les films biocomposites ainsi produits. / In a logic of eco-design and sustainable development, many works aim to study the bio-sourced polymers. Among these studies, a promising concept consists in structuring materials at micro and nanoscales while enhancing some of their properties, the objective being the creation of original materials with improved functional properties and performance. In this context, particular attention has been paid to the use of supercritical carbon dioxide (sc-CO2). Its ability to dissolve into many polymers in large quantities and thus to change their properties (viscosity, interfacial tension, ...), can improve both the composite material and its manufacturing process. This project focuses on the development of nanostructured biopolymers and addresses two main issues: (1) the synthesis of biopolymer nanoparticles (in this case, chitosan), and (2) the development of nanostructured biopolymers. The first step consisted in designing and developing new processing methods to generate biopolymer nanoparticles, using sc-CO2 as antisolvent agent or as dissolving and atomizing agent. For the second step, poly (lactic acid) PLA and poly (hydroxybutyric-co-hydroxyvaleric acid) PHBV based composite films were prepared by a hot-melt process by twin-screw extrusion of the nanoparticles and the matrix. Thermal, molecular and structural analysis, as well as morphological and particle size distribution studies allowed a good characterization of the biocomposite films.
383

Oligomeric Collagen Encapsulation Design and Mechanism of Protection for Beta-cell Replacement Therapy

Rachel Alena Morrison (12475284) 28 April 2022 (has links)
<p>Type 1 Diabetes Mellitus (T1D), a chronic disease affecting over 1.5 million Americans, is characterized by the autoimmune destruction of insulin-producing β-cells within pancreatic islets. Islet/β-cell replacement therapies, where replenishable β-cell sources are implanted within protective microenvironments, have the potential to provide a long-term solution for individuals with T1D by restoring glucose-sensitive, insulin release and overall glycemic control. However, most conventional encapsulation materials elicit an immune reaction, known as a foreign body response (FBR), which compromises β-cell health and function. In this dissertation, we designed and evaluated various formulations of a polymerizable collagen, namely type I oligomeric collagen (Oligomer), as encapsulation materials for minimally invasive, subcutaneous delivery of replacement β-cells. Preclinical validation in chemically-induced diabetic mice demonstrated rapid (within 24 hours) reversal of diabetes for beyond 90 days with no signs of rejection or FBR after subcutaneous delivery of both allogeneic and xenogeneic (rat) islets. To further define this uncommon mechanism of protection, the tissue response to Oligomer, in comparison to commercial synthetic and collagen-based materials, was evaluated following subcutaneous implantation within rats, a well-established biocompatibility model. Histological and transcriptomics analyses were used to define the immune response at both cellular and molecular levels. Interestingly, Oligomer showed minimal and transient activation of innate immune cells similar to the sham surgical control, with no evidence of foreign body giant cell formation, inflammatory-mediated bioresorption, or fibrosis. Overall, this work evaluates preclinical efficacy and demonstrates mechanistic understanding of immune tolerance for Oligomer materials for β-cell replacement therapy and other regenerative medicine applications.</p>
384

3D Bioprinting : Future Challenges and Entrepreneurial Possibilities of a Growing Technology

Nilsson, Olivia January 2023 (has links)
Bioprinting is one of the most promising technologies for future healthcare as it may benefit the repairing of wounds and injuries, disease modeling and development, transplantation of organs and reduce animal testing. This thesis aim to investigate this industry further, as there is no excessive literature on how to handle the innovation in regards to entrepreneurial and biotechnological knowledge. Hence, a research gap can be spotted and the purpose of the conducted research questions should contribute to this gap. In order to fully understand the bioprinting industry, an outline of the technology is made as part of the research. In addition to this, secondary data for patents, market valuation and annual growth rates are collected to support arguments from previous literature. Also, interviews are conducted to gather specific knowledge. As a result, bioprinting may be presented as a disruptive innovation in an uncertain market, which places certain demands on companies to act more in line with the complexity of the technology. Such companies must think more strategically and design more complex and long-term strategies. The patent data shows that there has been a decline in the technological development as patent applications have decreased significantly. Even though the technology (regarding the patents) has started to slowly decline, there is still hope for some technological improvements to come. It can be concluded that developments in bioink, scaffolds, expansion of cells and diffusion is expected, and that the use of bioprinting is increasing and will most likely continue to do so.
385

FLUORINATED METHACRYLAMIDE CHITOSAN FOR OXYGEN DELIVERY INWOUND HEALING AND TISSUE ENGINEERING

Patil, Pritam Suhas, Patil January 2018 (has links)
No description available.
386

Material Experience Mycelium-Based Composite : Study of local biodegradable materials in combination with Mycelium

Kjellqvist, Emelie January 2023 (has links)
Mycelium-based composite (MBC) is being developed and researched in multiple commercial markets as an alternative sustainable material. MBC utilizes the mycelium ability to create a web-like structure in lignocellulosic structures. However, producing the material in a natural environment and subjecting it to various tests; the study aims to examine the distress of the southern Swedish climate on MBC grown in different substrates. The selection of substrates are based on their compatibility to fungal growth, the substrates are also locally sourced and grown. This is to explore MBC material production with a focus on circular economy as biodegradable material in architecture could help develop a reuse and recycle system. Various tests were done on the different substrate MBC to determine its characteristics, limitations and opportunities. The tests were developed with a focus on architectural construction and the southern Swedish climate; meaning experiments including MBC reaction to fire, water and temperatures. The results are based on the different MBC materials reaction, this ends with a description on how the materials could be used and developed in the future.
387

Application of sodium alginate as a medical material aimed to prevent air leak and adhesion / アルギン酸ナトリウムのエアリークと癒着の防止のための医療材料への応用 / アルギンサン ナトリウム ノ エア リーク ト ユチャク ノ ボウシ ノ タメ ノ イリョウ ザイリョウ エノ オウヨウ

的場 麻理, Mari Matoba 22 March 2019 (has links)
手術後の呼吸器からの空気漏出(エアリーク)と腹部及び胸部癒着はそれぞれ、未だに臨床にて大きな課題である。本研究では、安全性に優れた植物性多糖類のアルギン酸ナトリウムに着目し、ゲルやスポンジの材形に加工した。これをPGA不織布と併用して新規エアリーク防止材を開発した。この新規材料は、エアリーク防止だけでなく癒着防止に対しても優れた効果を発揮した。将来的に、この新規材料は、従来材料よりも優れた医療材料として臨床応用されることが期待できると考えられる。 / Sodium alginate is polysaccharide extracted from seaweed and used as a biomaterial clinically. The alginate in this study was used as gel- or sponge-formed and combined with a polyglycolic acid (PGA) mesh, a useful biomaterial clinically; namely this combination was the new sealing material. The purpose of this study was to prevent pulmonary air leak without inducing adhesion. This study was composed of the four animal experiments; the first half of them was about preventing air leak and the latter was about preventing adhesion. All experiments showed that new sealing material was superior to the conventional treatments. Therefore the new sealing material was expected to be applied clinically to a sealing material, which also has an anti-adhesive effect. / 博士(理学) / Doctor of Philosophy in Science / 同志社大学 / Doshisha University
388

ADDITIVELY MANUFACTURED BETA–TI ALLOY FOR BIOMEDICAL APPLICATIONS

Jam, Alireza 25 March 2022 (has links) (PDF)
Metallic biomaterials have an essential portion of uses in biomedical applications. Their properties can be tuned by many factors resulting in their process tuneability. Among metallic biomaterials for biomedical and specifically orthopedic applications, titanium and its alloys exhibit the most suitable characteristics as compared to stainless steels and Co-Cr alloys because of their high biocompatibility, specific strength (strength to density ratio), and corrosion resistance. According to their phase constitution, Ti-alloys are classified into three main groups, namely alpha, beta, and alpha+beta alloys. Depending on the degree of alloying and thermomechanical processing path, it is possible to tune the balance of α and β phases, which permits to tailor properties like strength, toughness, and fatigue resistance. (alpha+beta) Ti alloys, especially Ti-6Al-4V, are widely used alloys in biomedical applications; however, they have some drawbacks like the presence of toxic elements i.e., V and relatively high elastic modulus to that of bones. In view of the lower elastic modulus of body center cubic beta phase (50GPa&lt;100GPa) compared to the alpha+beta, as well as due to their good mechanical properties, excellent corrosion resistance, and biocompatibility, beta-Ti alloys have been recently proposed as a valid alternative to alpha+beta ones. The growing interest in additive manufacturing (AM) techniques opens new and very interesting perspectives to the production of biomedical prosthetic implants. AM will prospectively allow implant customization to the patient and produce it on demand, with large savings on times and costs. Moreover, AM is gaining increasing interest due to the possibility of producing orthopedic implants with functionally graded open-cell porous metals. The main advantages of porous materials are the reduction of the elastic modulus mismatch between bone and implant alloy reducing the stress shielding effect and improving implant morphology providing biological anchorage for tissue in-growth. In this scenario, the first goal of the present PhD thesis work was to identify a high-performance β-Ti alloy formulation suitable to Laser-Powder Bed Fusion (L-PBF) additive manufacturing. In particular, it explores the potential use of a β-metastable Ti alloy, namely Ti-15Mo-2.7Nb-3Al-0.2Si (Beta Ti21S, 21 wt.% of alloying additions, including Silicon) for biomedical applications. Through microstructural, mechanical, and cytotoxicity analyses, it could be shown that this alloy grade exhibits i) an unprecedented ultra-low elastic modulus, ii) improved cytocompatibility due to the lack of Vanadium, and iii) no martensitic transformation responsible for hard and brittle solidification structures. A second goal was to assess the manufacturability of metamaterials made of β-Ti21S via L-PBF. For this purpose, cubic cellular lattice structures of different unit cell sizes (and therefore different strut thickness) have been fabricated and characterized through microstructural analysis using different techniques, and computed tomography combined with linear elastic finite element simulations to identify the minimum cell size that can be printed with adequate dimensional and geometrical accuracy. Samples of the selected unit cell size were also tested to determine their static and fatigue properties. The main results show that i) the suitable manufacturing quality is obtained for strut thickness above 0.5 mm, ii) the mechanical tests place the present cellular structures among the best stretching dominated cellular lattice materials investigated to date in the literature, and iii) the fatigue tests showed a normalized fatigue strength at 107 cycles of close to 0.8, similar to cubic lattices made of Ti-6Al-4V, and higher than most cellular structures in the literature. In the last part of the thesis, a more complex octet truss structure was fabricated in the manufacturable cell size, and its mechanical properties were investigated. The octet truss topology can be beneficial both in terms of mechanical properties and biocompatibility by providing the different types of porosity suitable for bone in-growth.
389

MICRO- AND NANO-MATERIALS FOR DRUG DELIVERY AND BIOIMAGING APPLICATIONS

Yan, Huan 07 April 2015 (has links)
No description available.
390

Techno-Economic Feasibility Study for the Production of Microalgae Based Plant Biostimulant / Teknoekonomisk genomförbarhetsstudie för mikroalgerproduktion för användning som biostimulus

Arnau, Laurent January 2016 (has links)
Microalgae are considered as a potential feedstock for many promising applications. Some active substances in microalgae have plant biostimulation effects potentially useful in agriculture. However, to produce such a microalgal biomass, specific microalgae cultivation and post-treatment processes must be designed to preserve active substances. A particular focus is provided on cultivation (tubular photobioreactor) and different plausible post-treatment scenarios for microalgae separation (flocculation and centrifugation) and preservation (sterilization and drying). For each step, yield and energy consumption are modeled using data taken from literature or lab and pilot scale experiments. Industrial equipment for scale-up process is also studied by comparing existing systems. These models enable to make an economic evaluation of the whole process and to study its profitability for each scenario. The breakeven price is calculated as a function of the production rate. Several parameters are suggested to improve system efficiency and profitability at the end of this study. However, a better microalgae characterization and more experiments on potential post-treatment systems are required to improve the accuracy of the model.

Page generated in 0.0585 seconds