Spelling suggestions: "subject:"sludge""
1 |
The feasibility of using algae as a co-substrate for biogas production : Labpratory experiments of the co-digestion of algae and biosludge / Möjligheten av att använda alger som samsubstrat for biogasproduktion : Laboratoriska experiment av samrötning mellan alger och bioslamArkelius, Lisa January 2015 (has links)
Today 88 % of the world energy comes from fossil fuels. Greenhouse gas emissions are increasing and the fossil fuels energy sources will decrease at some point. Other alternatives must be found, to substitute and lower the usage of fossil fuels. Biogas is one of these other options. It is a versatile fossil free fuel that can be used for heat, power and fuel for vehicles. Many different substrates have been used for biogas production over the years, and now algae are examined as a substrate. Algae have advantages over the former substrates used for biogas production. Laboratory experiments were conducted to examine the co-digestion potential of algae and biosludge, which is a rest product from a wastewater treatment plant at a pulp and paper mill. The profitability aspect of using algae and biosludge for biogas production has been examined as well.The result shows that unmixed algae were the highest methane producing substrate, which produced a maximum of 203,5 Nml/g VS. An interesting result was that both algae and biosludge separately produced more methane gas than the mixtures. The profitability aspect of the thesis showed that it is not profitable to use algae primarily for biogas production, based on the conditions of today.
|
2 |
Co-combustion of Industrial Biosludge and other Residual Streams in a Bubbling Fluidized Bed : Focusing on reduction of operating and technical problems by analyzing the ash transformation chemistry / Samförbränning av industriellt bioslam och andra restströmmar i en bubblande fluidiserande bädd : Med fokus på reduktion av drifttekniska problem genom att analysera askkeminÖberg, Christian January 2016 (has links)
Today the use of resources in the industry are not complete to be considered as sustainable from the perspective of nutrient recovery. In the Swedish pulp and paper industry residual streams such as bark, fiber reject and sludge are returned for more sustainable use more frequently. Around 300 000-600 000 tons of sludge is generated every year from different cleaning processes in the pulp and paper industry. About 15 % of that sludge is so called biosludge that is a result from biological water treatment, where large amounts of phosphorus are used. After the cleaning process the total amount of biosludge generated in Sweden each year is estimated to contain approximately 2000 tons of phosphorus (P). The most common way to discard the biosludge today is by incineration, where aspects such as high content of moisture and ash have proven to be problematic. Besides phosphorus, other elements such as sulfur (S), chlorine (Cl) and calcium (Ca) are often found in the biosludge in larger amounts. This study included co-combustion experiments of current residual streams from the pulp and paper mill SCA Obbola AB where the aim was to investigate how the ash transformation chemistry was affected. The residual streams comprised of bark, fiber reject and biosludge which were combusted together with stem wood in a bench scaled bubbling fluidized bed. To investigate if different ash related operating and technical problems could be reduced and if there was potential of phosphorus recycling from the ashes, produced ash and other samples were examined by SEM/EDS. The fuel mix from SCA Obbola consisted of large amounts of Ca, S and P relative to more ordinary biomass fuels like stem wood. These elements originated from the biosludge and was confirmed by the fuel analysis. Analysis made on collected samples showed that Ca and P together formed phosphates that either stayed in the bed or was collected in the cyclone which indicated that there could be a potential for recovering phosphorus. Although, the Ca/P ratio in the ashes was too high, which probably leads to that phosphates unsuitable for nutrient recovery are formed. The fiber reject from SCA Obbola contained large amounts of chlorine according to the fuel analysis which was indicated from the results later in the study. During the combustion most of the Cl left the bottom ash via volatilization. It was true for both the fuel blends with and without fiber reject. When larger amounts of biosludge was added to the fuel mix less of the corrosive compound potassium chloride (KCl) was found in depositions and collected fine particulate matter (PM). This was due to that more sulfur was added in the system when the amount of biosludge was increased which lead to that K reacted with SO2 instead of Cl and formed K2SO4. The observed reduction of KCl resulted in; 1) lower amounts of fine particulate matter which means less loaded particulate filters 2) less risk of high temperature corrosion on heat transfer surfaces. The general conclusion that could be drawn from this study was that by increasing the amount of biosludge in the fuel blend at already high mixings of fiber reject, problems such as corrosion and fine particulate matter could be reduced. These advantages must be considered to the amount of lime stone needed to be added for reducing HCl from a cost perspective.
|
3 |
Rötning av matavfall – en studie av metanutbytet hos matavfall förbehandlat med skruvkrossteknik samt vid samrötning med bioslam från pappersbruk / Anaerobic digestion – methaneyields in organic municipal solid waste pre-treated with screw cross andco-digest with paper mill sludgeJakobsson Åhs, Ann-Charlotte January 2014 (has links)
Today's society is facing major challenges. In order to reduce the climate impact fossil fuels should be replaced with fuels that do not contribute to the greenhouse effect. The growing population generates organic waste originating from industry and households so called organic fraction of municipal solid waste (OFMSW). Through anaerobic digestion, waste can be utilized to produce energy-rich methane gas. In this way, waste can be a resource instead of a burden on society. The purpose of this project is to investigate the methane yield of source-sorted organic fraction of municipal solid waste (SS-OFMSW) pretreated with screw crush technology and methane yield at the co-digestion of food waste and biosludge from paper mills. SS-OFMSW which is either pre-treated in a screw crusher or a Food Waste Mill and a mixture of SS-OFMSW and biosludge from paper mills digested in a semi - continuous wet process under mesophilic conditions with a retention time of 20 days. Screw crush technique gave a slurry with a methane yield of about 440-490 mL / g VS, which was slightly higher than the yield of 300-350 mL / g VS from the slurry pretreated with Food Waste Mill. The methane concentration was slightly higher for slurry pretreated with Food Waste Mill, 74% in average compared with 68% for slurry pretreated with screw crush. Biosludge from paper mills is an organic waste that can be digested in order to produce biogas. The sludge is poor in nutrients and methane yield at individual anaerobic digestion of paper mill sludge is relatively low. In this study, biosludge was co-digested with SS-OFMSW. The mixture with the proportions 1:1 by g VS gave a methane yield of about 420-480 mL / g VS which is higher than the constituent substrates digested separately. Co-digestion gave a methane concentration at 80% which is also higher than at the individual anaerobic digestion of substrates.
|
4 |
Integration of hydrothermal processes on a forest-based biorefinery siteHäreskog, Linnea January 2018 (has links)
The pulp and paper industry (PPI) is a business that produce large amounts of residues annually. Besides bark, large quantities of sludge are produced from the various parts of the industrial process. The sludge that comes from the biological wastewater purification process is denoted biosludge and is known as a particularly problematic waste product. It is of interest to reduce the amount of sludge from the PPI or to find new ways of handling the produced sludge. The common way to treat the PPI sludge is by incineration in the site’s bark boiler. The material is however difficult to dewater and often does more harm than good in the boilers. Different technologies to try and dewater the sludge further have been investigated previously, one that has recently been noted is hydrothermal treatment. The technology described in this thesis work is called hydrothermal carbonization (HTC) which uses water as a reaction media to turn the sludge into a coal-like material called hydrochar. The hydrochar has a higher heating value than the initial sludge and is more hydrophobic which makes it easier to dewater. This Master’s thesis describes the process technologies of the HTC process and presents some of the recent work done within the area. The properties of different residues from the PPI are presented before the integration of an HTC process on the biorefinery site in Domsjö, Sweden is discussed using previously published articles. A survey concerning sludge from industries within a 500 km range of the Domsjö biorefinery site is made to investigate whether residual streams similar to the ones at the Domsjö site are available in the vicinity. The results show that an HTC process demands energy in the form of steam and/or electricity. A previously made pinch and total site analysis show that the most accessible steam at the Domsjö biorefinery site, that most appliances and process steps uses, is at 7 bars. There are also steam levels of 20 and 32 bar in the area, which is within the range an HTC plant requires. The HTC process water demands further treatment which puts an extra stress on the already existing water purification process. The Domsjö biorefinery site produces 6000 tonnes of biosludge per year. Several HTC companies produce units that normally treat 20000-50000 tonnes of sludge per year, which indicates that additional sludge could be added to reach full capacity. The survey shows that there are similar materials available in the surroundings. It is concluded that further investigations concerning the sludge materials must be made before real implementation consequences can be calculated.
|
5 |
Evaluation of Cellruptor pre-treatment on biogas yield from various substratesThiruvenkadam, Selvakumar January 2011 (has links)
In this thesis work, Cellruptor pre-treatment was evaluated in order to increase biogas yield. Initially, the effects of residence time (30, 60, 90, 120 and 180 min) and substrate release (rapid/non-rapid) from the draining port of Cellruptor on biosludges were investigated to find the optimum operating conditions of Cellruptor. Under these optimum operating conditions, the effect of Cellruptor pre-treatment on batch reactors of various substrates and semi-continuous digester of biosludge were investigated at mesophil biosludge, dewatered sludge, digested sludge, fibre sludge, hay, maize silage, minced meat, orange peel, seaweed and yeast. From the initial study, 90 min residence time and rapid release of pre-treated substrate from draining port were found to be optimum operating conditions of Cellruptor. From the batch experiments, Cellruptor pretreatment showed maximum and minimum increase of methane yield in hay (32%) and dewatered sludge (2%) respectively. The semi-continuous digester experimental results showed increase in biogas production by 22.4% from Cellruptor pre-treatment of biosludge at HRT of 15 days and OLR of 2.0 g VS/L/day. With further studies, Cellruptor pre-treatment may be deployed in large-scale biogas plants to improve biogas yield.
|
6 |
Utilization of Pulp and Paper Waste Products in the Metal Industry : Initial testing of carbon-containing waste material briquettesJohansson, Ingrid, Deltin, Walter January 2018 (has links)
Today, a huge part of waste products from pulp and paper industries ends up in landfill which is both economically and environmentally adversely. This report examines the possibilities of using those products as a slag foamer and fuel in different furnaces in the metal industry. The waste products contain valuable elements, especially carbon. Therefore, there is an increased interest in finding possible use for the waste products in the metal industry. The reuse would contribute to preservation of energy as fossil fuel can be replaced. In the report, two waste materials called mixed biosludge and fiber reject are examined. The experiments are performed with the waste products pressed together with a base material and cement forming a briquette. The requirements examined are strength needed for both transportation and use in furnaces and ability to create a foaming slag. The results in strength were ambiguous, no waste material based briquettes met the set criteria. As of now, the briquettes are probably not strong enough to be transported. No foaming occurred during the experiment, but only one experiment was performed. Therefore, further experiments are needed before any conclusions can be drawn. The briquettes can possibly replace coke and coal in applications where strength is not as important. Nevertheless, it is uncertain if the briquettes affect the steel quality. / Idag läggs en stor del av restprodukter från pappers och massaindustrin på deponi, vilket innebär såväl ekonomiska som miljömässiga nackdelar. Den här rapporten undersöker möjligheterna att använda dessa restprodukter som slaggskummare och bränsle i de olika ugnarna inom metallindustrin. Restprodukterna innehåller värdefulla ämnen, framförallt kol. Därför finns det ett ökat intresse för att hitta möjliga användningsområden för restprodukterna inom metallindustrin. Denna återanvändning skulle bidra till energibevarande eftersom fossila bränslen kan ersättas. I den här rapporten undersöks två restmaterial, blandat biologiskt slam och fiberavfall. Experimenten utfördes med dessa restprodukter pressade samman med ett basmaterial och cement till en brikett. Kraven som undersöks är styrka för både transport och användning i ugnarna samt förmågan att skumma en slagg. Resultaten för briketternas styrka var tvetydiga, inga av briketterna innehållande restprodukter satisfierade det uppsatta kriteriet. Styrkan är troligtvis för låg för att transport ska vara möjlig. Ingen skumning skedde under experimentet, men endast ett experiment genomfördes. Därför behöver ytterligare experiment genomföras innan några slutsatser kan dras. Men briketterna tros kunna ersätta koks och kol där styrkan inte är viktig. Men det är osäkert om briketterna påverkar stålkvaliteten.
|
Page generated in 0.031 seconds