• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 20
  • 1
  • Tagged with
  • 79
  • 44
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Biosynthèse d'alcaloïdes défensifs de Coccinellidae / Biosynthesis of defensive alkaloids from Coccinellidae

Haulotte, Eveline 13 December 2007 (has links)
Dans le cadre de ce travail, nous avons poursuivi l’étude de la biosynthèse d’alcaloïdes défensifs des coccinelles. Trois espèces ont été plus particulièrement étudiées : Adalia bipunctata (qui produit l’adaline [32]), Coccinella septempunctata (contenant la coccinelline [29]) et Harmonia axyridis (produisant l’harmonine [34]). Afin d’identifier le (ou les) acide(s) gras précurseur(s) de ces alcaloïdes, nous avons dans un premier temps synthétisé des acides gras spécifiquement marqués. Nous avons ainsi préparé les acides [14-3H]myristique, [16-3H]palmitique, [18-3H]stéarique, [18-13C]stéarique et [11,11,12,12,13,13,14,14,15,15,16, 16,17,17,18,18,18-2H]stéarique. Les différents acides gras marqués au tritium sur le méthyle terminal ont ensuite été incorporés successivement chez les trois espèces de coccinelles mentionnées ci-dessus, en utilisant la technique d’incorporation in vitro mise au point par Laurent et al. ( ) Les incorporations chez Adalia bipunctata ont montré que l’acide myristique est incorporé préférentiellement dans l’adaline. Chez Coccinella septempunctata par contre, l’acide stéarique est incorporé dans la coccinelline environ 25 fois plus efficacement que les acides myristique et palmitique. Enfin, les incorporations chez Harmonia axyridis ont établi que l’acide stéarique est le précurseur de l’harmonine. De plus, grâce à l’incorporation de l’acide [11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,18-2H]stéarique, le mécanisme de formation de l’amine secondaire a été précisé. / In spite of their red-orange colors, which could increase risks of predation, Coccinellidae are rarely exploited as food sources by predators. Many of them owe their protection, at least in part, to the presence of repellents and, in some cases, toxic alkaloids in the hemolymph emitted during a process called "reflex bleeding". Previous studies have shown that the biosynthesis of these alkaloids is related to fatty acid metabolism. In our doctoral thesis, we wanted to clarify what are the fatty acids precursors of adaline (Adalia bipunctata), coccinelline (Coccinella septempunctata) and harmonine (Harmonia axyridis), with the use of various techniques of labelling (3H, D, 13C, etc.).
22

Origines et évolution des voies de synthèse des phospholipides dans les trois domaines du vivant. Implications pour la nature des membranes du cenancêtre.

Lombard, Jonathan 17 December 2012 (has links) (PDF)
Les bases fondamentales de la biologie suggèrent que tous les organismes actuels partagent un dernier ancêtre commun, le cenancêtre. Dès que la comparaison moléculaire des organismes des trois domaines du vivant (archées, bactéries et eucaryotes) est devenue possible, d'importants débats ont émergé sur l'habitat du cenancêtre, son rapprochement des origines de la vie, sa nature unique ou communautaire et ses relations avec les trois domaines du vivant. Cependant, jusqu'à il y a peu les informations disponibles sur les organismes modernes n'étaient pas suffisantes pour décrire précisément sa biologie. Notamment, la découverte chez les archées de membranes dont les composants principaux, les phospholipides, sont synthétisés par des mécanismes très différents de ceux des bactéries et les eucaryotes a conduit à proposer que chaque mécanisme de synthèse des phospholipides soit apparu indépendamment dans les lignées modernes. Dans ces hypothèses le cenancêtre aurait été dépourvu de phospholipides et, donc, de membranes. Cela met en cause la nature cellulaire du cenancêtre, qui semblait pourtant soutenue par d'autres indices indirects. Ces contradictions posent la question de l'existence de traces dans les organismes modernes d'une synthèse des phospholipides chez le cenancêtre. Dans cette thèse j'ai profité de l'explosion récente des données génomiques pour répondre à cette question. Il avait déjà montré que des membres de deux superfamilles protéiques universelles pouvaient avoir synthétisé de façon non spécifique chez le cenancêtre les énantiomères de glycérol phosphate servant d'ossature aux phospholipides. Les phospholipides archéens sont composés d'isoprénoïdes et les bactériens et eucaryotes d'acides gras. J'ai donc étudié l'évolution des voies de synthèse de ces molécules ainsi que celle de l'assemblage de tous les composants dans des phospholipides. Mes résultats montrent que la voie de synthèse des isoprénoïdes des eucaryotes et une voie hypothétique de synthèse des acides gras chez les archées avaient probablement des ancêtres moins spécifiques chez le cenancêtre. Une partie au moins de la machinerie d'assemblage des phospholipides semble aussi avoir été présente chez le cenancêtre.Ceci suggère que le cenancêtre avait probablement des mécanismes peu spécifiques de synthèse des phospholipides et que les différences entre les membranes actuelles sont dues à la spécialisation de la machinerie ancestrale dans chaque lignée. Mes observations soulignent aussi l'importance d'étudier le cenancêtre à partir des informations issues des organismes actuels pour éviter toute confusion avec les origines de la vie.
23

Synthèse d'analogues d'aminoglycosides par voie chimique et ingénierie métabolique : Application à l'étude des ARN par RMN du fluor

Lombès, Thomas 26 October 2012 (has links) (PDF)
Les ARN constituent des cibles thérapeutiques extrêmement intéressantes bien qu'encore assez peu exploitées. En effet, les obstacles pour la conception de ligands spécifiques de ces cibles non traditionnelles, polyanioniques et très flexibles, sont encore loin d'être levés. Les aminoglycosides, utilisés depuis longtemps pour leurs propriétés antibiotiques, sont souvent décrits comme des " ligands universels " d'ARN. Leur structure constitue donc une architecture favorable pour l'élaboration de nouveaux ligands spécifiques des ARN.Le but de cette thèse a été de développer une méthode systémique originale combinant chimie organique et microbiologie pour synthétiser de nouvelles molécules de structure analogue aux aminoglycosides, se fixant de façon spécifique sur des cibles ARN. Ce travail repose sur la compréhension récente des voies de biosynthèse des aminoglycosides permettant leur ingénierie rationnelle selon une stratégie de mutasynthèse. Cette approche expérimentale s'appuie sur la conception de mimes de métabolites naturels pouvant être transformés par des bactéries génétiquement modifiées. Le développement de méthodologies novatrices en ingénierie métabolique, synthèse organique et chimie analytique nous a permis de concevoir des analogues d'aminoglycosides fluorés qui se sont avérées être d'excellentes sondes dans l'étude des ARN par RMN du fluor.
24

Etude mécanistique de la biosynthèse des centres fer-soufre chez Escherichia coli : quel rôle pour la protéine SufA ?

Sendra, Maite 04 October 2007 (has links) (PDF)
Les protéines [Fe-S] sont des enzymes ubiquitaires, assurant des fonctions clés au sein des organismes vivants. La biosynthèse des centres [Fe-S], à savoir les processus permettant un assemblage correct des atomes de fer et de soufre au sein des protéines cibles, requièrent la participation de machineries protéiques complexes. Parmi elles se trouve la machinerie SUF qui intervient dans des conditions de stress oxydant et de carence en fer. Elle est composée de six gènes sufABCDSE. La protéine SufA est proposée comme étant une protéine scaffold ayant pour rôle de préassembler transitoirement des centres [Fe-S] et de les transférer à des protéines cibles. Elle possède trois résidus cystéines conservés proposés comme étant les ligands des centres [Fe-S].<br />SufA est obtenue principalement sous forme apo après purification. Le centre [Fe-S] peut être reconstitué chimiquement in vitro. Dans ces conditions, SufA contient un mélange de centres [2Fe-2S] et [4Fe-4S]. Nous avons alors isolé SufA native métallée après purification à partir de tout l'opéron suf en anaérobiose, et montré qu'elle contient un centre [Fe-S], plutôt de type [2Fe-2S], transférable efficacement à la ferrédoxine. Nous avons également étudié les mécanismes moléculaires de formation du cluster dans SufA. SufA est capable de fixer à la fois du soufre, au niveau de ses trois cystéines conservées, et du fer, majoritairement au niveau d'atomes d'azote et d'oxygène. Ces éléments sont mobilisables pour la formation d'un centre [Fe-S] en milieu réducteur. Enfin, des expériences préliminaires réalisées in vitro avec des mutants dirigés n'ont pas permis d'identifier la nature exacte des ligands du centre [Fe-S] dans SufA.
25

Élucidation du rôle de nouveaux acteurs de la biosynthèse de Q8 chez Escherichia coli et caractérisation du complexe protéique de biosynthèse de Q8. / Elucidation of new actors of coenzyme Q biosynthesis in Escherichia coli and characterisation of the Q biosynthetic protein complex.

Hajj Chehade, Mahmoud 26 October 2015 (has links)
Le coenzyme Q est une molécule lipophile rédox rencontrée chez les eucaryotes et chez la plupart des procaryotes. La structure de Q correspond à une benzoquinone substituée par une chaîne polyisoprényle dont la longueur varie selon les organismes. Q joue le rôle de transporteur d'électrons dans les chaînes respiratoires d'où provient la plupart de l'énergie de la cellule. La biosynthèse de Q chez la bactérie Escherichia coli comporte huit étapes et implique au moins neuf protéines (UbiA-UbiH et UbiX). Trois réactions d'hydroxylation sont nécessaires pour la biosynthèse de Q8 en conditions aérobies. Alors que les protéines UbiH et UbiF présentent des homologies de séquence avec des monooxygénases à flavine connues pour catalyser des réactions d'hydroxylation, UbiB qui a été proposée comme étant la troisième hydroxylase, présente uniquement une homologie de séquence avec des kinases. Nous rapportons dans ce travail que la protéine VisC, renommée UbiI, catalyse la réaction d'hydroxylation auparavant attribuée à UbiB. Nous avons également identifié deux nouvelles protéines (YigP et YqiC, renommées respectivement UbiJ et UbiK) importantes pour le métabolisme de Q chez Escherichia coli puisque leur mutation diminue fortement le contenu en Q des souches mutantes. Ces protéines interagissent avec la plupart des protéines connues pour participer à la biosynthèse de Q ce qui implique l'existence d'un complexe de biosynthèse de Q. En utilisant des approches biochimiques et protéomiques, nous avons pu mettre en évidence un complexe impliquant plusieurs protéines Ubi et notamment UbiJ et UbiK. Ces deux protéines semblent avoir un rôle dans l'assemblage et/ou la stabilisation de ce complexe multiprotéique. Enfin, nous nous sommes intéressés à la biosynthèse de Q dans des conditions de cultures anaérobies. Nos résultats montrent l'existence « d'hydroxylases anaérobies », inconnues à ce jour, qui remplaçent les hydroxylases aérobies UbiH, UbiI et UbiF. Grâce à une approche phylogénétique, nous identifions un gène important pour la biosynthèse de Q uniquement en conditions anaérobies suggérant une réorganisation de la biosynthèse de Q entre ces deux environnements fréquemment rencontrés par E. coli. L'ensemble de nos résultats a permis d'améliorer notre connaissance de la voie de biosynthèse procaryote de Q grâce à la découverte de nouveaux gènes impliqués dans ce processus et grâce à l'identification de la fonction moléculaire de certaines protéines. / Ubiquinone (Q) is a lipophilic compound that plays an important role in electron and proton transport in the respiratory chains of Escherichia coli. Besides this important role in energy production, Q also functions as a membrane soluble antioxidant. The biosynthesis of Q8 requires eight reactions and involves at least nine proteins (UbiA-UbiH and UbiX) in Escherichia coli. Three of these reactions are hydroxylations resulting in the introduction of a hydroxyl group on carbon atoms at position 1, 5 and 6 of the aromatic ring. The C1 and C6 hydroxylation are well characterized whereas the C5 hydroxylation has been proposed to involve UbiB, a protein kinase without any sequence homology with monooxygenase. In this work, by genetic and biochemical methods we provide evidence that VisC which we renamed UbiI, displays sequence homology with monooxygenases and catalyzes the C5 hydroxylation, not UbiB. We have identified two new genes, yqiC and yigP (renammed UbiJ and UbiK) which are required only for Q8 biosynthesis in aerobic conditions. The exact role of the corresponding proteins, renamed UbiJ and UbiK, remains unknown. These proteins are able to interact with other Ubi proteins to be able to produce Q supporting the protein complex hypothesis. Our progress on the characterization of an Ubi-complex regrouping several Ubi proteins suggest that UbiJ and UbiK may fulfill functions related to the Ubi-complex stability. Mutants affected in hydroxylation steps are deficient for Q8 in aerobic conditions but recover a wild type Q8 content when grown in anaerobic conditions. This intriguing observation supports the existence of an alternative hydroxylation system independent from dioxygen which has not been characterized so far. By phylogenetic studies, we have identified a new gene in which the deletion affect the biosynthesis of Q only in anaerobic conditions suggesting a reorganization of Q biosynthesis in these two conditions. Our results has improved our knowledge of the prokaryotic Q biosynthetic pathway through the discovery of new genes involved in this process and through the identification of the molecular function of some proteins.
26

C35 bacterial triterpenoids of hopane series : biosynthesis of the C5 side chain / Triterpénoïdes bactériens en C35 de série hopane : biosynthèse de la chaîne latérale

Liu, Wenjun 22 January 2013 (has links)
Les bactériohopanepolyols (BHPs) en C35 sont les principaux hopanoïdes trouvés chez les bactéries. Ces composés présentent une chaîne latérale polyhydroxylée en C5 liée par une liaison carbone/carbone au groupement isopropyle du squelette hopane. Ils présentent de nombreuses variations structurales au niveau de la chaîne latérale qui apportent des informations taxonomiques et physiologiques. Le bactériohopanetétrol (BHT) et l’aminobactériohopanetriol sont les composés majoritaires. En outre, ces deux BHPs seront les parents de la plupart des BHPs complexes. L'élucidation de la biosynthèse de la chaîne latérale en C5 des hopanoïdes est donc très intéressante pour une meilleure compréhension de la distribution phylogénétique et la signification biologique des BHPs.Au cours de ce travail, le ribosylhopane a été isolé pour la premier fois chez une bactérie. Cette découverte est une preuve solide confirmant le rôle du ribosylhopane comme intermédiaire dans la biosynthèse des hopanoïdes. En outre, deux gènes, impliqués dans la formation de la chaîne latérale des BHPs chez Streptomyces coelicolor, ont été caractérisés. L’adénosylhopane serait converti par une phosphorylase en ribosylhopane et une aminotransférase est nécessaire pour la formation de l’aminobactériohopanetriol du ribosylhopane. De plus, nous avons développé des synthèses concises de l’adénosylhopane et d’un isotopomère bisdeutérié. L’analogue marqué a par la suite été incorporé dans le BHT par un système acellulaire de Methylobacterium organophilum et le suivi du marquage nous a permis de démontrer l’implication de l’adénosylhopane dans la biosynthèse des hopanoïdes en C35. / C35 Bacteriohopanoids represent the majority of hopanoids produced by bacteria. They bear an additional C5 side chain linked by a carbon/carbon bond to the isopropyl group of the hopane skeleton. The C5 side chains present an impressive structural diversity and carry taxonomic and physiological information. The most common C35 bacteriohopanoids are bacteriohopanetetrol (BHT) and aminobacteriohopanetriol. Moreover, these two compounds are proposed as the parents of most complex bacteriohopanoids. Therefore, elucidation of the biosynthesis of hopanoid side chains is in great interest for a better understanding of the physiological distribution and biological importance of bacteriohopanoids.In this work, ribosylhopane was isolated for the first time from a bacterium. This discovery is a solid proof for the role of ribosylhopane as an intermediate in the biosynthesis of hopanoid side chain. In addition, two genes involved in the hopanoid production in Streptomyces coelicolor have been characterized. Adnosylhopane may be converted into ribosylhopane by a phosphorylase; and an aminotransferase is required for the formation of aminobacteriohopantriol from ribosylhopane. Moreover, we have developed a concise strategy for the hemisynthesis of adenosylhopane and a deuteriated isotopmer. The subsequent incorporation of the deuteriated adenosylhopane into BHT by a cell-free system in Methylobacterium organophilum proved that adenosylhopane is indeed a precursor of C35 bacteriohopanoids.
27

Synthèse de prodrogues d'inhibiteurs de la 1-désoxy-D-xylulose 5-phosphate réductoisomérase (DXR) : des agents antituberculeux potentiels / Prodrugs approach for the synthesis of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) inhibitors : potential antitubercular drugs

Munier, Mathilde 07 July 2016 (has links)
De nos jours la tuberculose est une des maladies les plus meurtrières au monde. Un problème majeur est que l’agent pathogène responsable de cette maladie (Mycobacterium tuberculosis) a développé des mécanismes de résistances envers les médicaments actuels. Il devient donc urgent de trouver d’autres cibles pour développer de nouveaux antituberculeux. La biosynthèse des isoprénoïdes pourrait en être une. Les précurseurs biologiques de tous les isoprénoïdes sont l’IPP et le DMAPP qui sont synthétisés selon deux voies. La voie du mévalonate, présente chez l’Homme et la voie du méthylérythritol phosphate (MEP) laquelle est présente chez M. tuberculosis et absente chez l’homme. La fosmidomycine et la fosfoxacine, deux inhibiteurs de la désoxyxylulose phosphate réductoisomérase (DXR), deuxième enzyme de la voie du MEP ne permet pas d’inhiber la croissance de la mycobactérie. Cela est dû à l’absence de pénétration de ces composés polaires au sein de la bactérie. Pour pallier à ces problèmes de biodisponibilité, nous avons synthétisé des prodrogues lipophiles de type cycloSaligényle et arylphosphoramidate d’inhibiteurs de la DXR. Certains composés sont inhibent la croissance d’une mycobactérie non-pathogène, Mycobacterium smegmatis. / Today, tuberculosis is one of most murderous infectious diseases in the world. This disease is caused by the mycobacterium : Mycobacterium tuberculosis which is becoming more and more resistant towards antitubercular drugs. Therefore, it is urgent to find inovative targets for the development of new antitubercular drugs. The biosynthesis of isoprenoids represents such a target. The biological precursors of all isoprenoids are IPP and DMAPP which are synthesized via two pathways the mevalonate pathway, which is present in human and the methylerythritol phosphate (MEP) pathway which is present in M. tuberculosis. but absent in human. Fosmidomycin and fosfoxacine, two natural inhibitors of the deoxyxylulose phosphate reductoisomerase (DXR), the second enzyme of MEP pathway, but they do not affect the growth of Mycobacterium tuberculosis cells, due to a lack of uptake of the polar drugs by the bacteria. To overcome this absence of the mycobacterial cell watll crossing of these compounds, we synthesized lipophilic cycloSaligenyl and arylphosphoramidate prodrugs of DXR inhibitors. Some compounds inhibit the growth of Mycobacterium smegmatis, a non-pathogenic model of mycobacterium.
28

Vers l’identification des mécanismes moléculaires impliqués dans la galloylation des proanthocyanidines chez la vigne / Towards the identification of molecular mechanisms involved in proanthocyanidin galloylation in grapevine

Bontpart, Thibaut 17 December 2015 (has links)
Parmi les métabolites secondaires impliqués dans la qualité du raisin et du vin, les tanins condensés ou proanthocyanidines (PAs) jouent un rôle majeur, en particulier dans l'astringence et la stabilité de la couleur du vin. Ces molécules sont également impliquées dans la défense des plantes contre des stress biotiques et abiotiques. En outre, les effets bénéfiques des PAs pour la santé humaine sont bien documentés. Les PAs de la vigne ont la particularité d’être estérifiées avec de l’acide gallique. Une réaction d’acylation appelée galloylation est responsable de cette modification. Les études montrent que la galloylation influence les propriétés œnologiques et pharmacologiques des PAs. Dans la baie de raisin, les PAs sont synthétisés dans les premiers stades de développement, principalement dans les pellicules et les pépins. Un nombre relativement faible d'étapes enzymatiques sont nécessaires pour la biosynthèse de la structure de base de ces métabolites et les gènes correspondants sont aujourd'hui largement connus chez les plantes modèles, y compris chez la vigne. Cependant, les mécanismes moléculaires impliqués dans les étapes finales, y compris la galloylation, ne sont encore que partiellement connus. Des résultats antérieurs obtenus après la recherche de QTL influençant la composition du raisin, et en particulier le taux de galloylation des PAs, et des études transcriptomiques après surexpression de facteurs de transcription régulant la biosynthèse de la voie des PAs, ont permis l'identification de gènes potentiellement impliqués dans ces étapes. Des gènes de shikimate déshydrogénase (SDH) ont été identifiés. Ces gènes interviendraient en amont, pour la biosynthèse de l'acide gallique. Trois glucosyltransférases ainsi identifiées et déjà caractérisées au laboratoire sont impliquées dans la biosynthèse de l'ester de glucose de l'acide gallique (β-glucogalline), qui servirait d'intermédiaire pour la galloylation des PAs. Ces méthodes de criblage ont également permis d’identifier 2 acyltransférases de type sérine carboxypeptidase, nommées glucose acyltransférases (GATs) qui seraient capables de catalyser la dernière étape de galloylation: le transfert de l'acide gallique depuis la β-glucogalline sur les PAs. Le premier objectif de cette thèse a été de déterminer la fonction des SDHs codées par les gènes de vigne. Certaines SDHs recombinantes produites de façon hétérologue chez E.coli ont la capacité à produire de l'acide gallique in vitro. Leur niveau d’expression au cours du développement et dans différents tissus de la baie a également été établi. Les résultats obtenus in vitro sont étayés par le profil métabolique (acide gallique, β-glucogalline et PAs) de hairy-roots de vigne transformées avec un gène de SDH. Le second objectif de cette thèse a été de valider la fonction des GATs par expression transitoire dans des feuilles de tabac et des tests enzymatiques in vitro. La transformation transitoire de feuilles de vigne avec les GATs a permis de moduler la concentration d’esters phénoliques et nomment des flavan-3-ols galloylés in planta. L’étude de ces gènes a été étendue aux plantes vasculaires par des analyses phylogénétiques et a permis d’identifier des motifs peptidiques potentiellement impliqués dans les mécanismes étudiés et reflétant la sub-fonctionnalisation de certains gènes. Ce travail a fourni des informations sur les bases génétiques et les mécanismes moléculaires impliqués dans la biosynthèse de l'acide gallique et son transfert en deux étapes sur les flavan-3-ols (galloylation). De nouvelles hypothèses sur l'intervention de différents transporteurs et la nature des molécules transportées pourront être formulées. / Among the secondary metabolites involved in grape berry and wine quality, condensed tannins or proanthocyanidins (PAs) play a major role, especially in astringency and color stability of wine. These molecules are also involved in plant defence against biotic and abiotic stresses. Furthermore, the beneficial effects of PAs to human health are well documented. In grapevine, PAs have the distinctive feature of being esterified with gallic acid. An acylation reaction called galloylation is responsible for this modification. Studies show that the galloylation influences oenological and pharmacological properties of PAs. In the grape berry, PAs are synthesized in the early stages of development, mainly in skin and seeds. A relatively small number of enzymatic steps are required for the biosynthesis of the basic structure of these metabolites and the corresponding genes are now widely known in model plants, including in grapevine. However, the molecular mechanisms involved in the final steps, including galloylation, are only partially known. Earlier results obtained after the search of QTL influencing the composition of the grape berry, especially the galloylation ratio of PAs, and transcriptomic studies after overexpression of transcription factors that regulate PAs biosynthesis pathway, have allowed the identification of genes potentially involved in these steps. Shikimate dehydrogenase (SDH) genes were identified. These genes would intervene upstream, for the biosynthesis of gallic acid. Three identified glucosyltransferases, already characterized in the laboratory, are involved in the biosynthesis of glucose ester of gallic acid (β-glucogalline), which could serve as an intermediary for PAs galloylation. These screening methods have also helped to identify 2 serine carboxypeptidase-like acyltransferases, called glucose acyltransferases (GATs) which are capable of catalyzing the last step of galloylation: the transfer of gallic acid from β-glucogalline to PAs. The first objective of this thesis was to determine the function of the SDHs encoded by grapevine genes. Recombinant SDHs, produced heterologously in E. coli, have the capacity to generate gallic acid in vitro. Their level of expression during development and in different tissues of the berry was also established. In vitro results are supported by the metabolic profile (gallic acid, β-glucogallin and PAs) of grapevine hairy -roots transformed with a SDH gene. The second objective of this thesis was to validate the function of the GATs by transient expression in tobacco leaves and in vitro enzyme assays. The transient transformation of grapevine leaves with GATs allowed to modulate the concentration of phenolic esters and notably galloylated flavan-3-ols in planta. The study of these genes was extended to vascular plants by phylogenetic analyses which allowed to identify peptide motifs potentially involved in the studied mechanisms and reflecting the sub-functionalization of certain genes. This work has provided informations on the genetic basis and molecular mechanisms involved in the biosynthesis of gallic acid and its two-step transfer on flavan-3-ols (galloylation). New hypotheses on the intervention of different carriers and nature of transported molecules can be proposed.
29

Développement de sondes moléculaires appliquées à l’étude de la biosynthèse des flavonoïdes / Molecular probes development for Flavonoid biosynthesis studying

Carrié, Hélène 20 December 2013 (has links)
Les flavonoïdes sont des substances naturelles connues pour leurs propriétés anti-inflammatoires, anti-cancéreuses ou anti-virales chez l'homme. Chez les végétaux, ils participent notamment à leur protection vis-à-vis d'organismes pathogènes. La voie de biosynthèse des flavonoïdes est l'une des plus étudiées chez les plantes et notamment chez la vigne : Vitis vinifera. Cependant, la ou les enzymes impliquées dans les dernières étapes de biosynthèse conduisant aux anthocyanes et aux proanthocyanidines restent, à ce jour, peu ou pas connues. L’étude que nous proposons a pour but de concevoir des sondes moléculaires d’affinité susceptibles d’interagir avec une ou plusieurs enzymes impliquées dans ces dernières étapes de biosynthèse. Ces sondes, basées sur la technologie émergeante de protéomique chimique : « Activity- and affininity Based Protein Profiling » (ABPP), ont été validées à l’aide d’une enzyme modèle : la leucoanthocyanidine dioxygénase (LDOX). Elles ont ensuite été appliquées à des extraits complexes de protéines issus de Vitis vinifera. / Flavonoids are natural substances known for their anti-inflammatory, anti-cancerous and anti-virals properties in humans. In plants, they are one of the molecules responsible for fighting pathogens. The flavonoid biosynthesis pathway as been greatly studied in plants, especially in that of the grapevine: Vitis vinifera. However, detailed studies of the exact function of the enzymes involved in the last steps of the biosynthesis of anthocyanins and proanthocyanidins remains largely lacking.The study that we propose is to synthesize molecular probes designed to specifically interact with enzymes involved in the last stages of flavonoids biosynthesis. Our probes, based on the emerging chemical proteomic technology, activity- and affinity based protein profiling (ABPP), were validated with a model enzyme: leucoanthocyanidin dioxygenase (LDOX). After which, they were used with complex protein mixtures from Vitis vinifera.
30

Conception de nouvelles méthodes de ligation peptidique native et mise au point de nouvelles stratégies d'assemblages séquentielles pour la synthèse totale de protéines / Novel native peptide ligation methods and sequential assembly strategies for protein total synthesis

Raibaut, Laurent 27 November 2013 (has links)
Les peptides et les protéines jouent un rôle central dans les processus biologiques. Les méthodes de production de ces molécules se sont fortement développées dans le but de déterminer leur structure, comprendre leurs fonctions et développer de nouvelles thérapies. En particulier, la synthèse chimique des protéines s’est fortement développée dans les années 1960 avec l’introduction de la chimie peptidique en phase solide (SPPS) par B. Merrifield. Depuis les années 1990, la combinaison de méthodes de ligation chimique natives et de stratégies d’assemblage séquentielles et convergentes ont permis la synthèse de nombreuses protéines. Cependant, la synthèse de protéines de haut poids moléculaires reste un défi synthétique. Il est donc important de développer de nouveaux systèmes de ligation chimique et des stratégies d’assemblage plus performantes. Une nouvelle méthode de ligation native, la ligation SEA, repose sur la capacité des segments bis(2-sulfanylethyl)amido (SEA) à réagir en milieu aqueux avec des cystéinyl peptides. Différents outils chimiques basés sur l’utilisation du groupement SEA ont été développés dans cette thèse. La première partie de ce manuscrit présente une méthode d’assemblage séquentiel de segments peptidiques en solution s’effectuant du N-terminal vers le C-terminal. Cette méthode a permis la synthèse du domaine N-terminal du facteur de croissance des hépatocytes (HGF). Afin de surmonter les limitations de l’assemblage en solution, la seconde partie de cette thèse porte sur le développement d’un procédé de synthèse de protéines par ligation native séquentielle en phase solide du N-terminal vers le C-terminal. Enfin, une dernière partie exploite la réactivité des segments bis(2-selanylethyl)amido (SeEA) et leur potentiel pour la synthèse de nouveaux échafaudages peptidiques. / Peptides and proteins play a crucial role in all fundamental biological processes. Chemical methods have been developed for the production of peptide and proteins which allows understanding their structures, functions and the development of novel therapies. In particular, the introduction of the Solid Phase Peptide Synthesis (SPPS) by Merrifield in the 60s, followed by the emergence of peptide ligation methods in the 90s have opened the way to the preparation of synthetic proteins. Recently, the developments of sequential and convergent assembly methods give access to large synthetic proteins. However, the synthesis of high molecular weight proteins remains a challenging task. Therefore, it is necessary to develop novel peptide ligation methods and assembly scheme strategies. Central to this PhD work is the recently developed bis(2-sulfanylethyl)amido (SEA) native peptide ligation method. The first part of this manuscript describes an efficient sequential assembly method in the N-to-C direction for protein synthesis in solution which was used for producing a functional N domain of Hepatocyte Growth Factor&#8206; (HGF). We next examined also a solid phase method for the sequential native ligation of unprotected peptide segments in the N-to-C direction to overcome the limitations in solution. The last part of the manuscript reports the chemicals properties of bis(2-selanylethyl)amido (SeEA) peptide segments and their usefulness for building novel peptide scaffolds.

Page generated in 0.0376 seconds