• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 10
  • 7
  • 3
  • 1
  • 1
  • Tagged with
  • 64
  • 27
  • 24
  • 23
  • 23
  • 15
  • 12
  • 12
  • 12
  • 12
  • 11
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Multibody dynamics model of a full human body for simulating walking

Khakpour, Zahra 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Khakpour, Zahra M.S.M.E., Purdue University, May 2017. Multibody Dynamics Model of A Full Human Body For Simulating Walking, Major Professor: Hazim El-Mounayri. Bipedal robotics is a relatively new research area which is concerned with creating walking robots which have mobility and agility characteristics approaching those of humans. Also, in general, simulation of bipedal walking is important in many other applications such as: design and testing of orthopedic implants; testing human walking rehabilitation strategies and devices; design of equipment and facilities for human/robot use/interaction; design of sports equipment; and improving sports performance & reducing injury. One of the main technical challenges in that bipedal robotics area is developing a walking control strategy which results in a stable and balanced upright walking gait of the robot on level as well as non-level (sloped/rough) terrains. In this thesis the following aspects of the walking control strategy are developed and tested in a high-fidelity multibody dynamics model of a humanoid body model: 1. Kinematic design of a walking gait using cubic Hermite splines to specify the motion of the center of the foot. 2. Inverse kinematics to compute the legs joint angles necessary to generate the walking gait. 3. Inverse dynamics using rotary actuators at the joints with PD (Proportional-Derivative) controllers to control the motion of the leg links. The thee-dimensional multibody dynamics model is built using the DIS (Dynamic Interactions Simulator) code. It consists of 42 rigid bodies representing the legs, hip, spine, ribs, neck, arms, and head. The bodies are connected using 42 revolute joints with a rotational actuator along with a PD controller at each joint. A penalty normal contact force model along with a polygonal contact surface representing the bottom of each foot is used to model contact between the foot and the terrain. Friction is modeled using an asperity-based friction model which approximates Coulomb friction using a variable anchor-point spring in parallel with a velocity dependent friction law. In this thesis, it is assumed in the model that a balance controller already exists to ensure that the walking motion is balanced (i.e. that the robot does not tip over). A multi-body dynamic model of the full human body is developed and the controllers are designed to simulate the walking motion. This includes the design of the geometric model, development of the control system in kinematics approach, and the simulation setup.
32

Foot Force Sensor Implementation and Analysis of ZMP Walking on 2D Bipedal Robot with Linear Actuators

Kusumah, Ferdi Perdana January 2011 (has links)
The objectives of this study were to implement force sensors on the feet of a bipedal robot and analyze their response at different conditions. The data will be used to design a control strategy for the robot. The powered joints of the robot are driven by linear motors. A force sensor circuit was made and calibrated with different kinds of weight. A trajectory generator and inverse kinematics calculator for the robot were made to control the robot walking movement in an open-loop manner. The force data were taken at a certain period of time when the robot was in a standing position. Experiments with external disturbances were also performed on the robot. The ZMP position and mass of the robot were calculated by using the data of force sensors. The force sensor circuit was reliable in taking and handling the data from the sensor although the noise from the motors of the robot was present. / <p>Validerat; 20111115 (anonymous)</p>
33

Bipedal Walking for a Full Size Humanoid Robot Utilizing Sinusoidal Feet Trajectories and Its Energy Consumption

Han, Jea-Kweon 30 May 2012 (has links)
This research effort aims to develop a series of full-sized humanoid robots, and to research a simple but reliable bipedal walking method. Since the debut of Wabot from Waseda University in 1973, several full-sized humanoid robots have been developed around the world that can walk, and run. Although various humanoid robots have successfully demonstrated their capabilities, bipedal walking methods are still one of the main technical challenges that robotics researchers are attempting to solve. It is still challenging because most bipedal walking methods, including ZMP (Zero Moment Point) require not only fast sensor feedback, but also fast and precise control of actuators. For this reason, only a small number of research groups have the ability to create full-sized humanoid robots that can walk and run. However, if we consider this problem from a different standpoint, the development of a full-sized humanoid robot can be simplified as long as the bipedal walking method is easily formulated. Therefore, this research focuses on developing a simple but reliable bipedal walking method. It then presents the designs of two versions of a new class of super lightweight (less than 13 kg), full-sized (taller than 1.4 m) humanoid robots called CHARLI-L (Cognitive Humanoid Autonomous Robot with Learning Intelligence – Lightweight) and CHARLI-2. These robots have unique designs compared to other full- sized humanoid robots. CHARLI-L utilizes spring assisted parallel four-bar linkages with synchronized actuation to achieve the goals of lightweight and low cost. Based on the experience and lesions learned from CHARLI-L, CHARLI-2 uses gear train reduction mechanisms, instead of parallel four-bar linkages, to increase actuation torque at the joints while further reducing weight. Both robots successfully demonstrated untethered bipedal locomotion using an intuitive walking method with sinusoidal foot movement. This walking method is based on the ZMP method. Motion capture tests using six high speed infrared cameras validate the proposed bipedal walking method. Additionally, the total power and energy consumptions during walking are calculated from measured actuator currents. / Ph. D.
34

Development of an Omni-directional Gait Generator and a Stabilization Feedback Controller for Humanoid Robots

Song, Seungmoon 19 August 2010 (has links)
Bipedal locomotion in humanoid robots is a very challenging problem within the field of robot locomotion. In this thesis, we propose and demonstrate an omni-directional walking engine that achieves stable walking using feedback from an inertial measurement unit. Our walking engine generates gaits for which the zero moment point is on the center of the supporting foot. The mechanical structure of CHARLI-L, a humanoid robot used as our test platform in this thesis, is first introduced by describing the inverse kinematics of its legs. The principles of the omni-directional gait generator that creates walking motions and overcomes the robot's mechanical deficiencies is discussed. We develop and implement two kinds of feedback controllers; one is the gait feedback controller and the other is the joint feedback controller. Both feedback controllers use proportional-derivative of the angle of the pelvis from an inertial measurement unit. The results of the experiments are presented the efficacy of our proposed walking engine. / Master of Science
35

Nordic Walking - svalová odezva v pohybovém aparátu v oblasti pánve(4) / Nordic Walking - muscle response at movement apparatus in pelvis area

Hrouzová, Lenka January 2010 (has links)
3 Abstract: Title: Nordic walking - muscle response at movement apparatus in pelves area. Purposes: The aim of the thesis is to compare muscle timing in pelves area using EMG during free bipedal walk and during the walk with special sticks. Methods: Surface electromyography combinated with kinematografy analysis used synchronized video recording. Results: It Managed to prove different muscle timing at Nordic walking and at free walk. It was proved lower activity of stabilization muscles at walk with sticks. Key words: Nordic walking, surface electromyography, stabilization muscles, kinematics analysis, bipedal locomotion
36

Nordic Walking - svalová odezva v pohybovém aparátu v oblasti pánve / Nordic Walking - muscle response at movement apparatus in pelvis area

Hrouzová, Lenka January 2011 (has links)
Title: Nordic walking - muscle response at movement apparatus in pelvis area. Purposes: The aim of the thesis is to compare muscle timing in pelvis area using EMG during free bipedal walk and during the walk with special sticks. Methods: Surface electromyography combinated with kinematografy analysis used synchronized video recording. Results: It Managed to prove different muscle timing at nordic walking and at free walk. It was proved lower activity of stabilization muscles at walk with sticks. Key words: Nordic walking, surface electromyography, stabilization muscles, kinematics analysis, bipedal locomotion
37

Modelagem e controle de marcha de robôs bípedes com disco de inércia. / Modeling and gait control of bipedal robots with flywheel.

Novaes, Carlos Eduardo de Brito 31 March 2016 (has links)
Esta tese trata de um robô bípede em caminhar dinâmico. Neste robô, que normalmente é um sistema sub-atuado, fazemos uso de um disco de inércia que funciona num certo sentido como um atuador adicional. Através deste disco, obtém-se mais liberdade para a elaboração de passos repetitivos e um aumento na robustez. Por outro lado, o sistema de controle dos passos deve controlar, além do passo propriamente dito, também a velocidade do disco, de modo que não sejam saturados os atuadores (motores elétricos). Apresentamos então um controlador capaz de realizar estas ações simultaneamente. / This Thesis is about a bipedal robot in a dynamic walking gait. In this robot, which is usually a under-actuated system, a inertial wheel is employed and acts as an additional actuator. By using this wheel, one can design a cyclic walking gait with increased robustness and with more freedom. On the other hand, the control system must take care of the step itself, and also must ensure that the wheel speed does not exceed the actuators (motors) limits. We present a controller able to perform this tasks.
38

Dynamic bipedal locomotion based on hybrid zero dynamics control. / Locomoção bípede dinâmica baseada na dinâmica zero híbrida.

Oliveira, Arthur Castello Branco de 11 March 2019 (has links)
This work presents an alternative method for 3D bipedal gait design using independent controllers for the plane of motion frontal and sagittal. The use of virtual constraints to design a stable gait for the frontal system is fully developed and studied in this work and the resulting gait simulated. The results, although not definitive, are promising. / Esta tese apresenta um método alternativo de síntese de marcha bípede 3D usando controladores independentes projetados para os planos de movimento frontal e sagital. O uso de restrições virtuais no projeto de uma marcha estável para o plano frontal é completamente desenvolvido e estudado neste trabalho. A marcha resultante é simulada e os resultados, apesar de ainda não definitivos, são promissores.
39

Simulation Of Biped Locomotion Of Humanoid Robots In 3d Space

Akalin, Gokcan 01 October 2010 (has links) (PDF)
The main goal of this thesis is to simulate the response of a humanoid robot using a specified control algorithm which can achieve a sustainable biped locomotion with 4 basic locomotion phases. Basic parts for the body of the humanoid robot model are shaped according to the specified basic physical parameters and assumed kinematic model. The kinematic model, which does not change according to locomotion phases and consists of 27 segments including 14 virtual segments, provides a humanoid robot model with 26 degrees of freedom (DOF). Corresponding kinematic relations for the robot model are obtained by recursive formulations. Derivation of dynamic equations is carried out by the Newton-Euler formulation. A trajectory definition algorithm which defines positions, orientations, translational and angular velocities for the hip and its mass center, toe part of the foot and its toe point is created. A control strategy based on predictive optimum command acceleration calculations and computed torque control method is implemented. The simulation is executed in Simulink and the visualization of the simulation is established in a virtual environment by Virtual Reality Toolbox of MATLAB. The simulation results and the user defined reference input are displayed simultaneously in the virtual environment. In this study, a simulation environment for the biped locomotion of humanoid robots is created. By the help of this thesis, the user can test various control strategies by modifying the modular structure of the simulation and acquire necessary information for the preliminary design study of a humanoid robot construction.
40

3-d Humanoid Gait Simulation Using An Optimal Predictive Control

Ozyurt, Gokhan 01 September 2005 (has links) (PDF)
In this thesis, the walking of a humanoid system is simulated applying an optimal predictive control algorithm. The simulation is built using Matlab and Simulink softwares. Four separate physical models are developed to represent the single support and the double support phases of a full gait cycle. The models are three dimensional and their properties are analogous to the human&rsquo / s. In this connection, the foot models in the double support phases include an additional joint which connects the toe to the foot. The kinematic relationships concerning the physical models are formulated recursively and the dynamic models are obtained using the Newton &ndash / Euler formulation. The computed torque method is utilized at the level of joints. In the double support phase, the redundancy problem is solved by the optimization of the actuating torques. The command accelerations required to control the gait are obtained by applying an optimal predictive control law. The introduced humanoid walker achieves a sustainable gait by tuning the optimization and prediction parameters. The control algorithm manages the tracking of the predefined walking pattern with easily realizable joint accelerations. The simulation is capable of producing all the reaction forces, reaction moments and the values of the other variables. During these computations, a three dimensional view of the humanoid walker is animated simultaneously. As a result of this study, a suitable simulation structure is obtained to test and improve the mechanical systems which perform bipedal locomotion. The modular nature of the simulation structure developed in this study allows testing the performance of alternative control laws as well.

Page generated in 0.0368 seconds