• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sustainable Strategies for Eliminating Contaminants of Emerging Concern: Coagulation for Algae Removal and Photocatalysis-based Advanced Oxidation Processes

Ren, Bangxing January 2022 (has links)
No description available.
2

Synthèse et caractérisation d'oxydes mixtes de bismuth pour la photocatalyse dans le visible / Synthesis and Characterization of Mixed Bismuth Oxides for Photocatalysis Under Visible Light

Lavergne, Marie-Anne 29 September 2014 (has links)
L'objectif de ce travail est d'améliorer les performances photocatalytiques de deux oxydes mixtes de bismuth, Bi2WO6 et BiOBr, présentant une activité sous lumière visible. Leurs activités photocatalytiques sont en effet majoritairement limitées par un taux de recombinaison des charges photoinduites élevé. Deux stratégies différentes ont été respectivement appliquées pour chaque matériau. La première consiste à former une hétérostructure entre Bi2WO6 et un métal noble, le platine, pour assurer une séparation efficace des charges. La seconde consiste à réduire la taille des particules de BiOBr afin d'augmenter la surface spécifique et de diminuer le parcours moyen des charges jusqu'à la surface du photocatalyseur. Les synthèses ont été réalisées par chimie douce. La répartition et la quantité de platine déposé sur Bi2WO6 a ainsi pu être modulée et des particules de BiOBr sous forme de microfleurs ou de plaquettes de différentes tailles ont été obtenues. La dégradation de la rhodamine B en solution sous irradiation bleue a permis d'évaluer les propriétés photocatalytiques des matériaux. La dégradation de molécules non photosensibles a également été réalisée afin de confirmer l'activité photocatalytique observée. Dans le but d'évaluer la potentialité de Bi2WO6 et BiOBr pour la purification de l'air intérieur, des tests de dégradation photocatalytique de polluants modèles gazeux ont été effectués. L'ensemble de ces tests ont mis en évidence les relations entre les paramètres physico-chimiques des matériaux et leurs performances photocatalytiques et ont souligné les potentialités et les limitations de Bi2WO6 et BiOBr pour la dépollution de l'air et de l'eau. / The aim of this work is to improve photocatalytic performance of two mixed bismuth oxides, Bi2WO6 and BiOBr, which have an activity within visible range of the electromagnetic spectrum. Two different strategies have been developed for each material. First one consists in designing a heterostructure between Bi2WO6 and a noble metal, platinum, which ensures an efficient charge separation at the interface. Second one aims at lowering BiOBr particle’s size in order to boost specific surface and shrink mean free path of charges to the surface of the photocatalyst. Syntheses of the materials were carried out using soft chemistry method. Platinum particle distribution and quantity on Bi2WO6 were thus successfully tuned and BiOBr microspheres or plates with different size were obtained. Photocatalytic properties of our materials were characterized by rhodamine B degradation in solution under blue light (λ = 445 nm). Degradation test of non-photosensitive compounds were also performed to show their photocatalytic activity. In order to evaluate Bi2WO6 and BiOBr potential in purifying indoor air photocatalytic degradation tests of model gaseous pollutant were performed. All these photocatalytic tests highlight the relationship between physicochemical and photocatalytic properties of the materials. They also enable us to determine the potentials and limitations of Bi2WO6 and BiOBr as photocatalysts for water and air depollution.
3

Synthese und Funktion nanoskaliger Oxide auf Basis der Elemente Bismut und Niob

Wollmann, Philipp 29 March 2012 (has links) (PDF)
Am Beispiel von ferroelektrischen Systemen auf Bismut-Basis (Bismutmolybdat, Bismutwolframat und Bismuttitanat) und von Strontiumbariumniobat werden neue Möglichkeiten zur Synthese solcher Nanopartikel aufgezeigt. Die Integration der Nanopartikel in transparente Nanokompositmaterialien und die Entwicklung neuer Precursoren für die Herstellung von Dünnschichtproben gehen den Untersuchungen zur Anwendung als elektrooptische aktive Materialien voraus. Durch weitere Anwendungsmöglichkeiten in der Photokatalyse, dem Test dampfadsorptiver Eigenschaften mit Hilfe eines neuartigen Adsorptionstesters (Infrasorb) und auch mit Hilfe der Ergebnisse der ferroelektrischen Charakterisierung von gesinterten Probenkörpern aus einem Spark-Plasma-Prozess wird ein gesamtheitlicher Überblick über die vielfältigen Aspekte in der Arbeit mit nanoskaligen, ferroelektrischen Materialien gegeben.
4

Synthese und Funktion nanoskaliger Oxide auf Basis der Elemente Bismut und Niob

Wollmann, Philipp 22 March 2012 (has links)
Am Beispiel von ferroelektrischen Systemen auf Bismut-Basis (Bismutmolybdat, Bismutwolframat und Bismuttitanat) und von Strontiumbariumniobat werden neue Möglichkeiten zur Synthese solcher Nanopartikel aufgezeigt. Die Integration der Nanopartikel in transparente Nanokompositmaterialien und die Entwicklung neuer Precursoren für die Herstellung von Dünnschichtproben gehen den Untersuchungen zur Anwendung als elektrooptische aktive Materialien voraus. Durch weitere Anwendungsmöglichkeiten in der Photokatalyse, dem Test dampfadsorptiver Eigenschaften mit Hilfe eines neuartigen Adsorptionstesters (Infrasorb) und auch mit Hilfe der Ergebnisse der ferroelektrischen Charakterisierung von gesinterten Probenkörpern aus einem Spark-Plasma-Prozess wird ein gesamtheitlicher Überblick über die vielfältigen Aspekte in der Arbeit mit nanoskaligen, ferroelektrischen Materialien gegeben.:Inhaltsverzeichnis...........................................................................................................5 Abkürzungsverzeichnis ...................................................................................................9 1. Motivation....................................................................................................................11 2. Stand der Forschung und theoretischer Teil ...............................................................14 2.1. Nanoskalige Materialien...........................................................................................15 2.1.1. Nanopartikel und Nanokompositmaterialien ....................................................... 15 2.1.2. Dünnschichten..................................................................................................... 21 2.1.3. Anwendungen in der Photokatalyse.................................................................... 22 2.1.4. Anwendungen in der Gas- und Dampfsensorik.................................................... 24 2.2. Ferroelektrika .........................................................................................................26 2.2.1. Bismutmolybdat................................................................................................... 32 2.2.2. Bismutwolframat.................................................................................................. 34 2.2.3. Bismuttitanat ....................................................................................................... 36 2.2.4. Strontiumbariumniobat......................................................................................... 37 2.3. Verwendete Methoden.............................................................................................40 2.3.1. Spark-Plasma-Sintering ........................................................................................40 2.3.2. Bestimmung ferroelektrischer Eigenschaften ...................................................... 42 2.3.3. Charakterisierung nichtlinearer, elektrooptischer Eigenschaften......................... 43 3. Experimenteller Teil ....................................................................................................51 3.1. Synthesevorschriften................................................................................................52 3.1.1. Verwendete Chemikalien und Substrate.............................................................. 52 3.1.2. Solvothermalsynthese von Bi2MO6 (M = Mo, W)................................................... 55 3.1.3. Phasentransfersynthese von Bi2MO6 (M = Mo, W)............................................... 56 3.1.4. Präparation von Bi2MO6/PLA Nanokompositmaterialien (M = Mo, W) ................... 57 3.1.5. Sol-Gel-Synthese von Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Ba0.25Sr0.75Nb2O6 und Dünnschichten..................... 57 3.1.6. Mikroemulsionssynthese von Bi4Ti3O12 ............................................................... 59 3.1.7. Sol-Gel-Synthese von Bi2Ti2O7............................................................................. 60 3.1.8. Synthese von BiOH(C2O4), BiOCH3COO und Bi(CH3COO)3................................... 61 3.2. Vorschriften zur Durchführung und Charakterisierung...............................................62 3.2.1. Verwendete Geräte und Einstellungen ................................................................ 62 3.2.2. Spark Plasma Sintering von Bi2MO6 (M = Mo,W) und Bestimmung ferroelektrischer Eigenschaften ........................ 65 3.2.3. Prüfung elektrooptischer Eigenschaften, Präparation der Bauteile und Messaufbau .............................................. 67 3.2.4. Durchführung photokatalytischer Messungen ....................................................... 69 3.2.5. Messung der Dampfadsorption an Nanopartikeln mit Hilfe berührungsloser Detektion ........................................... 70 4. Ergebnisse und Diskussion...........................................................................................71 4.1. Synthese und Eigenschaften von nanoskaligen Materialien......................................72 4.1.1. Synthese von Bi2MO6 (M = Mo, W) Nanopartikeln................................................. 72 4.1.2. Nanokompositmaterialien mit Bi2MO6 (M = Mo, W)................................................ 81 4.1.3. Synthese der Bismuttitanate Bi4Ti3O12 und Bi2Ti2O7 .......................................... 84 4.1.4. Herstellung von Dünnschichten der Systeme Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Sr0.75Ba0.25Nb2O6 ................. 88 4.2. Funktion der nanoskaligen Materialien .....................................................................100 4.2.1. Bismuthaltige Nanopartikel in der Photokatalyse ..................................................100 4.2.2. Spark-Plasma-Sintern von Bi2MO6-Nanopartikel (M = Mo, W)................................103 4.2.3. Elektrooptische Eigenschaften von Dünnschichten und Kompositmaterialien ............................................................108 4.2.4. Messung der Dampfadsorption an Bi2MO6 (M = Mo, W)-Nanopartikeln mit Hilfe berührungsloser Detektion ............114 4.3. Synthese von BiOH(C2O4), BiO(CH3COO) und Bi(CH3COO)3....................................118 5. Zusammenfassung ......................................................................................................127 6. Ausblick .......................................................................................................................131 7. Literatur ......................................................................................................................132 8. Abbildungs- und Tabellenverzeichnis ..........................................................................146 8.1. Abbildungsverzeichnis...............................................................................................146 8.2. Tabellenverzeichnis...................................................................................................152 9. Anhang ........................................................................................................................154 9.1. Synthese und Eigenschaften von nanoskaligen Materialien......................................155 9.1.1. Solvothermalsynthese von Bi2MO6 (M = Mo, W).....................................................155 9.1.2. Phasentransfersynthese von Bi2MO6 (M = Mo, W).................................................156 9.1.3. Synthese der Bismutmolybdate Bi4Ti3O12 und Bi2Ti2O7 .......................................156 9.1.4. Herstellung von Dünnschichten der Systeme Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Sr0.75Ba0.25Nb2O6 .................159 9.2. Funktion der nanoskaligen Materialien ......................................................................164 9.2.1. Spark-Plasma-Sintern..............................................................................................164 9.2.2. Elektro-optische Eigenschaften von Dünnschichten und Kompositmaterialien .........................................................166 9.2.3. Messung der Dampfadsorption an Bi2MO6 (M = Mo, W)-Nanopartikeln mit Hilfe berührungsloser Detektion ...........174 9.3. Synthese von BiOH(C2O4), BiO(CH3COO) und Bi(CH3COO)3.....................................175 9.3.1. DTA-TG-Ergebnisse .................................................................................................175 9.3.2. Kristalldaten und Strukturverfeinerung ...................................................................177 9.4. Quelltexte ..................................................................................................................181 9.4.1. MATLAB-Skript zur Auswertung elektrooptischer Koeffizienten................................181 9.4.2. MATLAB-Skript zur Auswertung dampfadsorptiver Eigenschaften............................182

Page generated in 0.0674 seconds