• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 33
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 93
  • 24
  • 23
  • 19
  • 16
  • 16
  • 15
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Investigations of Structure-Property Relationships in NPI and BODIPY Based Luminescent Material

Mukherjee, Sanjoy January 2015 (has links) (PDF)
Luminescent materials find numerous applications in recent times and have enriched human lives in several different ways. From display and lighting technologies to security, sensing and biological investigations, luminescent organic compounds have become indispensible and often preferred over their inorganic counterparts. The versatility of organic materials arises from their comparative low costs, ease of fine-tuning, low toxicity and the possibility to develop flexible devices. Even until very recent times, the investigations and usage of organic luminescent materials were mostly limited to solution-state properties. However, with progress of available characterisation techniques and parallel development of their usage in solid-state devices and other applications (e.g. security, forensics, sensing etc.), significantly greater attention has been paid to the development and investigations of solid-state emissive organic materials. In solid-state applications, apart from the molecular properties of any given material, their cumulative i.e. bulk physical properties are of even greater importance. Thus, investigations of structure-property relationships in organic luminescent compounds to understand their molecular and bulk properties are of fundamental interest. In this thesis, NPI (1,8-naphthalimide) and BODIPY (boron-dipyrromethene) dyes were investigated to provide a broad overview of their structure-property correlations. Among commonly encountered organic luminescent materials, NPIs and BODIPYs have emerged as two broad classes of luminescent organic compounds, finding applications as functional luminescent materials in various fields. However, lack of understanding for controlling the cumulative emissive properties of these compounds has limited their usage as active solid-state emitters in various applications. This thesis presents several new insights into the molecular and bulk emissive properties of these two classes of luminescent dyes (NPIs and BODIPYs). The contents of the six chapters contained in this thesis are summarised below. Chapter 1 summarises the available understanding of the basic concepts of photoluminescence and the design strategies to develop solid-state luminescent and AIE (aggregation-induced emission) active materials. This chapter also emphasises in the basic nature of the NPI and BODIPY compounds, their substitution patterns and their inherent characteristics and touches upon the relatively unexplored properties of NPI and BODIPY based materials. The importance and scope of the work reported in the thesis is outlined at the end of the chapter. Chapter 2 describes a detailed investigation of a series of seven (4-oxoaryl substituted) NPI compounds (1-7) providing an insight into the molecular and cumulative photophysical behaviour of these compounds. The low ICT characteristics of the NPIs, coupled with the twisted geometry, facilitated solid-state luminescence in these materials. The solution and solid-state luminescent properties of these compounds can be directly correlated to their structural rigidity, nature of substituents and solid-state intermolecular interactions (e.g. π-π stacking, C-H•••O interactions etc.). The solid-state crystal structures of the NPI siblings are profoundly affected by the pendant substituents. All of the NPIs (1-7) show antiparallel dimeric π-π stacking interactions in the solid-state which can further extend in parallel, alternate, orthogonal or lateral fashion depending on the steric and electronic nature of the C-4′ substituents. Structural investigations including Hirsfeld surface analysis methods reveal that while strongly interacting systems show weak to moderate emission in their condensed states, weakly interacting systems show strong emission yields under the same conditions. The nature of packing and extended structures also affects the emission colors of the NPIs in the solid-state. DFT computational studies were utilized to understand the molecular and cumulative electronic behavior of the NPIs. Apart from the investigation of solid-state luminescence, other functional potentials of these NPIs were also explored. One of the compounds (i.e. 4) shows chemodosimetric response towards aqueous Hg(II) species with a ‘turn-on’ response. Also, depending on the molecular flexibility of the compounds, promising AIEE (aggregation-induced emission enhancement) features were observed in these NPIs. Later (in Chapter 3), we developed a systematic investigation in a series of purely organic NPIs, restricting various parameters, to attain a thorough understanding of such AIEE properties. Chapter 3 describes a detailed experimental and computational study in order gain an insight into the AIE (aggregation-induced emission) and AIEE mechanisms in NPI compounds. Systematic structural perturbation was used to fine tune the luminescence properties of three new 1,8-naphthalimides (8-10) in solution and as aggregates. The NPIs (8-10) show blue emission in solution state and the fluorescence quantum yields depend on their molecular rigidity. In concentrated solutions of the NPIs, intermolecular interactions were found to result in quenching of fluorescence. In contrast, upon aggregation (in THF:H2O mixtures), two of the NPIs show aggregation-induced-emission-enhancement (AIEE). The NPIs also show moderately high solid-state emission quantum yields (~10-12.7 %). The AIEE behaviors of the NPIs depend on their molecular rigidity and nature of intermolecular interactions. The NPIs (8-10) show different extents of intermolecular (π-π and C-H•••O) interactions in their solid-state structures depending on their substituents. Detailed photophysical, computational and structural investigations suggest that only an optimal balance of structural flexibility and intermolecular communication is the effective recipe for achieving AIEE characteristics in these NPIs. Chapter 4 presents the design, synthesis and detailed investigations and potential applications of a series of NPI-BODIPY dyads (11-13). The NPI and BODIPY moieties in these dyads are electronically separated by oxoaryl bridges and the compounds only differ structurally with respect to methyl substitutions on the BODIPY fluorophore. The NPI and BODIPY moieties retain their optical features in these molecular dyads (11- 13). Dyads 11-13 show dual emission in solution state originating from the two separate fluorescent units. The variations of the dual emission in these compounds are controlled by the structural flexibility of the systems. The dyads also show significant AIES (Aggregation-Induced-Emission Switching) features upon formation of nano-aggregates in THF-H2O mixtures with visual changes in emission from green to red color. Whereas the flexible and aggregation prone system (i.e. compound 11) shows aggregation-induced enhancement of emission, rigid systems with less favorable intermolecular interactions (i.e. compound 12-13) show aggregation-induced quenching of emission. The emission-intensity vs. the structural-flexibility correlations were found to be reverse in solution and aggregated states. Photophysical and structural investigations suggest that the intermolecular interactions (e.g. π-π stacking etc.) play major role in controlling emission of these compounds in aggregated states. Similar trends were also observed in the solid-state luminescence of these compounds. The applications of the luminescent dyads 11-13 as live-cell imaging dyes was also investigated. Chapter 5 describes investigations of photophysical properties of a series of six BODIPY dyes (14-19) in which there is a systematic alteration of a common -C6H4Si(CH3)3 substituent. Inrelated constitutional isomers, the systematic increment of steric congestion and lowering of molecular symmetry around the BODIPY core result in a steady increment of solution and solid- state fluorescence quantum yields. The increasing fluorescence quantum yields (solution, solid state) with increasing steric congestions show that the molecular free rotation and aggregation-induced fluorescence quenching of BODIPYs can be successfully suppressed by lowering the flexibility of the molecules. Photophysical and DFT investigations reveal that the electronic band gap in any set of these constitutional isomers remain almost similar. However, the crystal structures of the compounds reveal that the solid-state colour and quantum yields of the compounds in solid-state are also related to the nature of intermolecular interactions. Chapter 6 demonstrates the use of DFT computational methods to understand the effect of alkyl groups in governing the basic structural and electronic aspects of BODIPY dyes. As demonstrated in Chapter 4 and Chapter 5, apparently electronically inactive alkyl groups can be of immense importance to control the overall photophysics of BODIPYs. In this context, a systematic strategy su was utilized considering all possible outcomes of constitutionally-isomeric molecules to understand the effects of alkyl groups on the BODIPY molecules. Four different computational methods were employed to ascertain the unanimity of the observed trends associated with the molecular properties. In line with experimental observations, it was found that alkyl substituents in BODIPY dyes situated at 3/5-positions effectively participate in stabilization as well as planarization of such molecules. Screening of all the possible isomeric molecular systems was used to understand the individual properties and overall effects of the typical alkyl substituents in controlling several basic properties of such BODIPY molecules.
82

Elaboration d'édifices multi-chromophoriques à base de DPPs et BODIPYs : vers des applications photovoltaïques / Elaboration of multi-chromophoric scaffolds based on DPPs and BODIPYs : towards photovoltaic applications

Heyer, Elodie 18 July 2014 (has links)
Les travaux réalisés au cours de cette thèse ont consisté en l’élaboration d’édifices multi-chromophoriques pour des applications en cellules solaires organiques. La conception de ces nouveaux matériaux a été guidée par trois paramètres : (i) l’augmentation de la planéité pour une meilleure organisation intermoléculaire ; (ii) la modulation de la fenêtre spectrale d’absorption pour capter un maximum de photons ; (iii) l’enrichissement électronique des matériaux pour faciliter la séparation des charges. Notre choix s’est porté sur les hydrocarbures aromatiques polycycliques, de part leurs propriétés structurantes bien connues. La synthèse du 2-bromodibenzo[g,p]chrysène a été réalisée par des réactions de type Scholl intramoléculaires, puis sa dérivatisation a permis de synthétiser des matériaux correspondants. La mono-fonctionnalisation d’un synthon benzo[1,2-b:3,4-b’:5,6-b’’]trithiophène a également été effectuée. Des BODIPYs dithiényles α-fusionnés ont ensuite été synthétisés selon une procédure originale de couplages oxydants intramoléculaires, permettant d’obtenir des composés plans, fonctionnalisés et fonctionnalisables, tout en contournant la chimie contraignante du pyrrole. L’obtention de dyades et triades à base de DPPs, de BODIPY et de triphénylamines ont permis d’obtenir des composés panchromatiques et d’étudier les phénomènes d’extinction de la fluorescence par spectroscopies statiques et ultrarapides. Un dernier projet a porté sur des édifices de type D-A-D à base de BODIPYs et amines aromatiques tertiaires. / The projects developed in this thesis consisted in the elaboration of multi-chromophoric scaffolds towards applications in bulk heterojunction organic solar cells. The design of the materials was guided by three main parameters: (i) the increase of the planarity to observe a better intermolecular organization; (ii) the broadening of the spectral absorption window in order to maximize the number of absorbed photons; (iii) the increase of the electronic density in order to facilitate the charge separation. First, the structural properties of mono-functionalized polycyclic aromatic hydrocarbons (PAH) were investigated with the synthesis of 2-bromodibenzo[g,p]chrysene by Scholl type reactions, followed by its functionalization and the development of related materials. Then we also focused on another PAH: benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene and its subsequent functionalization. α-Fused dithienyl BODIPYs were then built according to an original procedure based on intramolecular oxidative coupling reactions. Substituted and functionalizable planar compounds were obtained bypassing the instability of the pyrrole ring chemistry. Subsequently, the elaboration of dyads and triads based on DPPs, BODIPY and triphenylamines led to the examination of the fluorescence quenching process by static and ultrafast spectroscopies. A last project consisted in the study and applications of D-A-D edifices based on BODIPYs and ternary aromatic amines.
83

Porphyrines et tétraazamacrocycles dérivés du DOTA : association de deux ligands pour la chélation de métaux d'intérêt en imagerie médicale multimodale / Porphyrins and tetraazamacrocycles derived from DOTA : ligands association for the chelation of metals for medical multimodal imaging

Eggenspiller, Antoine 07 December 2012 (has links)
Le travail présenté dans ce mémoire avait pour but de synthétiser de nouvelles molécules dont l’architecture donne accès à des complexes hétérobimétalliques aux propriétés intéressantes pour l’imagerie médicale multimodale. Dans ce manuscrit plusieurs points principaux ont donc été abordés. La première partie de se travail porte sur la synthèse et la caractérisation des ligands. Nous décrivons dans ce manuscrit la synthèse de cinq nouveaux ligands hétérobismacrocycliques basés sur l’association d’une porphyrine et d’un ou de plusieurs dérivés du cyclène. Ces ligands présentent la particularité d’être solubles en milieux aqueux. Au cours des synthèses, nous avons ciblé les améliorations à apporter à notre travail et élaboré une nouvelle voie de synthèse qui permet d’accéder, en seulement six étapes, à un ligand composé d’une porphyrine, d’un dérivé du cyclène et d’une fonction amine libre qui permettra de greffer le ligand sur un vecteur biologique. La seconde partie de ce manuscrit porte sur l’incorporation de centres métalliques dans les ligands synthétisés ainsi que l’étude de leur efficacité en tant qu’agent de contraste de l’IRM. Nous décrivons la synthèse de cinq complexes de gadolinium (III) et de trois complexes hétérobimétalliques associant du gadolinium (III) et du cuivre (II). En effet, le gadolinium est actuellement utilisé dans les agents de contraste de l’IRM et un des isotopes du cuivre, le cuivre-64, est utilisé en imagerie PET. Nous décrivons un protocole de mesure de la relaxivité des complexes à haut et à bas champs magnétiques. Cinq complexes présentent des valeurs de relaxivité quatre fois supérieures à celles des agents de contraste commerciaux de l’IRM. Le dernier chapitre de ce travail porte sur la synthèse, la caractérisation et les études photophysiques de quatre antennes moléculaires associant des porphyrines et des BODIPY. Nous avons développé deux voies de synthèses originales. La première est basée sur la création de liaisons bore-oxygène en substituant les atomes de fluor portés par l’atome de bore des BODIPY. L’autre voie de synthèse utilise la réaction de cycloaddition dipolaire d’Huisgen. Nous décrivons des études photophysiques qui mettent en évidence des transferts d’énergie du BODIPY vers la porphyrine Nous avons mis en évidence le premier exemple de transfert d’énergie d’une porphyrine vers un BODIPY grâce à un système “blue” BODIPY étendu couplé à des porphyrines par une réaction de chimie “click”. / The goal of my PhD thesis was to synthesize new molecules, which give access to heterobimetallic complexes with interesting properties for multimodal imaging. In this manuscript, several main points have been studied. The first part of this work concerns the synthesis and characterization of ligands. We describe here the synthesis of five new ligands based on the association of one porphyrin and one or several cyclen derivatives. Those ligands are water-soluble. During the synthesis, we have targeted improvements to our work and developed a new synthetic pathway, which allowed us to obtain one ligand incorporating a porphyrin, a cyclen derivative and a free amine function. This function could be activated to further graft the ligand onto a biological vector. The second part of this manuscript describes the chelation of metallic centers into the ligands and the study of their efficiency as MRI contrast agents. We describe the synthesis of five gadolinium (III) complexes and three heterobimetallic complexes associating gadolinium (III) with copper (II). Indeed, gadolinium is currently used in contrast agents for MRI and the radioactive isotope of copper, copper-64 is used in PET imaging. We describe also a procedure to measure the relaxivity of the gadolinium complexes at low and high magnetic fields. Five complexes exhibit relaxivity values five times larger than commercially available MRI contrast agents. The last part of this work is related to the synthesis, characterization and photophysical studies of four molecular antennas incorporating porphyrins and BODIPY. We describe two original synthetic pathways. The first one is based on the formation of boron-oxygen bonds by substitution of the fluorine atoms bound to BODIPY boron atom. The second synthetic pathway involves the Huisgen’s dipolar cycloaddition. We describe photophysical data and give evidences of the energy transfer from BODIPY to porphyrin. We present also the first example of energy transfer from porphyrin to BODIPY in the system obtained by “click” chemistry involving an extended “blue” BODIPY.
84

Infrared Absorber Materials in Organic Small Molecule Solar Cells / Infrarotabsorber in Organischen Oligomersolarzellen

Müller, Toni 08 September 2015 (has links) (PDF)
Broadening the spectrum available to solar cells towards infrared wavelengths is one way to increase efficiency of organic solar devices. This thesis explores the possibilities of these organic heterojunction devices and two different material classes in thin films and organic solar devices: tin phthalocyanines (SnPcs) and aza-bodipys. To estimate the efficiency reachable under sunlight, model calculations are done for single and tandem cells. These calculations include a distinction between the optical gap and the electrical gap and the splitting of the quasi-Fermi levels. With a number of assumptions, e.g. a fill factor (FF) and an external quantum efficiency (EQE) within the absorption range of 65%, the resulting efficiencies are 15% in a single cell and of 21% in a tandem cell. Halogenation is known to lower the energy levels of molecules without chang-ing the optical band gap. Three different fluorinated and chlorinated SnPcs are investigated and compared to the neat SnPc. While chlorination of SnPc worsens the transport properties of the active layer leading to a lowered FF, the fluorina-tion of SnPc results in the intended increase in VOC and, consequently, efficiency for planar heterojunctions. In bulk heterojunction, however, fluorination does not change the efficiency probably due to the unstably bound fluorine. One method to modify the ionization potential (IP) and the absorption of the second material class, the aza-bodipys, is the annulation of the benzene ring. The energy levels determined by CV and UPS measurement and DFT-calculation show very good agreement and can be linked to a decrease in VOC: The Ph4-bodipy (not benzannulated) device has an efficiency of 1.2% with an EQE reaching up to 800nm and a VOC of almost 1V. The Ph2-benz-bodipy device shows a Voc of 0.65V and an efficiency of 1.1%, the EQE reaching up to 860nm. The variation of the molecule’s end groups to vary their IP is successfully employed for three different benz-bodipys: The variation results in a decrease of the optical gap from 1.5eV for the phenyl group, to 1.4eV for the MeO group, and 1.3eV for the thiophene group with the effective gap and the VOC following this trend. Efficiencies of 1.1% and 0.6% in combination with C60 can be reached in mip-type devices. Ph2-benz-bodipy is then optimized into a single cell with an efficiency of 2.9%. In a tandem cell with DCV6T-Bu4:C60, a Voc of 1.7V, a FF of 57% and an efficiency of 5% is reached. / Die Erweiterung des verfügbaren Spektrums in den Infrarotbereich ist eine Möglichkeit, die Effizienz organischer Solarzellen zu erhöhen. Diese Arbeit erkundet das Potential dieser Heteroübergänge und zwei Materialklassen in dünnen Schichten und Bauelementen: Zinnphthalozyanine (SnPc) und aza-Bodipys. Um die potentielle Effizienz abzuschäötzen, werden Modellberechnungen für Einzel- und Tandemzellen durchgeführt, unter Berücksichtigung des Unterschieds von optischer und elektrischer Bandlücke und der Quasiferminiveauaufspaltung. Mithilfe einiger Annahmen (z.B. Füllfaktor (FF) und externe Quanteneffizienz (EQE) gleich 65%) lässt sich die Einzelzelleffizienz auf 15%, die Tandemzelleffizienz auf 21% abschätzen. Halogenierung kann die Energieniveaus organischer Moleküle herabsetzen, ohne die optische Bandlücke zu verändern. Drei verschiedene chlorierte und fluorierte SnPcs werden mit dem reinen SnPc verglichen. Während die Chlorierung die Transporteigenschaften der aktiven Schicht und den FF verschlechtern, erhöht die Fluorierung wie erwartet Leerlaufspannung (VOC) und Effizienz im flachen Übergang, nicht jedoch in der Mischschicht, vermutlich aufgrund des nicht stabil gebundenen Fluors. Ein Weg, Ionisationspotential (IP) und Absorption der aza-Bodipy zu verändern, ist die Anelierung des Benzenrings. Die durch CV und UPS ermittelten und mittels DFT errechneten Energieniveaus stimmen gut überein und führen zu einer Verringerung der VOC: Die Zelle mit nichtaniliertem Ph4-bodipy zeigt eine Effizienz von 1.2%; das EQE reicht bis 800nm, die VOC beträgt fast 1V. Die Ph2-benz-bodipy-Zelle zeigt eine VOC von 0.65V und eine Effizienz von 1.1%, das EQE reicht bis 860nm. Der Austausch der Endgruppen zur Vergrößerung des IP, erfolgreich angewandt auf drei Benz-Bodipy-Verbindungen, führt zu einer Verringerung der optischen Bandlücke: von 1.5eV (Phenyl) über 1.4eV (MeO) zu 1.3eV (Thiophen); effektive Bandlücke und Voc folgen diesem Trend. Effizienzen von 1.1% und 0.6% in Kombination mit C60 werden in mip-Zellen erreicht. Ph2-benz-bodipy zeigt in einer optimierten nip-Zelle sogar eine Effizienz von 2.9%. Eine Tandemzelle mit DCV6T-Bu4:C60 zeigt eine Voc von 1.7V, einen FF von 57% und eine Effizienz von 5%.
85

Infrared Absorber Materials in Organic Small Molecule Solar Cells

Müller, Toni 24 August 2015 (has links)
Broadening the spectrum available to solar cells towards infrared wavelengths is one way to increase efficiency of organic solar devices. This thesis explores the possibilities of these organic heterojunction devices and two different material classes in thin films and organic solar devices: tin phthalocyanines (SnPcs) and aza-bodipys. To estimate the efficiency reachable under sunlight, model calculations are done for single and tandem cells. These calculations include a distinction between the optical gap and the electrical gap and the splitting of the quasi-Fermi levels. With a number of assumptions, e.g. a fill factor (FF) and an external quantum efficiency (EQE) within the absorption range of 65%, the resulting efficiencies are 15% in a single cell and of 21% in a tandem cell. Halogenation is known to lower the energy levels of molecules without chang-ing the optical band gap. Three different fluorinated and chlorinated SnPcs are investigated and compared to the neat SnPc. While chlorination of SnPc worsens the transport properties of the active layer leading to a lowered FF, the fluorina-tion of SnPc results in the intended increase in VOC and, consequently, efficiency for planar heterojunctions. In bulk heterojunction, however, fluorination does not change the efficiency probably due to the unstably bound fluorine. One method to modify the ionization potential (IP) and the absorption of the second material class, the aza-bodipys, is the annulation of the benzene ring. The energy levels determined by CV and UPS measurement and DFT-calculation show very good agreement and can be linked to a decrease in VOC: The Ph4-bodipy (not benzannulated) device has an efficiency of 1.2% with an EQE reaching up to 800nm and a VOC of almost 1V. The Ph2-benz-bodipy device shows a Voc of 0.65V and an efficiency of 1.1%, the EQE reaching up to 860nm. The variation of the molecule’s end groups to vary their IP is successfully employed for three different benz-bodipys: The variation results in a decrease of the optical gap from 1.5eV for the phenyl group, to 1.4eV for the MeO group, and 1.3eV for the thiophene group with the effective gap and the VOC following this trend. Efficiencies of 1.1% and 0.6% in combination with C60 can be reached in mip-type devices. Ph2-benz-bodipy is then optimized into a single cell with an efficiency of 2.9%. In a tandem cell with DCV6T-Bu4:C60, a Voc of 1.7V, a FF of 57% and an efficiency of 5% is reached.:1 Introduction 13 2 Physics of Organic Solids 15 2.1 Organic Molecular Crystals . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 Delocalization in Conjugated Systems . . . . . . . . . . . . 16 2.2 Energies and Excitations . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Organic Molecules . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2 Organic Solids . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.3 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Charge Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 Doping of Organic Semiconductors . . . . . . . . . . . . . 26 3 Physics of Photovoltaics 29 3.1 Photovoltaics in General 29 3.1.1 pn-Junction 31 3.1.2 Quasi-Fermi Levels . . . . . . . . . . . . . . . . . . . . . . 37 3.1.3 pin-Concept - Semipermeable Membranes . . . . . . . . . 40 3.1.4 Efficiency Limits . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Organic Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 Organic Heterojunctions . . . . . . . . . . . . . . . . . . . 45 3.2.2 Recombination Processes . . . . . . . . . . . . . . . . . . . 50 3.2.3 Transport Layers – pin-Concept in OSC . . . . . . . . . . 52 4 Materials and Experimental Setups 57 4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.1 Buckminsterfullerene C60 . . . . . . . . . . . . . . . . . . . 57 4.1.2 Transport Materials . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.1 Characterization of Thin Layers . . . . . . . . . . . . . . . 65 4.3.2 Characterization of Solar Cells . . . . . . . . . . . . . . . . 69 4 Contents 5 Efficiency of an Organic Solar Cell 75 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.1 The Power Conversion Efficiency . . . . . . . . . . . . . . 76 5.2.2 Optical Gap and Short-Circuit Current Density . . . . . . 76 5.2.3 Open-Circuit Voltage and Splitting of Quasi-Fermi Levels . 77 5.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.1 Single Heterojunction Solar Cells . . . . . . . . . . . . . . 79 5.3.2 Tandem Heterojunction Solar Cells . . . . . . . . . . . . . 80 5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6 Tin Phthalocyanines in Organic Solar Cells 83 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.2 Material Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3 Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.1 Planar Heterojunctions . . . . . . . . . . . . . . . . . . . . 89 6.3.2 Bulk Heterojunctions . . . . . . . . . . . . . . . . . . . . . 91 6.3.3 Photoelectron Spectroscopy . . . . . . . . . . . . . . . . . 95 6.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7 Benzannulation of Aza-Bodipy Dyes 97 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.2 Properties of Bodipys . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.2.1 Chemical Preparation . . . . . . . . . . . . . . . . . . . . 99 7.2.2 Solution and Thin Film Properties . . . . . . . . . . . . . 99 7.3 Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8 Effect of End Group Variation on Aza-Bodipy Dyes 111 8.1 Thin Film Properties . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.1.1 Optical Properties . . . . . . . . . . . . . . . . . . . . . . 112 8.1.2 Energetic Properties . . . . . . . . . . . . . . . . . . . . . 113 8.1.3 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.2 Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 9 Optimization of Infrared Absorbing Organic Solar Cells 123 9.1 Optimization of the Single Cell . . . . . . . . . . . . . . . . . . . 123 9.1.1 Optimized Single Device . . . . . . . . . . . . . . . . . . . 128 9.1.2 Device Lifetime . . . . . . . . . . . . . . . . . . . . . . . . 129 9.2 Tandem Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 131 9.2.1 Summary and Outlook . . . . . . . . . . . . . . . . . . . . 136 10 Summary and Outlook 139 Bibliography 145 List of Abbreviations 165 Acknowledgments 167 / Die Erweiterung des verfügbaren Spektrums in den Infrarotbereich ist eine Möglichkeit, die Effizienz organischer Solarzellen zu erhöhen. Diese Arbeit erkundet das Potential dieser Heteroübergänge und zwei Materialklassen in dünnen Schichten und Bauelementen: Zinnphthalozyanine (SnPc) und aza-Bodipys. Um die potentielle Effizienz abzuschäötzen, werden Modellberechnungen für Einzel- und Tandemzellen durchgeführt, unter Berücksichtigung des Unterschieds von optischer und elektrischer Bandlücke und der Quasiferminiveauaufspaltung. Mithilfe einiger Annahmen (z.B. Füllfaktor (FF) und externe Quanteneffizienz (EQE) gleich 65%) lässt sich die Einzelzelleffizienz auf 15%, die Tandemzelleffizienz auf 21% abschätzen. Halogenierung kann die Energieniveaus organischer Moleküle herabsetzen, ohne die optische Bandlücke zu verändern. Drei verschiedene chlorierte und fluorierte SnPcs werden mit dem reinen SnPc verglichen. Während die Chlorierung die Transporteigenschaften der aktiven Schicht und den FF verschlechtern, erhöht die Fluorierung wie erwartet Leerlaufspannung (VOC) und Effizienz im flachen Übergang, nicht jedoch in der Mischschicht, vermutlich aufgrund des nicht stabil gebundenen Fluors. Ein Weg, Ionisationspotential (IP) und Absorption der aza-Bodipy zu verändern, ist die Anelierung des Benzenrings. Die durch CV und UPS ermittelten und mittels DFT errechneten Energieniveaus stimmen gut überein und führen zu einer Verringerung der VOC: Die Zelle mit nichtaniliertem Ph4-bodipy zeigt eine Effizienz von 1.2%; das EQE reicht bis 800nm, die VOC beträgt fast 1V. Die Ph2-benz-bodipy-Zelle zeigt eine VOC von 0.65V und eine Effizienz von 1.1%, das EQE reicht bis 860nm. Der Austausch der Endgruppen zur Vergrößerung des IP, erfolgreich angewandt auf drei Benz-Bodipy-Verbindungen, führt zu einer Verringerung der optischen Bandlücke: von 1.5eV (Phenyl) über 1.4eV (MeO) zu 1.3eV (Thiophen); effektive Bandlücke und Voc folgen diesem Trend. Effizienzen von 1.1% und 0.6% in Kombination mit C60 werden in mip-Zellen erreicht. Ph2-benz-bodipy zeigt in einer optimierten nip-Zelle sogar eine Effizienz von 2.9%. Eine Tandemzelle mit DCV6T-Bu4:C60 zeigt eine Voc von 1.7V, einen FF von 57% und eine Effizienz von 5%.:1 Introduction 13 2 Physics of Organic Solids 15 2.1 Organic Molecular Crystals . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 Delocalization in Conjugated Systems . . . . . . . . . . . . 16 2.2 Energies and Excitations . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Organic Molecules . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2 Organic Solids . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.3 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Charge Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 Doping of Organic Semiconductors . . . . . . . . . . . . . 26 3 Physics of Photovoltaics 29 3.1 Photovoltaics in General 29 3.1.1 pn-Junction 31 3.1.2 Quasi-Fermi Levels . . . . . . . . . . . . . . . . . . . . . . 37 3.1.3 pin-Concept - Semipermeable Membranes . . . . . . . . . 40 3.1.4 Efficiency Limits . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Organic Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 Organic Heterojunctions . . . . . . . . . . . . . . . . . . . 45 3.2.2 Recombination Processes . . . . . . . . . . . . . . . . . . . 50 3.2.3 Transport Layers – pin-Concept in OSC . . . . . . . . . . 52 4 Materials and Experimental Setups 57 4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.1 Buckminsterfullerene C60 . . . . . . . . . . . . . . . . . . . 57 4.1.2 Transport Materials . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.1 Characterization of Thin Layers . . . . . . . . . . . . . . . 65 4.3.2 Characterization of Solar Cells . . . . . . . . . . . . . . . . 69 4 Contents 5 Efficiency of an Organic Solar Cell 75 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.1 The Power Conversion Efficiency . . . . . . . . . . . . . . 76 5.2.2 Optical Gap and Short-Circuit Current Density . . . . . . 76 5.2.3 Open-Circuit Voltage and Splitting of Quasi-Fermi Levels . 77 5.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.1 Single Heterojunction Solar Cells . . . . . . . . . . . . . . 79 5.3.2 Tandem Heterojunction Solar Cells . . . . . . . . . . . . . 80 5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6 Tin Phthalocyanines in Organic Solar Cells 83 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.2 Material Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3 Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.1 Planar Heterojunctions . . . . . . . . . . . . . . . . . . . . 89 6.3.2 Bulk Heterojunctions . . . . . . . . . . . . . . . . . . . . . 91 6.3.3 Photoelectron Spectroscopy . . . . . . . . . . . . . . . . . 95 6.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7 Benzannulation of Aza-Bodipy Dyes 97 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.2 Properties of Bodipys . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.2.1 Chemical Preparation . . . . . . . . . . . . . . . . . . . . 99 7.2.2 Solution and Thin Film Properties . . . . . . . . . . . . . 99 7.3 Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8 Effect of End Group Variation on Aza-Bodipy Dyes 111 8.1 Thin Film Properties . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.1.1 Optical Properties . . . . . . . . . . . . . . . . . . . . . . 112 8.1.2 Energetic Properties . . . . . . . . . . . . . . . . . . . . . 113 8.1.3 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.2 Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 9 Optimization of Infrared Absorbing Organic Solar Cells 123 9.1 Optimization of the Single Cell . . . . . . . . . . . . . . . . . . . 123 9.1.1 Optimized Single Device . . . . . . . . . . . . . . . . . . . 128 9.1.2 Device Lifetime . . . . . . . . . . . . . . . . . . . . . . . . 129 9.2 Tandem Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 131 9.2.1 Summary and Outlook . . . . . . . . . . . . . . . . . . . . 136 10 Summary and Outlook 139 Bibliography 145 List of Abbreviations 165 Acknowledgments 167
86

Homoleptic Co(II), Ni(II), Cu(II), Zn(II) and Hg(II) complexes of bis-(phenyl)-diisoindol-aza-methene

Gresser, Roland, Hoyer, Alexander, Hummert, Markus, Hartmann, Horst, Leo, Karl, Riede, Moritz 31 March 2014 (has links) (PDF)
The synthesis of five homoleptic transition metal complexes of bis-(phenyl)-diisoindol-aza-methene is described together with the optical, electrochemical and thermal properties of these compounds. Additionally, crystal structures for the Co and the Zn complex are reported. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
87

Material and device design for organic photovoltaics

Howells, Calvyn T. January 2015 (has links)
This thesis presents novel materials for photovoltaic conversion. The materials described are solution-processable organic semiconductors and have been used in the fabrication of organic photovoltaic cells (OPVs). The widely used PEDOT:PSS layer was investigated in P3HT and PTB7 photovoltaics. By doping, the efficiencies recorded were amongst the highest reported in the field using a conventional architecture. Two low band-gap BODIPY-based polymers were introduced and shown to have properties favourable for optoelectronics. Photovoltaics consisting solely of the polymers as the active component surpassed the performance expected without the use of an acceptor, indicating ambipolar behaviour, which was verified by charge carrier mobility measurements. When blended with an acceptor, the devices demonstrated a short-circuit current density similar to that of P3HT, a well-studied and successful OPV material. They also revealed a broad spectral response and were shown to operate as photodiodes. Two small molecules containing diketopyrrolopyrrole (DPP) and BODIPY were introduced and characterised. The addition of thiophenes red shifted the absorption but did not result in a sufficient bathochromic shift. Instead, a propensity to aggregate limited the performance. PLQY measurements showed the aggregation to quench luminescence. The study demonstrated the importance of controlling aggregation for efficient devices. Two solution-processable small molecules with a germanium-bridged spiro centre were investigated, and the molecular, electrochemical and optical properties discussed. The small molecule with shorter conjugation length exhibited an interesting packing motif shown to be favourable for charge transport. The mobility measurements were an order of magnitude higher than those reported for sexithiophene, a small molecule analogue, and the same order of magnitude as P3HT. The two-dimensional charge transporting nature of the material was verified with two independent techniques: time of flight (TOF) and organic field-effect transistor (OFET) measurements. The mobility of the material was found to vary with annealing, a result of morphological changes. These were studied with optical, electron and scanning probe microscopies. By controlling the morphology with the implementation of a well-defined annealing method, it was possible to improve the performance of OFETs and planar-heterojunction OPVs. Solution-processed bulk-heterojunction OPVs were fabricated, characterised and optimised with Ge spiro molecules. A PCE similar to that of P3HT, 2.66 %, was achieved for the one, whilst a PCE of 1.60 % was obtained for the other. The results are encouraging, and there is scope for improvement by increasing the overlap between the absorption and solar spectrum, for example.
88

Porphyrines et tétraazamacrocycles dérivés du DOTA : association de deux ligands pour la chélation de métaux d'intérêt en imagerie médicale multimodale

Eggenspiller, Antoine 07 December 2012 (has links) (PDF)
Le travail présenté dans ce mémoire avait pour but de synthétiser de nouvelles molécules dont l'architecture donne accès à des complexes hétérobimétalliques aux propriétés intéressantes pour l'imagerie médicale multimodale. Dans ce manuscrit plusieurs points principaux ont donc été abordés. La première partie de se travail porte sur la synthèse et la caractérisation des ligands. Nous décrivons dans ce manuscrit la synthèse de cinq nouveaux ligands hétérobismacrocycliques basés sur l'association d'une porphyrine et d'un ou de plusieurs dérivés du cyclène. Ces ligands présentent la particularité d'être solubles en milieux aqueux. Au cours des synthèses, nous avons ciblé les améliorations à apporter à notre travail et élaboré une nouvelle voie de synthèse qui permet d'accéder, en seulement six étapes, à un ligand composé d'une porphyrine, d'un dérivé du cyclène et d'une fonction amine libre qui permettra de greffer le ligand sur un vecteur biologique. La seconde partie de ce manuscrit porte sur l'incorporation de centres métalliques dans les ligands synthétisés ainsi que l'étude de leur efficacité en tant qu'agent de contraste de l'IRM. Nous décrivons la synthèse de cinq complexes de gadolinium (III) et de trois complexes hétérobimétalliques associant du gadolinium (III) et du cuivre (II). En effet, le gadolinium est actuellement utilisé dans les agents de contraste de l'IRM et un des isotopes du cuivre, le cuivre-64, est utilisé en imagerie PET. Nous décrivons un protocole de mesure de la relaxivité des complexes à haut et à bas champs magnétiques. Cinq complexes présentent des valeurs de relaxivité quatre fois supérieures à celles des agents de contraste commerciaux de l'IRM. Le dernier chapitre de ce travail porte sur la synthèse, la caractérisation et les études photophysiques de quatre antennes moléculaires associant des porphyrines et des BODIPY. Nous avons développé deux voies de synthèses originales. La première est basée sur la création de liaisons bore-oxygène en substituant les atomes de fluor portés par l'atome de bore des BODIPY. L'autre voie de synthèse utilise la réaction de cycloaddition dipolaire d'Huisgen. Nous décrivons des études photophysiques qui mettent en évidence des transferts d'énergie du BODIPY vers la porphyrine Nous avons mis en évidence le premier exemple de transfert d'énergie d'une porphyrine vers un BODIPY grâce à un système "blue" BODIPY étendu couplé à des porphyrines par une réaction de chimie "click".
89

Homoleptic Co(II), Ni(II), Cu(II), Zn(II) and Hg(II) complexes of bis-(phenyl)-diisoindol-aza-methene

Gresser, Roland, Hoyer, Alexander, Hummert, Markus, Hartmann, Horst, Leo, Karl, Riede, Moritz January 2011 (has links)
The synthesis of five homoleptic transition metal complexes of bis-(phenyl)-diisoindol-aza-methene is described together with the optical, electrochemical and thermal properties of these compounds. Additionally, crystal structures for the Co and the Zn complex are reported. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
90

Développement et caractérisation de dérivés dipyrrométhène pour des applications dans le domaine du photovoltaïque

Yvon-Bessette, André 09 1900 (has links)
Ce projet de recherche mené en collaboration industrielle avec St-Jean Photochimie Inc. / PCAS Canada vise le développement et la caractérisation de dérivés dipyrrométhène pour des applications dans le domaine du photovoltaïque. La quête du récoltage des photons se situant dans le proche-infrarouge a été au centre des modifications structurales explorées afin d’augmenter l’efficacité de conversion des cellules solaires de type organique et à pigments photosensibles. Trois familles de composés intégrant le motif dipyrrométhène ont été synthétisées et caractérisées du point de vue spectroscopique, électrochimique, structural ainsi que par modélisation moléculaire afin d’établir des relations structures-propriétés. La première famille comporte six azadipyrrométhènes au potentiel de coordination tétradentate sur des centres métalliques. Le développement d’une nouvelle voie synthétique asymétrique combinée à l’utilisation d’une voie symétrique classique ont permis d’obtenir l’ensemble des combinaisons de substituants possibles sur les aryles proximaux incluant les noyaux 2-hydroxyphényle, 2-méthoxyphényle et 2- pyridyle. La modulation du maximum d’absorption dans le rouge a pu être faite entre 598 et 619 nm. De même, la présence de groupements méthoxyle ou hydroxyle augmente l’absorption dans le violet (~410 nm) tel que démontré par modélisation. La caractérisation électrochimique a montré que les dérivés tétradentates étaient en général moins stables aux processus redox que leur contre-parti bidentate. La deuxième famille comporte dix dérivés BODIPY fusionnés de façon asymétrique en position [b]. L’aryle proximal a été modifié de façon systématique afin de mieux comprendre l’impact des substituents riches en électron et de la fusion de cycles aromatiques. De plus, ces dérivés ont été mis en relation avec une vaste série de composés analogues. Les résultats empiriques ont montré que les propriétés optoélectroniques de la plateforme sont régies par le degré de communication électronique entre l’aryle proximal, le pyrrole sur lequel il est attaché et le noyau indolique adjacent à ce dernier. Les maximums d’absorption dans le rouge sont modulables entre 547 et 628 nm et la fluorescence des composés se situe dans le proche- infrarouge. L’un des composé s’est révélé souhaitable pour une utilisation en photovoltaïque ainsi qu’à titre de sonde à pH. La troisième famille comporte cinq complexes neutres de RuII basés sur des polypyridines et portant un ligand azadipyrrométhène cyclométalé. Les composés ont montré une forte absorption de photons dans la région de 600 à 800 nm (rouge à proche- infrarouge) et qui a pu être étendue au-delà de 1100 nm dans le cas des dérivés portant un ligand terpyridine. L’analyse des propriétés optoélectroniques de façon empirique et théorique a montré un impact significatif de la cyclométalation et ouvert la voie pour leur étude en tant que photosensibilisateurs en OPV et en DSSC. La capacité d’un des complexes à photo-injecter un électron dans la bande de conduction du semi-conducteur TiO2 a été démontré en collaboration avec le groupe du Pr Gerald J. Meyer à University of North Carolina at Chapel Hill, premier pas vers une utilisation dans les cellules solaires à pigments photosensibles. La stabilité des complexes en solution s’est toutefois avérée problématique et des pistes de solutions sont suggérées basées sur les connaissances acquises dans le cadre de cette thèse. / This research project carried out in industrial collaboration with Saint-Jean Photochemicals Inc. / PCAS Canada aims at the development and characterization of dipyrromethene derivatives for photovoltaic applications. The quest for harvesting near- infrared photons was the central focus and various structural modifications were explored to improve the power conversion efficiency of organic and dye-sensitized solar cells (OPV and DSSC, respectively). Three families of chromophores which embedded a dipyrromethene motif were synthesized and characterized through spectroscopy, electrochemistry, X-ray diffraction and computationnal modelization in order to establish their structure-properties relationship. The first family includes six azadipyrromethenes with potential for tetradentate coordination on metallic centers. The development of a new asymmetric synthetic route together with the classical symmetric one allowed access to all possible combinations of derivatives including 2-hydroxyphenyl, 2-methoxyphenyl and 2-pyridyl substituents in the proximal position of the dipyrromethene. Modulation of the absorption maxima in the red ranged between 598 and 619 nm. Also, having methoxy or hydroxy substituents provided an increase of the violet absorption (~410 nm) as established by modelization. Electrochemical characterization showed that the tetradentate azadipyrromethenes were generally less stable towards redox processes as compared to their bidentate counter- parts. The second family includes ten asymmetric benzo[b]-fused BODIPYs where the proximal aryl was systematically modified in order to assess the impact of electron-rich substituents and fused aromatic cycles. The derivatives were further compared to a wide series of related BODIPYs. Empirical results showed the optoelectronic properties are dictated by the extend of electronic communication between the proximal aryl, the pyrrol to which it is attached and the adjacent indolic moiety. Absorption maxima in the red were modulated between 547 nm and 628 nm and the fluorescence was in the near-infrared. One compound proved to be a potential candidate for photovoltaic and pH probe applications. The third family includes five neutral RuII polypyridine complexes bearing a cyclometalated azadipyrromethene ligand. The compounds exhibit strong light absorption in the 600 – 800 nm range (red to near-infrared) that tails beyond 1100 nm in the terpyridine-based adducts. Analysis of the optoelectronic properties showed a significant impact of this novel cyclometalation strategy for dipyrromethene derivatives and paved the way for further incorporation of the resulting complexes as photosensitizers in OPV and DSSC. In collaboration with the group of Pr Gerald J. Meyer at the University of North Carolina at Chapel Hill, the capacity of one compound to photo-inject its electron into the conduction band of the TiO2 semiconductor was established, a first step towards their use in dye-sensitized solar cells. The structural instability in solution of the complexes hindered their full potential for photovoltaic applications and suggestions to improve them are proposed based on the knowledge acquired in the course of this thesis.

Page generated in 0.0459 seconds