• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 16
  • 15
  • 9
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 154
  • 154
  • 24
  • 22
  • 16
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Reproductive success, dimorphism and sex allocation in the brown falcon Falco berigora

McDonald, Paul, Paul.McDonald@latrobe.edu.au January 2003 (has links)
This project describes various aspects of the breeding ecology and behaviour of the brown falcon Falco berigora, a common but poorly study Australian raptor. In particular it examines (a) the main influences on reproductive success; (b) tests predictions of theories proposed to explain the evolution and maintenance of sexual size dimorphism (RSD; females the larger sex) in raptors; and (c) investigates sex allocation patterns in the light of current sex ratio and parental investment theory. The study was conducted between July 1999 and June 2002 approximately 35 km southwest of Melbourne, at the Western Treatment Plant (WTP), Werribee (38°0’S 144°34’E) and surrounds, a total area of approximately 150 km2.¶ · In all plumage and bare part colouration of 160 free-flying falcons was described. The majority of variation in these characters could be attributed to distinct age and/or sex differences as opposed to previously described colour ‘morphs’.¶ · Nestling chronology and development is described and formulae based on wing length derived for determining nestling age. An accurate field-based test for determining nestling sex at banding age is also presented.¶ · Strong sex role differentiation was apparent during breeding; typical of falcons females performed most parental duties whilst males predominantly hunted for their brood and partner. Based on observations of marked individuals, both sexes of brown falcons aggressively defended mutual territories throughout the year, with just 10% of each sex changing territories during the entire study period. Males performed territorial displays more frequently than females, the latter rarely displaying alone.¶ · The diet of the population as a whole was very broad, but within pairs both sexes predominantly specialised on either lagomorphs, small ground prey (e.g. house mice Mus musculus), small birds, large birds or reptiles, according to availability.¶ · Reproductive parameters such as clutch size and the duration of parental care were constant across all years, however marked annual differences in brood size and the proportion of pairs breeding were evident.¶ · Age was an important influence upon reproductive success and survival, with immature birds inferior to adults in both areas. However, interannual differences were by far the most influential factor on breeding success and female survival. Heavy rain downpours were implicated as the main determinant of reproductive success and adult female mortality in a population largely devoid of predation or human interference.¶ · Female-female competition for territorial vacancies was intense; larger adult females were more likely to be recruited and once breeding fledged more offspring. In contrast, male recruitment and breeding success was unrelated to either body size or condition indices, although smaller immature males were more likely to survive to the next breeding season. This directional selection is consistent only with the predictions of the intrasexual competition hypothesis.¶ · Despite marked RSD (males c. 75% of female body mass), throughout the nestling phase female nestlings did not require greater quantities of food than their male siblings. However, female parents fed their last-hatched sons but not daughters, resulting in the complete mortality of all last-hatched female offspring in focal nests. Given last-hatched nestlings suffered markedly reduced growth rates and female, but not male, body size is important in determining recruitment patterns, the biased allocation amongst last-hatched offspring is likely to reflect differing benefits associated with investing in small members of each sex, consistent with broad-scale Trivers-Willard effects. Recruitment patterns support this, with surviving last-hatched females, in contrast to males, unable to gain recruitment into the breeding population upon their return to the study site.¶ Thus selection appears to act at the nestling, immature and adult stages to maintain RSD in the focal population. Larger females were favoured in the nestling phase, at recruitment and once breeding had greater reproductive success. In contrast, selection favoured a reduction or maintenance of immature male size as smaller birds had a greater chance of survival in the year following recruitment than their larger counterparts; thereafter male size was unimportant. Together, this directional selection favouring increased female competitive ability is consistent only with the predictions of the intrasexual competition hypothesis, which appears the most probable in explaining the maintenance and perhaps evolution of RSD in raptors.
112

Local Adaptation, Countergradient Variation and Ecological Genetics of Life-history Traits in <i>Rana Temporaria</i>

Laugen, Ane Timenes January 2003 (has links)
<p>The main aim of this work was to identify local adaptation processes in amphibian populations, thereby improving the general understanding of genetics and mechanisms behind the evolution and maintenance of biological diversity. Phenotypic and genetic variation in life-history traits was studied within and between populations common frog (<i>Rana temporaria</i>) populations along a 1600 km transect from southern Sweden to northern Finland.</p><p>Embryonic and larval development and growth was investigated both under field and laboratory conditions. The results suggest ample genetic diversity in larval life-history traits among Fennoscandian common frog populations. Larval developmental rate along the gradient has evolved a countergradient variation pattern of genotypes and phenotypes as indicated by the positive relationship between developmental rate and latitude under laboratory conditions and the lack of such a relationship in the field. The data suggest that this pattern has evolved because of time constraints due to decreasing length of growth season with latitude. Neither field-caught adults nor laboratory raised larvae displayed a linear latitudinal size cline as expected from the so called Bergmanns rule. Rather, size increased towards the mid-latitude populations and decreased thereafter, indicating that body size is a product of direct environmental induction or a trade-off with other life-history characters. Age and size at hatching showed no consistent latitudinal pattern, indicating that the embryonic stage is not as time constrained as the larval stage.</p><p>A large part of the variation in age and size at metamorphosis among populations was due to additive genetic effects. However, small, but significant maternal effects, mostly due to variation in egg size and non-additive genetic effects also contributed to among population variation. A comparison of divergence in presumably neutral molecular genetic markers (F<sub>ST</sub>) and quantitative characters (Q<sub>ST</sub>) revealed that although both estimates of divergence were relatively high, estimates of Q<sub>ST</sub> was generally higher than those of F<sub>ST</sub>, indicating that the genetic variation observed in larval traits is primarily a result of natural selection rather than genetic drift. Hence, our results reinforce the conclusion that intraspecific genetic heterogeneity in the young northern European ecosystems may be more widespread than previously anticipated</p>
113

Aspects of locomotor evolution in the Carnivora (Mammalia)

Andersson, Ki January 2003 (has links)
<p>In this thesis, the shape of the distal humerus trochlea is analysed using landmark-based morphometrics and multivariate methods, with the aim of exploring locomotor evolution in carnivorans. Elbow joint morphology is used together with body size and craniodental morphology to characterize past and present carnivorans. Evolutionary implications are studied at the ordinal, familial, and species levels, testing specific hypotheses about scaling, morphological constraints, evolutionary trajectories, and potential for social pack-hunting behaviour. The circumference of the distal humerus trochlea is found to be highly correlated with body mass, and appears to scale similarly throughout the order Carnivora. A general predictive model for carnivoran bodymass is presented (a=0.601; b= 2.552; r2=0.952, SEE=0.136, p<0001, n=92), which removes the need for the investigator to actively choose between the diverging estimates that different predictors and their equations often produce. At the elbow joint, manual manipulation and locomotion appear to be conflicting functions, thus suggesting mutually exclusive lifestyles involving either forelimb grappling or pursuit. At large body sizes, carnivorans are distributed over a strongly dichotomised pattern (grappling or locomotion), a pattern coinciding with the postulated threshold in predator-prey size ratio at 21.5-25 kg. This pattern is compared to that of two carnivoran faunas from the Tertiary. In the Oligocene (33.7-23.8 Myr BP), the overall pattern is remarkably similar to that observed for extant Carnivora. In the Miocene (23.8-11.2 Myr BP) carnivores show a similarly dichotomised pattern as the Oligocene and Recent, although the whole pattern is shifted towards larger body sizes. This difference is suggested to be a reflection of the extraordinary species richness of browsing ungulates in the early Miocene of North America. Such an increase in prey spectrum would create a unique situation, in which large carnivores need not commit to a cursorial habitus in order to fill their nutritional requirements. Finally, the elbow joints and craniodental morphology (14 measurements) of fossil canids were examined with the aim of assessing the potential for pack-hunting in fossil canids. It is clear that small and large members of the Recent Caninae share similar craniodental morphologies. However, this pattern is not present in Borophaginae and Hesperocyoninae. In the latter, large representatives are characterized by being short-faced, with reduced anterior premolars and enlarged posterior premolars, thus approaching a “pantherine-like” craniodental configuration. These traits are interpreted as an adaptation for killing prey with canine bites. It is similarly determined that, unlike recent Caninae, all analyzed species of borophagines and hesperocyonines have retained the ability to supinate their forearms. It is therefore likely that manual manipulation was part of their hunting behaviour, thus removing an essential part of the argument for social pack-hunting in these forms, as the benefits of such a strategy become less obvious.</p>
114

Local Adaptation, Countergradient Variation and Ecological Genetics of Life-history Traits in Rana Temporaria

Laugen, Ane Timenes January 2003 (has links)
The main aim of this work was to identify local adaptation processes in amphibian populations, thereby improving the general understanding of genetics and mechanisms behind the evolution and maintenance of biological diversity. Phenotypic and genetic variation in life-history traits was studied within and between populations common frog (Rana temporaria) populations along a 1600 km transect from southern Sweden to northern Finland. Embryonic and larval development and growth was investigated both under field and laboratory conditions. The results suggest ample genetic diversity in larval life-history traits among Fennoscandian common frog populations. Larval developmental rate along the gradient has evolved a countergradient variation pattern of genotypes and phenotypes as indicated by the positive relationship between developmental rate and latitude under laboratory conditions and the lack of such a relationship in the field. The data suggest that this pattern has evolved because of time constraints due to decreasing length of growth season with latitude. Neither field-caught adults nor laboratory raised larvae displayed a linear latitudinal size cline as expected from the so called Bergmanns rule. Rather, size increased towards the mid-latitude populations and decreased thereafter, indicating that body size is a product of direct environmental induction or a trade-off with other life-history characters. Age and size at hatching showed no consistent latitudinal pattern, indicating that the embryonic stage is not as time constrained as the larval stage. A large part of the variation in age and size at metamorphosis among populations was due to additive genetic effects. However, small, but significant maternal effects, mostly due to variation in egg size and non-additive genetic effects also contributed to among population variation. A comparison of divergence in presumably neutral molecular genetic markers (FST) and quantitative characters (QST) revealed that although both estimates of divergence were relatively high, estimates of QST was generally higher than those of FST, indicating that the genetic variation observed in larval traits is primarily a result of natural selection rather than genetic drift. Hence, our results reinforce the conclusion that intraspecific genetic heterogeneity in the young northern European ecosystems may be more widespread than previously anticipated
115

Aspects of locomotor evolution in the Carnivora (Mammalia)

Andersson, Ki January 2003 (has links)
In this thesis, the shape of the distal humerus trochlea is analysed using landmark-based morphometrics and multivariate methods, with the aim of exploring locomotor evolution in carnivorans. Elbow joint morphology is used together with body size and craniodental morphology to characterize past and present carnivorans. Evolutionary implications are studied at the ordinal, familial, and species levels, testing specific hypotheses about scaling, morphological constraints, evolutionary trajectories, and potential for social pack-hunting behaviour. The circumference of the distal humerus trochlea is found to be highly correlated with body mass, and appears to scale similarly throughout the order Carnivora. A general predictive model for carnivoran bodymass is presented (a=0.601; b= 2.552; r2=0.952, SEE=0.136, p&lt;0001, n=92), which removes the need for the investigator to actively choose between the diverging estimates that different predictors and their equations often produce. At the elbow joint, manual manipulation and locomotion appear to be conflicting functions, thus suggesting mutually exclusive lifestyles involving either forelimb grappling or pursuit. At large body sizes, carnivorans are distributed over a strongly dichotomised pattern (grappling or locomotion), a pattern coinciding with the postulated threshold in predator-prey size ratio at 21.5-25 kg. This pattern is compared to that of two carnivoran faunas from the Tertiary. In the Oligocene (33.7-23.8 Myr BP), the overall pattern is remarkably similar to that observed for extant Carnivora. In the Miocene (23.8-11.2 Myr BP) carnivores show a similarly dichotomised pattern as the Oligocene and Recent, although the whole pattern is shifted towards larger body sizes. This difference is suggested to be a reflection of the extraordinary species richness of browsing ungulates in the early Miocene of North America. Such an increase in prey spectrum would create a unique situation, in which large carnivores need not commit to a cursorial habitus in order to fill their nutritional requirements. Finally, the elbow joints and craniodental morphology (14 measurements) of fossil canids were examined with the aim of assessing the potential for pack-hunting in fossil canids. It is clear that small and large members of the Recent Caninae share similar craniodental morphologies. However, this pattern is not present in Borophaginae and Hesperocyoninae. In the latter, large representatives are characterized by being short-faced, with reduced anterior premolars and enlarged posterior premolars, thus approaching a “pantherine-like” craniodental configuration. These traits are interpreted as an adaptation for killing prey with canine bites. It is similarly determined that, unlike recent Caninae, all analyzed species of borophagines and hesperocyonines have retained the ability to supinate their forearms. It is therefore likely that manual manipulation was part of their hunting behaviour, thus removing an essential part of the argument for social pack-hunting in these forms, as the benefits of such a strategy become less obvious.
116

Comparative breeding ecology in arctic-geese of different body size : an example in ross's and lesser snow geese

Traylor, Joshua James 02 July 2010
Two closely-related, different-sized species of geese nest sympatrically south of the Queen Maud Gulf (QMG) in Canadas central arctic. Following a period of high population growth rate in both species within the QMG, the population growth rate of larger-bodied lesser snow geese (Chen caerulescens caerulescens; hereafter snow geese) has slowed most recently to roughly half that observed in smaller-bodied Rosss geese (Chen rossii). I focused on factors that influence productivity and recruitment in these two species, to improve our understanding of life history variation associated with interspecific differences in body size, and to test for density-dependent population responses. I used long-term data (1991 to 2008) to compare spring nutrient reserves, breeding strategies, clutch sizes, nest success, and juvenile survival in Rosss and snow geese breeding at Karrak Lake, Nunavut; a large breeding colony located within the QMG.<p> Long-term patterns of spring body condition (i.e., fat and protein reserves) diverged in prospective breeding female Rosss and snow geese implying that differences in food acquisition ability had become more acute. Snow geese displayed larger reductions in protein and fat reserves through time compared to Rosss geese thereby suggesting a differential density-dependent response in the ability to store nutrient reserves, a prerequisite for breeding in both species. Decreased per capita food availability influenced the timing of reproduction in both species. Nesting phenologies of Rosss and snow geese, adjusted for variation in phenology of local spring climate, have become later by 6.5 and 5.0 days, respectively, since 1991. Nutritional strategies (i.e., reliance on reserves versus local food) used for clutch formation differed between species. Rosss geese displayed greater reliance on stored reserves (i.e., capital breeding) than did snow geese, though both used endogenous reserves (> 62% of yolk protein, > 48% of albumen, and > 73% of yolk lipid) for clutch formation. Rosss and snow geese experienced declines of 28% and 23% in body masses from arrival to post-laying and also until hatch demonstrating that endogenous reserves are the main nutrient sources for incubation. Still, constraints of small size forced Rosss geese to use a mixture of local food plants and reserves for incubation metabolism.<p> I then examined differences in clutch size, nest success, and juvenile survival to understand of the role of recruitment in the interspecific divergence of population trajectories. I did not find strong interspecific differences in clutch size and nest success. Overall, snow geese had a larger mean clutch size, which was expected based on benefits of a larger-body size. Clutch sizes decreased with delays in breeding and decreasing protein reserves of arriving females, although Rosss geese displayed larger declines with decreasing protein reserves. Mean apparent nest success for Rosss geese was 4.5% higher compared to snow geese. Nest success showed large declines (11%) in both species with increasing population size at the breeding colony. However, nest success of snow geese decreased twice as fast with delays in breeding compared to Rosss geese. Last, I found no evidence of negative density dependence in juvenile survival over time. Juvenile survival was higher in snow geese (48%) compared to Rosss geese (38%), consistent with a life history prediction based on body size differences. Despite lower juvenile survival, recruitment by Rosss geese is likely greater than that of snow geese because of earlier sexual maturity, higher breeding probability and/or greater nest success.<p> Ultimately, small body size of Rosss geese may produce an ideal life history schedule under resource limitation at this colony i.e., one that maximizes fitness compared to larger snow geese. Life history characteristics of Rosss geese (e.g., absolutely lower energy requirement, have a flexible breeding strategy, higher reproductive effort, an earlier age of sexual maturity, a shorter breeding cycle allowing delayed arrival and nest initiation on arctic breeding areas, and shorter time required by goslings to attain adult size), in addition to their smaller bill morphology may allow exploitation of a wider niche space (i.e., one that includes marginal quality and low quantity vegetation) relative to snow geese. Because there were no large differences in components of recruitment considered here, other components of recruitment (age of sexual maturity, breeding probability) may be affected more strongly by diminished spring nutrition in snow geese and thus have a larger influence on local population dynamics.
117

Comparative breeding ecology in arctic-geese of different body size : an example in ross's and lesser snow geese

Traylor, Joshua James 02 July 2010 (has links)
Two closely-related, different-sized species of geese nest sympatrically south of the Queen Maud Gulf (QMG) in Canadas central arctic. Following a period of high population growth rate in both species within the QMG, the population growth rate of larger-bodied lesser snow geese (Chen caerulescens caerulescens; hereafter snow geese) has slowed most recently to roughly half that observed in smaller-bodied Rosss geese (Chen rossii). I focused on factors that influence productivity and recruitment in these two species, to improve our understanding of life history variation associated with interspecific differences in body size, and to test for density-dependent population responses. I used long-term data (1991 to 2008) to compare spring nutrient reserves, breeding strategies, clutch sizes, nest success, and juvenile survival in Rosss and snow geese breeding at Karrak Lake, Nunavut; a large breeding colony located within the QMG.<p> Long-term patterns of spring body condition (i.e., fat and protein reserves) diverged in prospective breeding female Rosss and snow geese implying that differences in food acquisition ability had become more acute. Snow geese displayed larger reductions in protein and fat reserves through time compared to Rosss geese thereby suggesting a differential density-dependent response in the ability to store nutrient reserves, a prerequisite for breeding in both species. Decreased per capita food availability influenced the timing of reproduction in both species. Nesting phenologies of Rosss and snow geese, adjusted for variation in phenology of local spring climate, have become later by 6.5 and 5.0 days, respectively, since 1991. Nutritional strategies (i.e., reliance on reserves versus local food) used for clutch formation differed between species. Rosss geese displayed greater reliance on stored reserves (i.e., capital breeding) than did snow geese, though both used endogenous reserves (> 62% of yolk protein, > 48% of albumen, and > 73% of yolk lipid) for clutch formation. Rosss and snow geese experienced declines of 28% and 23% in body masses from arrival to post-laying and also until hatch demonstrating that endogenous reserves are the main nutrient sources for incubation. Still, constraints of small size forced Rosss geese to use a mixture of local food plants and reserves for incubation metabolism.<p> I then examined differences in clutch size, nest success, and juvenile survival to understand of the role of recruitment in the interspecific divergence of population trajectories. I did not find strong interspecific differences in clutch size and nest success. Overall, snow geese had a larger mean clutch size, which was expected based on benefits of a larger-body size. Clutch sizes decreased with delays in breeding and decreasing protein reserves of arriving females, although Rosss geese displayed larger declines with decreasing protein reserves. Mean apparent nest success for Rosss geese was 4.5% higher compared to snow geese. Nest success showed large declines (11%) in both species with increasing population size at the breeding colony. However, nest success of snow geese decreased twice as fast with delays in breeding compared to Rosss geese. Last, I found no evidence of negative density dependence in juvenile survival over time. Juvenile survival was higher in snow geese (48%) compared to Rosss geese (38%), consistent with a life history prediction based on body size differences. Despite lower juvenile survival, recruitment by Rosss geese is likely greater than that of snow geese because of earlier sexual maturity, higher breeding probability and/or greater nest success.<p> Ultimately, small body size of Rosss geese may produce an ideal life history schedule under resource limitation at this colony i.e., one that maximizes fitness compared to larger snow geese. Life history characteristics of Rosss geese (e.g., absolutely lower energy requirement, have a flexible breeding strategy, higher reproductive effort, an earlier age of sexual maturity, a shorter breeding cycle allowing delayed arrival and nest initiation on arctic breeding areas, and shorter time required by goslings to attain adult size), in addition to their smaller bill morphology may allow exploitation of a wider niche space (i.e., one that includes marginal quality and low quantity vegetation) relative to snow geese. Because there were no large differences in components of recruitment considered here, other components of recruitment (age of sexual maturity, breeding probability) may be affected more strongly by diminished spring nutrition in snow geese and thus have a larger influence on local population dynamics.
118

Predator biomass and habitat characteristics affect the magnitude of consumptive and non-consumptive effects (NCEs): experiments between blue crabs, mud crabs, and oyster prey

Hill, Jennifer Marie 01 July 2011 (has links)
Recent research has focused on the non-lethal effects of predator intimidation and fear, dubbed non-consumptive effects (NCEs), in which prey actively change their behavior and habitat use in response to predator chemical cues. Although NCEs can have large impacts on community structure, many studies have ignored differences in predator population structure and properties of the natural environment that may modify the magnitude and importance of NCEs. Here, I investigated the roles of predator size and density (i.e. biomass), as well as habitat characteristics, on predator risk assessment and the magnitude of consumptive and NCEs using blue crabs, mud crabs, and oyster prey as a model system. Predation experiments between blue crabs and mud crabs demonstrated that blue crabs consume mud crabs; however, the consumptive effects were dependent upon blue crab body size and habitat type. When mud crabs were exposed to chemical cues from differing biomasses of blue crabs in laboratory mesocosms, mud crab activity and predation on oysters was decreased in response to high biomass treatments (i.e. large and multiple small blue crabs), but not to low biomass predators (i.e single small blue crab), suggesting that risk associated with predator size is perceptible via chemical cues and is based on predator biomass. Further experiments showed that the perception of risk and the magnitude of the NCEs were affected by the sensory cues available and the diet of the blue crab predator. The NCE based on blue crab biomass was also demonstrated in the field where water flow can disperse cues necessary for propagating NCEs. Properties of water flow were measured within the experimental design and during the experiment and confirmed cage environments were representative of natural conditions and that patterns in NCEs were not associated with flow characteristics. These results affect species conservation and commercial fisheries management and demonstrate that we cannot successfully predict NCEs without considering predator size structure and the contexts under which we determine predator risk.
119

Body size relationships and reproductive ecology of female feral horses on Sable Island, Nova Scotia

2015 March 1900 (has links)
Body size is an important determinant of reproduction in capital breeding animals, including large mammals. However, it is not always practical to hand-measure body size of free-ranging species. In recent years, parallel-laser photogrammetry has been used to obtain remote estimates of body size for some animals, though it remains unknown how well this technique might capture variation in curvilinear body features or if the distance between parallel-laser calipers is altered when projected onto a curved surface. In this thesis, I describe a photogrammetric system that may be useful for obtaining body-size measurements from unrestrained large mammals that permit approach, using domestic horses (Equus ferus caballus) as a model (Chapter 2). I then apply this technique in the field to a wild (feral) population of horses at Sable Island National Park Reserve, Nova Scotia, Canada, where I include body size measurements as variables in a detailed analysis of factors affecting reproduction in females (Chapter 3). Using my parallel-laser photogrammetric system, I show how curvilinear hand-measurements (e.g., across the barrel of a horse) are stongly correlated with their respective linear photogrammetric estimates (R2 ≥ 0.998), and most photogrammetric estimates using my system had high reliability. Using three variables of body size, photogrammetric estimates and hand-measurements explained 86.0% and 96.2%, respectively, of the variation in body weight of a sample of domestic Newfoundland ponies. On Sable Island, Nova Scotia, I examined the relationship of numerous variables (including skeletal body size and body condition) with the probability of yearly reproductive success for female Sable Island horses (years 2008–2012), where I define reproductive success as production of an offspring surviving to one year of age. Age class was a dominant factor predicting reproductive success, as expected from trends previously associated with body size or reproductive experience iii in other populations. Age-class specific energy budgets or social and sexual behaviour caused a more pronounced relationship with body condition at parturition in sub-adults, and body condition at conception and stability of consort relationships were associated with reproductive success in adults. In addition, relationships with local density suggested limited forage around the time of conception and limited water during lactation might also influence reproductive success in adult females. Although relationships were evident for age class, which is correlated with body size, reproductive success was not related to skeletal body size, past reproductive experience, age of primiparity, or band structure. The capital breeding strategy and year-round social associations seen in horses make their reproductive ecology a combination of patterns observed for large ungulates and social primates.
120

The significance of genetic and ecological diversity in a wide-ranging insect pest, Paropsis atomaria Olivier (Coleoptera: Chrysomelidae)

Schutze, Mark Kurt January 2008 (has links)
Paropsis atomaria (Coleoptera; Chrysomelidae) is a eucalypt feeding leaf beetle endemic to southern and east coast Australia, and it is an emergent pest of the eucalypt hardwood industry. Paropsis atomaria was suspected to be a cryptic species complex based on apparent differences in life history characteristics between populations, its wide geographical distribution, and extensive host range within Eucalyptus. In this study genetic and ecological characters of P. atomaria were examined to determine the likelihood of a cryptic complex, and to identify the nature and causes of ecological variation within the taxon. Mitochondrial sequence variation of the gene COI was compared between populations from the east coast of Australia (South Australia to central Queensland) to assess genetic divergence between individuals from different localities and host plant of origin. Individuals from four collection localities used for the molecular analysis were then compared in a morphometric study to determine if observed genetic divergence was reflected by morphology, and common-garden trials using individuals from Lowmead (central Qld) and Canberra (ACT) were conducted to determine if morphological (body size) variation had a genetic component. Host plant utilisation (larval survival, development time, and pupal weight) by individuals from Lowmead and Canberra were then compared to determine whether differential host plant use had occurred between populations of P. atomaria; individuals from each population were reared on an allopatric and sympatric host eucalypt species (E. cloeziana and E. pilularis). Finally, developmental data from each population was compared and incorporated into a phenology modelling program (Dymex(tm)) using temperature as the principle factor explaining and predicting population phenology under field conditions. Molecular results demonstrated relatively low genetic divergence between populations of P. atomaria which is concomitant with the single species hypothesis, however, there is reduced gene flow between northern and southern populations, but no host plant related genetic structuring. Morphometric data revealed insufficient evidence to separate populations into different taxa; however a correlation between latitude and size of adults was discovered, with larger beetles found at lower latitudes (i.e., adhering to a converse Bergmann cline). Common garden experiments revealed body size to be driven by both genetic and environmental components. Host plant utilisation trials showed one host plant, E. cloeziana, to be superior for both northern and southern P. atomaria populations (increased larval survival and reduced larval development time). Eucalyptus pilularis had a negative effect on pupal weight for Lowmead (northern) individuals (to which it is allopatric), but not so for Canberra (southern) individuals. DYMEX(tm) modelling showed voltinism to be a highly plastic trait driven largely by temperature. Results from across all trials suggest that P. atomaria represents a single species with populations locally adapted to season length, with no evidence of differential host plant utilisation between populations. Further, voltinism is a seasonally plastic trait driven by temperature, but with secondary influential factors such as host plant quality. These data, taken combined, reveal phenotypic variability within P. atomaria as the product of multiple abiotic and biotic factors and representing a complex interplay between local adaptation, phenotypic plasticity, and seasonal plasticity. Implications for pest management include an understanding of population structure, nature of local adaptation and host use characteristics, and predictive models for development of seasonal control regimens.

Page generated in 0.0939 seconds