171 |
High Performance Drivetrains for Powerful Mobile MachinesSchumacher, Andreas, Rahmfeld, Robert, Laffrenzen, Heiko January 2016 (has links)
This paper discusses the current and future drivetrain perspectives of powerful mobile machines, especially in regards to TCO and drive performance. For the TCO-impact, the power losses of the components plays a big role and, if they are designed for efficiency, they have a significant and measurable influence. From the braking function point of view, this paper demonstrates not only the advantages of a valve-based over a control algorithm based solution, but also its innovative development directions towards a more sophisticated engine speed controller with optimized heat conversion into the oil. Also for the drivetrain subsystems, innovative components are discussed, like the hybrid control, combining the benefits of a non-feedback and a displacement control in one single assembly, or the variable charge system for further reduced energy consumption of the overall drivetrain.
|
172 |
Quantifying Vision Zero: Crash avoidance in rural and motorway accident scenarios by combination of ACC, AEB, and LKS projected to German accident occurrenceStark, Lukas, Düring, Michael, Schoenawa, Stefan, Maschke, Jan Enno, Do, Cuong Manh 29 September 2020 (has links)
Objective: The Vision Zero initiative pursues the goal of eliminating all traffic fatalities and severe injuries. Today’s advanced driver assistance systems (ADAS) are an important part of the strategy toward Vision Zero. In Germany in 2018 more than 26,000 people were killed or severely injured by traffic accidents on motorways and rural roads due to road accidents. Focusing on collision avoidance, a simulative evaluation can be the key to estimating the performance of state-of-the-art ADAS and identifying resulting potentials for system improvements and future systems.
This project deals with the effectiveness assessment of a combination of ADAS for longitudinal and lateral intervention based on German accident data. Considered systems are adaptive cruise control (ACC), autonomous emergency braking (AEB), and lane keeping support (LKS).
Methods: As an approach for benefit estimation of ADAS, the method of prospective effectiveness assessment is applied. Using the software rateEFFECT, a closed-loop simulation is performed on accident scenario data from the German In-Depth Accident Study (GIDAS) precrash matrix (PCM). To enable projection of results, the simulative assessment is amended with detailed single case studies of all treated cases without PCM data.
Results: Three categories among today’s accidents on German rural roads and motorways are reported in this study: Green, grey, and white spots.
Green spots identify accidents that can be avoided by state-of-the-art ADAS ACC, AEB, and LKS. Grey spots contain scenarios that require minor system modifications, such as reducing the activation speed or increasing the steering torque. Scenarios in the white category cannot be addressed by state-of-the-art ADAS. Thus, which situations demand future systems are shown. The proportions of green, grey, and white spots are determined related to the considered data set and projected to the entire GIDAS.
Conclusions: This article describes a systematic approach for assessing the effectiveness of ADAS using GIDAS PCM data to be able to project results to Germany. The closed-loop simulation run in rateEFFECT covers ACC, AEB, and LKS as well as relevant sensors for environment recognition and actuators for longitudinal and lateral vehicle control.
Identification of green spots evaluates safety benefits of state-of-the-art level 0–2 functions as a baseline for further system improvements to address grey spots. Knowing which accidents could be avoided by standard ADAS helps focus the evolution of future driving functions on white spots and thus aim for Vision Zero.
|
173 |
Evaluating the effectiveness of collisionavoidance functions using state-of-the-artsimulation tools for vehicle dynamicsSengupta, Abhinav, Gurov, Alexey January 2013 (has links)
The main goal of this work is to gain knowledge of how and to what extent state-of-the-artsimulation tools can be used in a conceptual development phase for vehicle dynamics control atVolvo Car Corporation (VCC).The first part of the thesis deals with an evaluation of vehicle dynamics simulation tools and theiruses. The three simulation tools selected for the study, namely Mechanical Simulation CarSim 8.2.1,IPG CarMaker 4.0.5, and VI-Grade CarRealTime V14, are briefly described and discussed. In order toevaluate and compare these tools with respect to application for vehicle dynamics control, a criterialist is developed covering aspects such as tool requirements and intended usage. Based on thecriteria list and certain identified drawbacks, a ranking of the tools is made possible. Furthermore,the process of developing vehicle models for the different tools is discussed in detail, along with theprocedure of validating the vehicle models.In the second part, the concept of Collision Avoidance Driver Assistance (CADA) function isintroduced and possible approaches for developing CADA functions are discussed in brief. It isimportant to note that the CADA functions in this work are based on cornering the vehicle i.e.maneuvering around the threat, rather than solely reducing vehicle speed. A number ofimplementations of the functions are developed in Simulink. A frequency analysis of a simplifiedlinear vehicle model is performed to investigate the influence of steering, differential braking, andtheir combination on the resultant lateral displacement of the vehicle during an evasive maneuver.The developed CADA functions are then simulated using the vehicle simulation tools. Two specificmetrics - Lateral Displacement gain and DeltaX - are formulated to evaluate the effectiveness of theCADA functions. Based on these metrics, the assistance obtained due to the functions for a specificevasive maneuver is compared.From the evaluation process of the three tools, two were considered suitable for the purpose ofsimulating collision avoidance functions. The evaluation of the CADA functions demonstrates thatcombined assistive steering with differential braking provides considerable assistance in order toavoid collisions. The simulation results also present interesting trends which provide a usefuldirection regarding the conditions for intervention by such collision avoidance functions during anevasive maneuver. The use of simulation tools makes it possible to observe these trends and utilizethem in the development process of the functions.
|
174 |
On control and estimation problems in antilock braking systems / Quelques problèmes de commande et d'estimation liés aux systèmes d'antiblocage des rouesAguado rojas, Missie María del Rocío 14 June 2019 (has links)
Cette thèse aborde trois problèmes liés à l’ABS dans le cadre de la dynamique de la roue : l’estimation de la rigidité de freinage étendue (XBS) des pneus lors du freinage d’urgence, la commande de l’ABS basée sur l’estimation de l’XBS, et l’estimation de la vitesse et de l’accélération angulaires de la roue à partir des mesures provenant d’un codeur avec des imperfections. L’objectif général de ce travail est de développer des outils visant à améliorer la performance des systèmes de freinage, en utilisant des techniques adaptées de l'automatique non linéaire. La première partie de la thèse est consacrée à la construction d’un observateur adaptatif commuté pour l’XBS, c’est-à-dire un observateur adaptatif dont les gains d’estimation commutent entre deux valeurs possibles en fonction du signe de la sortie mesurée du système. La stabilité de l’observateur est analysée en utilisant des outils pour des systèmes commutés et en cascade, ainsi que des concepts tels qu’excitation permanente et transformations singulières d’échelle de temps. La deuxième partie de la thèse est dédiée à la conception d’une loi de commande pour l’ABS. L’objectif de contrôle est formulé en termes de l’XBS et une loi de commande hybride est conçue afin de faire en sorte que les trajectoires du système satisfassent les conditions requises pour l’estimation de l’XBS. La stabilité du contrôleur est analysée en utilisant l'application de Poincaré. La troisième partie de la thèse aborde la construction d’un algorithme pour estimer la vitesse et l’accélération angulaires de la roue et éliminer des perturbations qui sont introduites par les imperfections du codeur, et dont l’amplitude et la fréquence sont une fonction de la position, la vitesse, et l’accélération angulaires (réelles) de la roue. L’algorithme est basé sur la méthode connue comme « time-stamping algorithm », ainsi que sur des techniques de filtrage est d’estimation de paramètres. Des essais expérimentaux et des simulations numériques illustrent la performance des algorithmes d’estimation et de contrôle présentés dans cette thèse. Dans tous les cas nos résultats sont comparés par rapport à l’état de l’art. / This thesis addresses three problems related to the antilock braking system (ABS) in the context of the wheel dynamics: the estimation of the tyre extended braking stiffness (XBS) during an emergency braking situation, the control of the ABS based on the estimation of the XBS, and the estimation of the angular velocity and acceleration of the wheel from the measurements of an incremental encoder with imperfections. The general objective of this work is to develop tools aimed at improving the performance of braking systems by using techniques adapted from nonlinear control theory. The first part of the manuscript is devoted to the construction of a switched adaptive observer for the XBS, that is, an adaptive observer whose estimation gains switch between two possible values based on the sign of the system’s measured output. The stability of the observer is analyzed using tools for switched and cascaded systems, as well as concepts such as persistency of excitation and singular time-scale transformations. The second part of the manuscript is dedicated to the design of a control algorithm for the ABS. The control objective is formulated in terms of the XBS and a hybrid controller is designed so that the trajectories of the system satisfy the conditions required for the estimation of the XBS. The stability of the controller is analyzed using the Poincaré map. The third part of the manuscript focuses on the construction of an algorithm to estimate angular velocity and acceleration of the wheel and remove perturbations which are introduced by the encoder imperfections and whose amplitude and frequency are a function of the wheel's (real) position, velocity, and acceleration. The algorithm is based on the method known as time-stamping algorithm, as well as filtering and parameter estimation techniques. Experimental tests and numerical simulations illustrate the performance of the estimation and control algorithms presented in this thesis. In all cases our results are compared with respect to the state of the art.
|
175 |
Récupération d’énergie pour système intégré moteur roue, application au véhicule électrique / Energy recovery for integrated wheel-motor, electric vehicle applicationItani, Khaled 03 July 2017 (has links)
Le sujet de thèse aborde la quantification du flux de puissance parcourant les différents systèmes de conversion d'énergie statiques et dynamiques pour aboutir aux éléments de stockage de nature chimique / électrostatique / mécanique lors d'un freinage hybride récupératif brusque issu d’un véhicule électrique à traction avant. Le véhicule électrique est équipé de deux ensembles intégrés moteur-roues indépendants. Le côté commande des convertisseurs et des machines électriques sera aussi traité. La problématique concernera les cas de freinage régénératif brusque imposant des contraintes électriques et mécaniques élevées aux éléments de conversion d'énergie et de stockage. L'outil de simulation adopté est le logiciel Matlab/Simulink®. Un modèle assez fin du véhicule électrique utilisé sera développé afin de pouvoir simuler le comportement du véhicule conformément à la distribution des forces de freinage délivrée par le système de répartition et de quantification des forces de freinage. Une étude de la cinématique et de la dynamique du véhicule selon les différents états de route sera aussi examiné. Cette étude sera utilisée à posteriori dans la formulation des lois de distribution des forces de freinage. Les moteurs utilisés sont de type synchrones à aimants permanents intérieurs. L'objectif est d'assurer un couple électrique de freinage élevé à hautes vitesses de conduite du véhicule. A cette fin, la commande optimale de ces moteurs sera basée sur une nouvelle méthode de génération des courants de références assumant ainsi un couple régénératif élevé et donc une amélioration de l'énergie récupérée. Le système de stockage sera mixte et comportera une batterie Li-Ion et des cellules de supercondensateurs afin de réduire les contraintes sur la batterie et prolonger ainsi sa durée de vie. La structure de puissance de ce système sera analysée ainsi que le système de commande proposé du hacheur à 3 niveaux interfaçant l'ultracapacité avec le bus DC. Une résistance de freinage commandée par un régulateur pseudo-cascade sera aussi intégrée afin de réduire, si nécessaire, les contraintes sur la batterie. L'évaluation et la répartition des forces de freinage sur les quatre roues du véhicule en fonction de l'état de la route sont des éléments clés pour la stabilité du véhicule lors du freinage. La méthode de distribution et de quantification des forces de freinage proposée devra maintenir cette stabilité, répondre aux normes internationales et tirer profit de la présence des moteur-roues à l'avant du véhicule afin de maximiser l'énergie récupérée. Les travaux ont été étendus pour inclure une étude comparative avec un système de stockage contenant un élément de stockage à énergie cinétique comme source d'énergie secondaire pour un véhicule en opération de freinage et de traction. La thèse est le point de départ d'une collaboration de recherche entre l'IFSTTAR /Satie et le département de Génie Electrique du Cnam - Liban, centre associé au Conservatoire National des Arts et Métiers (Paris - France). / The thesis will address the quantification of power flow going through the different energy static and dynamic conversion systems to attain the chemical / electrostatic / mechanical storage elements during a hybrid regenerative brutal braking of a front-wheel driven electric vehicle. The electric vehicle is equipped by two integrated wheel-motors independent sets. The control of the converters and electrical machines is also treated. The problematic concerns the brutal regenerative braking case imposing high electrical and mechanical constraints on energy conversion and storage elements. The simulation tool adopted is Matlab/Simulink®. A detailed model of the used electric vehicle has been developed in order to be able to simulate the vehicle behavior with respect to the braking forces distribution delivered by the repartition and quantification of braking forces system. A study of the kinematics and dynamics of the vehicle according to different road types will be also considered. This study will be used retrospectively in the formulation of the braking forces distribution laws. The motors used are interior permanent magnet synchronous type. The objective is to ensure high electrical braking torque at high driving speeds of the vehicle. To this end, the optimal control of these motors will be based on a new current references generation method assuming then a high regenerative torque and therefore an improvement in the recovered energy. The hybrid storage system includes a Li-Ion battery and supercapacitors cells to reduce stress on the battery and to extend its life. The power structure of the system will be analyzed as well as the 3-level DC/DC converter interfacing the ultracapacitor with the DC bus proposed control system. A braking resistor controlled by a pseudo- cascaded controller will also be integrated to reduce, if necessary, the constraints on the battery. The evaluation and distribution of braking forces on the four wheels depending on road conditions are key elements for the stability of the vehicle during braking. The method of distribution and quantification of braking forces proposed should maintain this stability , meet international standards and take advantage of the presence of wheel motors in the front of the vehicle to maximize the energy recovered. The work has been extended to include a comparative study with a system containing a kinetic energy storage element as a secondary energy source for a braking and traction vehicle operation. The thesis is the starting point of a research collaboration between IFSTTAR / Satie and the Electrical Engineering Department of Cnam- Liban, associated center of the Conservatoire National des Arts et Métiers ( CNAM ), Paris, France.
|
176 |
Safety of Cooperative Automated Driving : Analysis and OptimizationSidorenko, Galina January 2022 (has links)
New cooperative intelligent transportation system (C-ITS) applications become enabled thanks to advances in communication technologies between vehicles(V2V) and with the infrastructure (V2I). Communicating vehicles share information with each other and cooperate, which results in improved safety, fuel economy, and traffic efficiency. An example of a C-ITS application is platooning, which comprises a string of vehicles that travel together with short inter-vehicle distances (IVDs). Any solution related to C-ITS must comply with high safety requirements in order to pass standardization and be commercially deployed. Furthermore, trusted safety levels should be assured even for critical scenarios. This thesis studies the conditions that guarantee safety in emergency braking scenarios for heterogeneous platooning, or string-like, formations of vehicles. In such scenarios, the vehicle at the head of the string emergency brakes and all following vehicles have to automatically react in time to avoid rear-end collisions. The reaction time can be significantly decreased with vehicle-to-vehicle (V2V) communication usage since the leader can explicitly inform other platooning members about the critical braking. The safety analysis conducted in the thesis yields computationally efficient methods and algorithms for calculating minimum inter-vehicle distances that allow avoiding rear-end collisions with a predefined high guarantee. These IVDs are theoretically obtained for an open-loop and a closed-loop configurations. The former implies that follower drives with a constant velocity until braking starts, whereas in the latter, an adaptive cruise control (ACC) with a constant-distance policy serves as a controller. In addition, further optimization of inter-vehicle distances in the platoon is carried out under an assumption of centralized control. Such an approach allows achieving better fuel consumption and road utilization. The performed analytical comparison suggests that our proposed V2V communication based solution is superior to classical automated systems, such as automatic emergency braking system (AEBS), which utilizes only onboard sensors and no communication. Wireless communication, enabling to know the intentions of other vehicles almost immediately, allows for smaller IVDs whilst guaranteeing the same level of safety. Overall, the presented thesis highlights the importance of C-ITS and, specifically, V2V in the prevention of rear-end collisions in emergency scenarios. Future work directions include an extension of the obtained results by considering more advanced models of vehicles, environment, and communication settings; and applying the proposed algorithms of safety guaranteeing to other controllers, such as ACC with a constant time headway policy.
|
177 |
Integration of V2V-AEB system with wearable cardiac monitoring system and reduction of V2V-AEB system time constraintsBhatnagar, Shalabh January 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Autonomous Emergency Braking (AEB) system uses vehicle’s on-board sensors such as radar, LIDAR, camera, infrared, etc. to detect the potential collisions, alert the driver and make safety braking decision to avoid a potential collision. Its limitation is that it requires clear line-of-sight to detect what is in front of the vehicle. Whereas, in current V2V (vehicle-to-vehicle communication) systems, vehicles communicate with each other over a wireless network and share information about their states. Thus the safety of a V2V system is limited to the vehicles with communication capabilities. Our idea is to integrate the complementary capabilities of V2V and AEB systems together to overcome the limitations of V2V and AEB systems. In a V2V-AEB system, vehicles exchange data about the objects information detected by their onboard sensors along with their locations, speeds, and movements. The object information detected by a vehicle and the information received through the V2V network is processed by the AEB system of the subject vehicle. If there is an imminent crash, the AEB system alerts the driver or applies the brake automatically in critical conditions to prevent the collision.
To make V2V-AEB system advance, we have developed an intelligent heart Monitoring system and integrated it with the V2V-AEB system of the vehicle. The advancement of wearable and implantable sensors enables them to communicate driver’s health conditions with PC’s and handheld devices. Part of this thesis work concentrates on monitoring the driver’s heart status in real time by using fitness tracker. In the case of a critical health condition such as the cardiac arrest of a driver, the system informs the vehicle to take an appropriate operation decision and broadcast emergency messages over the V2V network. Thus making other vehicles and emergency services aware of the emergency condition, which can help a driver to get immediate medical attention and prevent accident casualties.
To ensure that the effectiveness of the V2V-AEB system is not reduced by a time delay, it is necessary to study the effect of delay thoroughly and to handle them properly. One common practice to control the delayed vehicle trajectory information is to extrapolate trajectory to the current time. We have put forward a dynamic system that can help to reduce the effect of delay in different environments without extrapolating trajectory of the pedestrian. This method dynamically controls the AEB start braking time according to the estimated delay time in the scenario.
This thesis also addresses the problem of communication overload caused by V2V-AEB system. If there are n vehicles in a V2V network and each vehicle detects m objects, the message density in the V2V network will be n*m. Processing these many messages by the receiving vehicle will take considerable computation power and cause a delay in making the braking decision. To prevent flooding of messages in V2V-AEB system, some approaches are suggested to reduce the number of messages in the V2V network that include not sending information of objects that do not cause a potential collision and grouping the object information in messages.
|
178 |
Auswirkungen flacher ETCS Bremskurven auf zeitabhängige StreckenausrüstungenFehlauer, Lars 18 April 2019 (has links)
In den nächsten Jahren wird das interoperable Zugbeeinflussungssystem ETCS die bisher genutzten, konventionellen Systeme ablösen. Zur Eisenbahninfrastruktur gehören jedoch auch Anlagen, deren Dimensionierung bzw. Projektierung direkt mit der Charakteristik des genutzten Sicherungssystems in Zusammenhang steht. Einen wesentlichen Unterschied von ETCS stellt dabei die genutzte Bremskurvenschar zur Überwachung der Zugfahrten dar. Durch den Einbezug zusätzlicher Sicherheitsmargen werden Züge teilweise gezwungen, früher als bisher die Bremsung einzuleiten. In vorliegender Arbeit wird daher die Anwendbarkeit der ETCS-Bremskurven auf zeitabhängige Streckenausrüstungen untersucht. Dabei sollen mögliche betriebliche Einschränkungen analysiert und Handlungsmöglichkeiten aufgezeigt werden. Speziell am Beispiel von ETCS-Teilblocklängen sowie Einschaltstrecken von Bahnübergängen und Zuglenkungsanlagen wird auf die Notwendigkeit geänderter Dimensionierungsregeln eingegangen.:1 Einführung
1.1 Motivation
1.2 Zweck der Arbeit
1.3 Abgrenzung der Arbeit
1.4 Methodik
1.5 Hinweise zu Berechnungen
1.6 Grundlegende Literatur
2 Grundlagen
2.1 Begriffsdefinitionen
2.2 Bewertung des Bremsvermögens von Zügen
2.3 Leistungsfähigkeit von Strecken
2.4 Überwachungsarten von Bahnübergängen
2.5 Funktionsprinzip der konventionellen Zuglenkung
2.6 Tool zum Berechnen von ETCS-Bremswegen
3 ETCS-Bremsmodelle
3.1 Lambda-Modell
3.2 Gamma-Modell
3.3 Weitere bremskurvenrelevante, nationale Werte
4 Charakteristik der Überwachungskurven verschiedener Zugbeeinflussungssysteme
4.1 Punkförmige Zugbeeinflussung (PZB)
4.2 Linienförmige Zugbeeinflussung (LZB)
4.3 European Train Control System (ETCS)
4.4 Vergleich der Charakteristiken
4.5 Beispiele zum Vergleich der resultierenden Bremswege
4.6 Leistungspotenzial der Bremskurven
4.7 Zusammenfassung
5 Dimensionierung von ETCS-Teilblöcken
5.1 Allgemeine Zusammenhänge
5.2 Verkürzung von Teilblöcken auf Unter-D-Weg-Länge
5.3 Anwendbarkeit der ETCS-Bremskurven auf bestehende (Teil-) Blocklängen
5.4 Exkurs: Nutzung kurzer Teilblöcke auf S-Bahn-Stammstrecken
5.5 Potenzielle Regelwerksanpassungen
5.6 Zusammenfassung
6 Dimensionierung der Einschaltstrecken von Bahnübergängen mit ETCS
6.1 Überwachungsart Fü
6.2 Überwachungsart ÜS
6.3 Überwachungsart Hp
6.4 Zusammenfassung
7 Anpassungsbedarf der konventionellen Zuglenkung auf ETCS-Strecken
7.1 Abläufe zur Verlängerung der Fahrterlaubnis
7.2 Möglichkeit von betrieblichen Einschränkungen
7.3 Handlungsspielräume
7.4 Zusammenfassung
8 Ergebnisse und Diskussion
8.1 Auswirkung der ETCS-Bremskurven
8.2 Anpassungspotenzial der ETCS-Bremskurven
8.3 Notwendige Regelwerksänderungen
9 Fazit und Ausblick
Abkürzungsverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
Formelverzeichnis
Literaturverzeichnis
Erklärung
Anhangsverzeichnis
Anhang A: Gesprächsprotokolle
Anhang B: Eingangsparameter für die Berechnungen mit dem ETCS-Bremskurventool
Anhang C: Übersicht über die Variablen des ETCS-Bremsmodells
Anhang D: Schaubilder zu den Parametern der ETCS-Bremskurven
Anhang E: Weitere Vergleiche der Bremskurven verschiedener Zugbeeinflussungssysteme
Anlage / Over the next years, the interoperable European Train Control System (ETCS) will replace the previously used conventional systems. However, the railway infrastructure also contains installations whose dimensioning or configuration is closely linked to the characteristics of the safety system currently in use. A key difference of ETCS is the set of braking curves used to monitor the train movements. Due to the inclusion of additional safety margins, some trains will be forced to initiate braking earlier than before. Thus, the following paper investigates the applicability of the ETCS braking curves for time-dependent track elements. In the process, potential operational limitations will be analysed, and courses of action will be outlined. The need for modified dimensioning rules will be addressed in particular with the example of partial block section lengths as well as activating paths for level crossings and automatic route setting equipment.:1 Einführung
1.1 Motivation
1.2 Zweck der Arbeit
1.3 Abgrenzung der Arbeit
1.4 Methodik
1.5 Hinweise zu Berechnungen
1.6 Grundlegende Literatur
2 Grundlagen
2.1 Begriffsdefinitionen
2.2 Bewertung des Bremsvermögens von Zügen
2.3 Leistungsfähigkeit von Strecken
2.4 Überwachungsarten von Bahnübergängen
2.5 Funktionsprinzip der konventionellen Zuglenkung
2.6 Tool zum Berechnen von ETCS-Bremswegen
3 ETCS-Bremsmodelle
3.1 Lambda-Modell
3.2 Gamma-Modell
3.3 Weitere bremskurvenrelevante, nationale Werte
4 Charakteristik der Überwachungskurven verschiedener Zugbeeinflussungssysteme
4.1 Punkförmige Zugbeeinflussung (PZB)
4.2 Linienförmige Zugbeeinflussung (LZB)
4.3 European Train Control System (ETCS)
4.4 Vergleich der Charakteristiken
4.5 Beispiele zum Vergleich der resultierenden Bremswege
4.6 Leistungspotenzial der Bremskurven
4.7 Zusammenfassung
5 Dimensionierung von ETCS-Teilblöcken
5.1 Allgemeine Zusammenhänge
5.2 Verkürzung von Teilblöcken auf Unter-D-Weg-Länge
5.3 Anwendbarkeit der ETCS-Bremskurven auf bestehende (Teil-) Blocklängen
5.4 Exkurs: Nutzung kurzer Teilblöcke auf S-Bahn-Stammstrecken
5.5 Potenzielle Regelwerksanpassungen
5.6 Zusammenfassung
6 Dimensionierung der Einschaltstrecken von Bahnübergängen mit ETCS
6.1 Überwachungsart Fü
6.2 Überwachungsart ÜS
6.3 Überwachungsart Hp
6.4 Zusammenfassung
7 Anpassungsbedarf der konventionellen Zuglenkung auf ETCS-Strecken
7.1 Abläufe zur Verlängerung der Fahrterlaubnis
7.2 Möglichkeit von betrieblichen Einschränkungen
7.3 Handlungsspielräume
7.4 Zusammenfassung
8 Ergebnisse und Diskussion
8.1 Auswirkung der ETCS-Bremskurven
8.2 Anpassungspotenzial der ETCS-Bremskurven
8.3 Notwendige Regelwerksänderungen
9 Fazit und Ausblick
Abkürzungsverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
Formelverzeichnis
Literaturverzeichnis
Erklärung
Anhangsverzeichnis
Anhang A: Gesprächsprotokolle
Anhang B: Eingangsparameter für die Berechnungen mit dem ETCS-Bremskurventool
Anhang C: Übersicht über die Variablen des ETCS-Bremsmodells
Anhang D: Schaubilder zu den Parametern der ETCS-Bremskurven
Anhang E: Weitere Vergleiche der Bremskurven verschiedener Zugbeeinflussungssysteme
Anlage
|
179 |
Integrated Estimation and Motion Control for Electric VehiclesYu, Zitian 08 October 2018 (has links)
No description available.
|
180 |
Einbindung moderner Überwachungsarten für Bahnübergänge auf ETCS-StreckenBiehl, Anika 21 September 2022 (has links)
Die vorliegende Diplomarbeit befasst sich mit modernen Überwachungsarten für die Einbindung von Bahnübergängen auf ETCS-Strecken. Im Rahmen der Harmonisierung des europäischen Eisenbahnverkehrs werden Strecken zunehmend mit dem Zugbeeinflussungssystem ETCS ausgerüstet, wobei vollüberwachte Systeme eine bedeutende Rolle spielen. Durch flache ETCS-Bremskurven kann es an Bahnübergängen herkömmlicher Überwachungsarten zu betrieblichen Einschränkungen kommen, was es zu vermeiden gilt. Ziel dieser Diplomarbeit ist es, Potenziale moderner Überwachungsarten für Bahnübergänge auf ETCS-Strecken aufzuzeigen. Zu Beginn werden herkömmliche Überwachungsarten und Konflikte bei deren Einbindung auf ETCS-Strecken beleuchtet. Es folgt eine Untersuchung der modernen Überwachungsarten sowie der zukünftigen Schnittstellenarchitektur zwischen Bahnübergangssicherungsanlage (BÜSA) und Stellwerk. Darauf aufbauend werden Vergleiche mit konventionellen Überwachungsarten anhand von beispielhaften Anwendungsfällen angestellt und Möglichkeiten zur Beschleunigung des Entwicklungsprozesses für eine zeitnahe Anwendungsreife identifiziert. Abschließend erfolgt eine Prüfung der Voraussetzungen für die Erprobung im Sicherungstechnischen Labor der TU Dresden.:1 Einführung
2 Grundlagen
3 Moderne Überwachungsarten Bahnübergänge
4 Moderne Überwachungsarten auf ETCS-Strecken
5 Entwicklung der Standardschnittstelle SCI-LX
6 Erprobung im SIL
7 Ergebnisse und Diskussion
8 Zusammenfassung und Ausblick / The present study addresses modern types of level crossing monitoring for the integration of level crossings on ETCS railway lines. As part of the harmonization of European rail traffic, lines are increasingly being equipped with the European Train Control System (ETCS), whereby fully supervised systems play an important role.
Due to flat ETCS braking curves, operational restrictions can occur at level crossings of conventional monitoring types, which must be avoided. The aim of this study is to highlight the potential of modern level crossing monitoring types on ETCS lines and to identify outstanding development steps up to application maturity. At the beginning, conventional types of level crossing monitoring and conflicts in their integration on ETCS lines are examined. This is followed by an analyzation of new level crossing monitoring types and the future interface architecture between the level crossing protection system and the interlocking. Based on this, comparisons are made with conventional monitoring types by use cases, and possibilities for accelerating steps in the development process for timely application maturity are identified. Finally, the prerequisites for testing in the Railway Safety Engineering Laboratory of the TU Dresden are checked.:1 Einführung
2 Grundlagen
3 Moderne Überwachungsarten Bahnübergänge
4 Moderne Überwachungsarten auf ETCS-Strecken
5 Entwicklung der Standardschnittstelle SCI-LX
6 Erprobung im SIL
7 Ergebnisse und Diskussion
8 Zusammenfassung und Ausblick
|
Page generated in 0.0407 seconds