Spelling suggestions: "subject:"branchement"" "subject:"épanchements""
11 |
Connaissance inter-entreprises et optimisation combinatoire / Inter-companies knowledge and combinatorial optimizationOuld Mohamed Lemine, Mohamed 17 June 2014 (has links)
La connaissance inter-entreprises permet à chaque société de se renseigner sur ses clients, ses fournisseurs et de développer son activité tout en limitant le risque lié à la solvabilité ou retard de paiement de ses partenaires. Avec les tensions de trésorerie, la nécessité de la croissance et l'augmentation de la concurrence, ce domaine devient plus que jamais stratégique aussi bien pour les PME que pour les grands groupes. La quantité de données traitée dans ce domaine, les exigences de qualité et de fraîcheur, la nécessité de croiser ces données pour déduire des nouvelles informations et indicateurs, posent plusieurs problèmes pour lesquels l'optimisation en général et l'optimisation combinatoire en particulier peuvent apporter des solutions efficaces. Dans cette thèse, nous utilisons l'optimisation combinatoire, l'algorithmique du texte et la théorie des graphes pour résoudre efficacement des problèmes issus du domaine de la connaissance inter-entreprises et posés par Altares D&B. Dans un premier temps, nous nous intéressons à la qualité de la base de données des dirigeants. Ce problème combine la détection et suppression des doublons dans une base de données et la détection d'erreurs dans une chaîne de caractères. Nous proposons une méthode de résolution basée sur la normalisation des données et l'algorithmique de texte et de comparaison syntaxique entre deux chaînes de caractères. Les résultats expérimentaux montrent non seulement que cette méthode est pertinente dans la détection et la suppression des doublons mais aussi qu'elle est efficace de point du vue temps de traitement. Nous nous focalisons par la suite sur les données des liens capitalistiques et nous considérons le problème de calcul des liens indirects et l'identification des têtes des groupes. Nous présentons une méthode de résolution basée sur la théorie des graphes. Nous testons cette méthode sur plusieurs instances réelles. Nous prouvons l'efficacité de cette méthode par son temps de traitement et par l'espace de calcul qu'elle utilise. Enfin, nous remarquons que le temps de calcul de celui-ci augmente de façon logarithmique en fonction de la taille d'instance. Enfin, nous considérons le problème de l'identification des réseaux d'influence. Nous formalisons ce problème en termes de graphes et nous le ramenons à un problème de partitionnement de graphe qui est NP-difficile dans ce cas général. Nous proposons alors une formulation en programme linéaire en nombre entier pour ce problème. Nous étudions le polyèdre associé et décrivons plusieurs classes de contraintes valides. Nous donnons des conditions nécessaires pour que ces contraintes définissent des facettes et discutons des algorithmes de séparations de ces contraintes. En utilisant les résultats polyédraux obtenus, nous développons un algorithme de coupes et branchements. Enfin, nous donnons quelques résultats expérimentaux qui montrent l'efficacité de notre algorithme de coupes et branchements / The inter-companies knowledge allows to every partner to learn about its customers, its suppliers and to develop its activity. Also this permits to limit the risk related to the creditworthiness, or the late payment of its partners. With the cash flow pressures, the need for growth and increased competition, this area becomes more strategic than ever, for both small (PME) and large groups. The amount of data processed in this domain, the requirements of quality and freshness, the need to cross these data to obtain new information and indicators, yield several optimization problems for which the recent techniques and computational tools can bring effective solutions. In this thesis, we use combinatorial optimization, text algorithms as well as graph theory to solve efficiently problems arising in the field of inter-companies knowledge. In particular, such problems was encountered in Altares D&B. First, we focus on the quality of the managers database. This problem combines the detection and removal of duplicates in a database, as well as the error detection in a string. We propose a method for solving this problem, based on data normalization, text algorithms and syntactic comparison between two strings. Our experimental results show that this method is relevant for the detection and removal of duplicates, and it is also very efficient in terms of processing time. In a second part of the thesis, we address a problem related to the data of ownership links. We compute the indirect links, and identify the group heads. We propose a method for solving this problem using graph theory and combinatorial optimization. We then perform a set of experiments on several real-world instances. The computational results show the effectiveness of our method in terms of CPU-time and resource allocation. In fact, the CPU time for computation increases logarithmically with the size of the instances. Finally, we consider the problem of identifying influence networks. We give a description of this problem in terms of graphs, and show that it can reduce to a graph partitioning problem. The latter is NP-hard. We then propose an integer linear programming formulation to model the problem. We investigate the associated polyhedron and describe several classes of valid inequalities. We give some necessaryand sufficient conditions for these inequalities to define facets of the considered polyhedron, and we discuss the related separation problems. Based on the obtained polyhedral results, we devise a Branch-and-Cut algorithm to solve the problem. Some numerical results are presented to show the efficiency of our algorithm.
|
12 |
Parallelisation of hybrid metaheuristics for COP solving / Parallélisation de métaheuristiques hybrides pour la résolution de POCLabidi, Mohamed Khalil 20 September 2018 (has links)
L’Optimisation Combinatoire (OC) est un domaine de recherche qui est en perpétuel changement. Résoudre un problème d’optimisation combinatoire (POC) consiste essentiellement à trouver la ou les meilleures solutions dans un ensemble des solutions réalisables appelé espace de recherche qui est généralement de cardinalité exponentielle en la taille du problème. Pour résoudre des POC, plusieurs méthodes ont été proposées dans la littérature. On distingue principalement les méthodes exactes et les méthodes d’approximation. Ne pouvant pas viser une résolution exacte de problèmes NP-Complets lorsque la taille du problème dépasse une certain seuil, les chercheurs on eu de plus en plus recours, depuis quelques décennies, aux algorithmes dits hybrides (AH) ou encore à au calcul parallèle. Dans cette thèse, nous considérons la classe POC des problèmes de conception d'un réseau fiable. Nous présentons un algorithme hybride parallèle d'approximation basé sur un algorithme glouton, un algorithme de relaxation Lagrangienne et un algorithme génétique, qui produit des bornes inférieure et supérieure pour les formulations à base de flows. Afin de valider l'approche proposée, une série d'expérimentations est menée sur plusieurs applications: le Problème de conception d'un réseau k-arête-connexe avec contrainte de borne (kHNDP) avec L=2,3, le problème de conception d'un réseau fiable Steiner k-arête-connexe (SkESNDP) et ensuite deux problèmes plus généraux, à savoir le kHNDP avec L >= 2 et le problème de conception d'un réseau fiable k-arête-connexe (kESNDP). L'étude expérimentale de la parallélisation est présentée après cela. Dans la dernière partie de ce travail, nous présentons deux algorithmes parallèles exactes: un Branch-and-Bound distribué et un Branch-and-Cut distribué. Une série d'expérimentation a été menée sur une grappe de 128 processeurs, et des accélération intéressantes ont été atteintes pour la résolution du problèmes kHNDP avec k=3 et L=3. / Combinatorial Optimization (CO) is an area of research that is in a constant progress. Solving a Combinatorial Optimization Problem (COP) consists essentially in finding the best solution (s) in a set of feasible solutions called a search space that is usually exponential in cardinality in the size of the problem. To solve COPs, several methods have been proposed in the literature. A distinction is made mainly between exact methods and approximation methods. Since it is not possible to aim for an exact resolution of NP-Complete problems when the size of the problem exceeds a certain threshold, researchers have increasingly used Hybrid (HA) or parallel computing algorithms in recent decades. In this thesis we consider the COP class of Survivability Network Design Problems. We present an approximation parallel hybrid algorithm based on a greedy algorithm, a Lagrangian relaxation algorithm and a genetic algorithm which produces both lower and upper bounds for flow-based formulations. In order to validate the proposed approach, a series of experiments is carried out on several applications: the k-Edge-Connected Hop-Constrained Network Design Problem (kHNDP) when L = 2,3, The problem of the Steiner k-Edge-Connected Network Design Problem (SkESNDP) and then, two more general problems namely the kHNDP when L >= 2 and the k-Edge-Connected Network Design Problem (kESNDP). The experimental study of the parallelisation is presented after that. In the last part of this work, we present a two parallel exact algorithms: a distributed Branch-and-Bound and a distributed Branch-and-Cut. A series of experiments has been made on a cluster of 128 processors and interesting speedups has been reached in kHNDP resolution when k=3 and L=3.
|
13 |
Stochastic models and methods for multi-object tracking / Méthodes et modèles stochastiques pour le suivi multi-objetsPace, Michele 13 July 2011 (has links)
La poursuite multi-cibles a pour objet le suivi d’un ensemble de cibles mobiles à partir de données obtenues séquentiellement. Ce problème est particulièrement complexe du fait du nombre inconnu et variable de cibles, de la présence de bruit de mesure, de fausses alarmes, d’incertitude de détection et d’incertitude dans l’association de données. Les filtres PHD (Probability Hypothesis Density) constituent une nouvelle gamme de filtres adaptés à cette problématique. Ces techniques se distinguent des méthodes classiques (MHT, JPDAF, particulaire) par la modélisation de l’ensemble des cibles comme un ensemble fini aléatoire et par l’utilisation des moments de sa densité de probabilité. Dans la première partie, on s’intéresse principalement à la problématique de l’application des filtres PHD pour le filtrage multi-cibles maritime et aérien dans des scénarios réalistes et à l’étude des propriétés numériques de ces algorithmes. Dans la seconde partie, nous nous intéressons à l’étude théorique des processus de branchement liés aux équations du filtrage multi-cibles avec l’analyse des propriétés de stabilité et le comportement en temps long des semi-groupes d’intensités de branchements spatiaux. Ensuite, nous analysons les propriétés de stabilité exponentielle d’une classe d’équations à valeurs mesures que l’on rencontre dans le filtrage non-linéaire multi-cibles. Cette analyse s’applique notamment aux méthodes de type Monte Carlo séquentielles et aux algorithmes particulaires dans le cadre des filtres de Bernoulli et des filtres PHD. / The problem of multiple-object tracking consists in the recursive estimation ofthe state of several targets by using the information coming from an observation process. The objective of this thesis is to study the spatial branching processes andthe measure-valued systems arising in multi-object tracking. We focus on a class of filters called Probability Hypothesis Density (PHD) filters by first analyzing theirperformance on simulated scenarii and then by studying their properties of stabilityand convergence. The thesis is organized in two parts: the first part overviewsthe techniques proposed in the literature and introduces the Probability Hypothesis Density filter as a tractable approximation to the full multi-target Bayes filterbased on the Random Finite Sets formulation. A series of contributions concerning the numerical implementation of PHD filters are proposed as well as the analysis of their performance on realistic scenarios.The second part focuses on the theoretical aspects of the PHD recursion in the context of spatial branching processes. We establish the expression of the conditional distribution of a latent Poisson point process given an observation process and propose an alternative derivation of the PHD filter based on this result. Stability properties, long time behavior as well as the uniform convergence of a general class of stochastic filtering algorithms are discussed. Schemes to approximate the measure valued equations arising in nonlinear multi-target filtering are proposed and studied.
|
Page generated in 0.0579 seconds