• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 197
  • 48
  • 29
  • 14
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 357
  • 55
  • 47
  • 39
  • 37
  • 36
  • 29
  • 27
  • 26
  • 25
  • 24
  • 23
  • 23
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Optimized Acid/Base Extraction and Structural Characterization of β-glucan from Saccharomyces Cerevisiae

Asare, Shardrack O 01 May 2015 (has links)
β-glucan is a major component of the fungal cell wall consisting of (1→3)-β linked glucose polymers with (1→6)-β linked side chains. The published classical isolation procedure of β-glucan from Saccharomyces cerevisiae is expensive and time-consuming. Thus, the aim of this research was to develop an effective procedure for the extraction of glucans. We have developed a new method for glucan extraction that will be cost effective and will maintain the native structure of the glucan. The method that we developed is 80% faster and utilizes 1/3 of the reagents compared to the published classical method. Further, the method developed increases the yield from 2.9 % to 10.3 %. Our new process has a branching frequency of 18.4 down from 197 and a side chain of 5.1 up from 2.5. The data indicate a more preserved native structure of isolated glucans.
132

Role of Tshz3 in the development and function of the kidney / Rôle de Tshz3 dans le développement et le fonctionnement du rein

Sanchez Martin, Irene 18 December 2018 (has links)
Les anomalies du tractus rénal et les troubles du spectre autistique caractérisent le syndrome 19q12 causé par la délétion hétérozygote du gène TSHZ3. Pour identifier des programmes développementaux TSHZ3-dépendants, nous avons comparé le transcriptome (RNA-seq) d’uretères et de reins mutants Tshz3 (KO) et sauvage (WT) d’embryons de souris au stade E12,5. Nous avons identifié des gènes exprimés de façon différentielle connus pour être impliqués dans le développement de l'uretère et/ou des reins, dont 38 ont des orthologues humains associés à des maladies rénales. Corrélativement, les reins E12,5 KO présentent une arborisation anormale de l’uretère.Dans les reins adultes, TSHZ3 est exprimé dans les cellules endothéliales glomérulaires. L'analyse morphologique de reins Tshz3+/lacZ (HET) révèle une diminution de la densité des glomérules et de l'épaisseur de la membrane basale glomérulaire ainsi qu'un phénotype d'effacement des pieds des podocytes. L’analyse du sang et de l'urine de souris adultes HET a permis d’établir des profils spécifiquement associés au génotype HET. En particulier, le protéome urinaire a identifié 33 biomarqueurs qui pourraient constituer la signature d'un processus pathologique. Par ailleurs, l'analyse du transcriptome des reins HET adultes montre un enrichissement pour des voies liées à l'inflammation.Ces résultats confirment le rôle précoce de Tshz3 dans l'uretère ainsi qu'une fonction de Tshz3 dans les reins embryonnaires. La présence de défauts structurels et fonctionnels dans les reins hétérozygotes adultes Tshz3 renforce l'idée que les souris HET modélisent le syndrome TSHZ3 humain. / Renal tract defects and autism spectrum disorder represent the phenotypic core of the 19q12 syndrome caused by heterozygote deletion of the TSHZ3 gene. To identify TSHZ3-dependent developmental programs, we performed a transcriptome analysis (RNA-seq) on E12.5 Tshz3 mutants (KO) and wild type (WT) control mouse ureters and kidneys. This analysis identified differentially expressed genes known to be involved in ureter and/or kidney development, among which 38 have human orthologues associated to renal tract diseases. Correlatively, we found that E12.5 Tshz3 KO kidneys display an abnormal ureteric branching morphogenesis.In adult kidneys, we showed that TSHZ3 is expressed in glomerular endothelial cells. Histological and transmission electron microscopy analysis showed a decreased glomerular density and thickness of the glomerular basement membrane as well as a foot process effacement phenotype in Tshz3+/lacZ (HET) kidneys. To evaluate renal function, we analysed blood and urine samples from HET and WT adult mice. Both analyses generated profiles that specifically associated with HET genotype. In particular, the urine proteome identified 33 biomarkers that might constitute a signature for a pathological process in HET kidneys. Note that transcriptome analysis of adult HET kidneys showed enrichment for inflammation-related pathways.These results support an early role for Tshz3 in the ureter as well as an unanticipated function for Tshz3 in E12.5 embryonic kidneys. The presence of structural and functional defects in Tshz3 heterozygous adult kidneys reinforces the idea that HET mice model the human TSHZ3 disorder.
133

Image analysis of fungal biostructure by fractal and wavelet techniques

Jones, Cameron Lawrence, cajones@swin.edu.au January 1997 (has links)
Filamentous fungal colonies show a remarkable diversity of different mycelial branching patterns. To date, the characterization of this biostructural complexity has been based on subjective descriptions. Here, computerized image analysis in conjunction with video microscopy has been used to quantify several aspects of fungal growth and differentiation. This was accomplished by applying the new branch of mathematics called Fractal Geometry to this biological system, to provide an objective description of morphological and biochemical complexity. The fractal dimension is useful for describing irregularity and shape complexity in systems that appear to display scaling correlations (between structural units) over several orders of length or size. The branching dynamics of Pycnoporus cinnabarinus have been evaluated using fractals in order to determine whether there was a correlation between branching complexity and the amount of extracellular phenol-oxidase that accumulated during growth. A non-linear branching response was observed when colonies were grown in the presence of the aminoanthraquinone dye, Remazol Brilliant Blue R. Branching complexity could be used to predict the generalized yield of phenol-oxidase that accumulated in submerged culture, or identify paramorphogens that could be used to improve yield. A method to optimize growth of discrete fungal colonies for microscopy and image analysis on microporous membranes revealed secretion sites of the phenoloxidase, laccase as well as the intracellular enzyme, acid phosphatase. This method was further improved using microwave-accelerated heating to detect tip and sheath bound enzyme. The spatial deposition of secreted laccase and acid phosphatase displayed antipersistent scaling in deposition and/or secretion pattern. To overcome inherent statistical limitations of existing methods, a new signal processing tool, called wavelets were applied to analyze both one and two-dimensional data to measure fractal scaling. Two-dimensional wavelet packet analysis (2-d WPA) measured the (i) mass fractal dimension of binary images, or the (ii) self-affine dimension of grey-scale images. Both 1- and 2-d WPA showed comparative accuracy with existing methods yet offered improvements in computational efficiency that were inherent with this multiresolution technique. The fractal dimension was shown to be a sensitive indicator of shape complexity. The discovery of power law scaling was a hallmark of fractal geometry and in many cases returned values that were indicative of a self-organized critical state. This meant that the dynamics of fungal colony branching equilibrium. Hence there was potential for biostructural changes of all sizes, which would allow the system to efficiently adapt to environmental change at both the macro and micro levels.
134

La quantification ramifiée en grammaire générative/Branching quantification in generative grammar

Berlanger, Isabelle 19 December 2005 (has links)
Nous menons, dans le cadre de la grammaire générative chomskienne, une analyse formelle des énoncés ramifiés du langage naturel ( « La plupart des linguistes et la plupart des philosophes s'apprécient »). Ces énoncés présentent des quantificateurs non linéairement dépendants, qui doivent être traités « en parallèle », alors que leur ordre d'apparition en surface est nécessairement linéaire. Ce phénomène est connu en logique sous le nom de ramification (‘branching quantification') ; en grammaire générative il se traduit par des exigences contradictoires au niveau de la relation de c-commande : symétrie par l'absence de c-commande entre constituants quantifiés au niveau de la forme logique (‘LF') et antisymétrie par la relation de c commande asymétrique au niveau de la forme de surface (en acceptant l'axiome de correspondance linéaire ‘LCA' de Kayne). Pour sortir de cette impasse nous introduisons un nouveau type d'objets que nous avons nommés objets doubles. Les objets doubles créent localement des îlots non linéaires qui permettent d'obtenir la linéarité recherchée en surface sans induire de dépendance au niveau de la forme logique. Leur introduction est justifiée par ailleurs par le traitement qu'ils permettent de la coordination, un phénomène étroitement lié à la ramification. Grâce aux objets doubles tous les types de ramification, avec ou sans coordination, reçoivent une représentation adéquate, menant à une interprétation correcte. Nous résultats trouvent également une application en logique modale épistémique, et pour la représentation de l'interrogation multiple. / We carry out, within the framework of Chomskian generative grammar, a formal analysis of branching sentences in natural language (“Most linguists and most philosophers appreciate each other”). These sentences present quantifiers that are not linearly dependent, which must be treated "in parallel", whereas their surface order is necessarily linear. This phenomenon is known in logic as branching quantification. In generative grammar, branching quantification leads to contradictory requirements on the c-command relation: on the one hand, because of the absence of c-command between quantified constituents, one should have symmetry at LF; on the other hand, accepting Kayne's Linear Correspondence Axiom LCA, one should have antisymmetry of c-command at PF. To leave this dead end we introduce a new type of objects which we named twin objects (‘objets doubles' in French). Twin objects locally create nonlinear islands which make it possible to obtain the expected linearity at the surface without inducing dependence at the level of Logical Form. Their introduction is moreover justified by the treatment of coordination they allow, a phenomenon closely related to branching. Thanks to twin objects all types of branching, with or without coordination, receive an adequate representation, leading to a correct interpretation. Our results also find applications in epistemic modal logic and in the representation of multiple wh-questions.
135

Limit theorems for conditioned multitype Dawson-Watanabe processes and Feller diffusions

Champagnat, Nicolas, Roelly, Sylvie January 2008 (has links)
A multitype Dawson-Watanabe process is conditioned, in subcritical and critical cases, on non-extinction in the remote future. On every finite time interval, its distribution is absolutely continuous with respect to the law of the unconditioned process. A martingale problem characterization is also given. Several results on the long time behavior of the conditioned mass process - the conditioned multitype Feller branching diffusion - are then proved. The general case is first considered, where the mutation matrix which models the interaction between the types, is irreducible. Several two-type models with decomposable mutation matrices are analyzed too .
136

The effect of field pea (<i>Pisum sativum </i> L.) basal branching on optimal plant density and crop competitiveness

Spies, Joshua Michael 09 April 2008
Field pea is an important crop in western Canada. The current recommended seeding rate in field pea is 88 plants m-2. As certain pea genotypes have the ability for increased branching, it may be possible for a producer to seed at a lower plant population without reduced yield or to choose a highly branched cultivar to have reduced risk of yield loss under conditions of poor emergence. The objective of this research was to determine how differences in branching among seven representative pea cultivars affected crop yield at different seeding rates, and to determine if branching affected the competitive ability of pea cultivars. In the plant population experiment, seven pea cultivars were seeded at five target plant populations (10, 30, 90, 120, and 150 plant m-2) during 2005 and 2006 at Rosthern and Saskatoon, Saskatchewan. The competition experiment involved eight cultivars being seeded at 50 plants m-2 to measure competitiveness with weeds. Plant emergence, number of branches, light interception, harvest index and grain yield were measured. Growth, seasonal temperature and rainfall were near normal in 2005. Severe terminal drought occurred in 2006 which may have lead to decreased yields. Branching was greatest at low plant densities and decreased as plant density increased. Grain yield increased as plant density increased until it plateaued at 80 100 plants m-2. The response of yield to plant density differed to some extent among cultivars, with CDC Acer and CDC Bronco achieving more of their potential yield at lower densities, while Carrera and Courier required higher densities to reach the same proportion of potential yield. Weed biomass was lowest in plots sown to longer vined cultivars with normal leaf type. Branching habit did not affect the competitiveness of pea cultivars. Potential exists to plant highly branched cultivars to reduce risk of yield loss in situations where low plant emergence might occur.
137

Approaches to Tailoring the Structure and Properties of Polyethylene

Li Pi Shan, Colin January 2002 (has links)
Alternative methods to control the molecular weight and short chain branching distribution of polyethylene were investigated. The ability to produce polyolefins with multimodal microstructural distributions using single catalyst/single reactor set-up is very attractive and could, in principle, be used to produce polyolefin resins with advanced molecular architecture. In this thesis, resins with controlled microstructures were produced, characterized and properties tested in order to develop a better understanding of polymerization structure-property relationships. Copolymerizations of ethylene and 1-hexene were carried out with an in-situ supported metallocene catalyst. Copolymers were produced with different alkylaluminum activators and the effect on molecular weight and short chain branching distributions was examined. It was found that different activator types produce polymer with unimodal and narrow molecular weight distributions but with very different short chain branching distributions. Each activator exhibits unique comonomer incorporation characteristics to produce bimodal short chain branching distributions with the use of a single activator. By using individual and mixed activator systems, it is possible to control the short chain branching distributions of the resulting copolymers while maintaining narrow molecular weight distributions. To further investigate the capabilities of this in-situ supported catalyst system, an experimental design was carried out to study the effect of polymerization conditions on the catalyst activity and microstructure of poly(ethylene-co-1-octene). The parameters investigated were: polymerization temperature, monomer pressure, chain transfer to hydrogen, comonomer/ethylene feed ratio and concentration of alkylaluminum. The effect of each parameter on the catalyst activity, comonomer incorporation and molecular weight distribution was investigated. The results obtained were not typical of a conventional single-site catalyst. The copolymerization system was sensitive to all of the parameters and many interactions were evident. The most prominent effect was the catalyst response to temperature. As the temperature was decreased, the short chain branching distributions of the copolymers became broad and bimodal. Overall, it was found that a wide range of microstructures could be produced, ranging from copolymers with low and high 1-octene content with unimodal to broad short chain branching distributions, and from low to high molecular weight with narrow to broad molecular weight distributions. To examine the effect of these broad short chain branching distributions on the polymer properties, a series of poly(ethylene-co-1-hexene) resins with very distinct, and in some cases bimodal crystalline distributions, were synthesized. The attractive feature of the resins in this study is that their molecular weight distributions are similar but each possesses a different short chain branching distribution, thus effectively minimizing the effect of molecular weight on the properties investigated. It was found that the tensile properties of a copolymer could be controlled by the ratio of the crystalline species present in the sample. In this study, a balance of stiffness and toughness was exhibited by a copolymer containing a large proportion of crystalline material and a small fraction of material of lower crystallinity. A series of poly(ethylene-co-1-octene) resins with tailored molecular weight and short chain branching distributions were synthesized with a heterogeneous metallocene catalyst in a two-stage polymerization process. Blends of high molecular weight copolymer and low molecular weight homopolymer and reverse blends of low molecular weight copolymer and high molecular weight homopolymer were produced. The physical properties of these resins were tested for their dynamic mechanical (tensile) and rheological properties. Increasing the copolymer content in the blend resulted in a decrease in stiffness. However, the energy dampening properties of these blends benefit from the presence of the copolymer. It was also confirmed that the melt flow properties of polymers mostly depend on their molecular weight distribution. Regardless of the comonomer content, the melt viscosities decreased with the addition of low molecular weight polymer.
138

Search for the Rare Decay $B_s^0 \to \mu^+ \mu^-$ at D0

Mathis, Michelle 16 September 2013 (has links)
Results of the search for the rare decay $B_s^0 \to \mu^+ \mu^-$ using data collected by the D0 detector at the Fermilab Tevatron collider are presented. This analysis covers the full Run II data set, corresponding to approximately 10.4~fb$^{-1}$ of integrated luminosity in $p\bar{p}$ collisions at a center of mass energy of 1.96 TeV. The analysis used new variables and a multivariate technique to improve the background reduction. After seeing fewer events than expected from background, a new Tevatron best observed limit was set on the branching fraction of the decay at $\cal{B}$($B_s^0 \to \mu^+ \mu^-$) $< 15 \times 10^{-9}$ ($12 \times 10^{-9}$) at the 95\% (90\%) C.L.
139

Approaches to Tailoring the Structure and Properties of Polyethylene

Li Pi Shan, Colin January 2002 (has links)
Alternative methods to control the molecular weight and short chain branching distribution of polyethylene were investigated. The ability to produce polyolefins with multimodal microstructural distributions using single catalyst/single reactor set-up is very attractive and could, in principle, be used to produce polyolefin resins with advanced molecular architecture. In this thesis, resins with controlled microstructures were produced, characterized and properties tested in order to develop a better understanding of polymerization structure-property relationships. Copolymerizations of ethylene and 1-hexene were carried out with an in-situ supported metallocene catalyst. Copolymers were produced with different alkylaluminum activators and the effect on molecular weight and short chain branching distributions was examined. It was found that different activator types produce polymer with unimodal and narrow molecular weight distributions but with very different short chain branching distributions. Each activator exhibits unique comonomer incorporation characteristics to produce bimodal short chain branching distributions with the use of a single activator. By using individual and mixed activator systems, it is possible to control the short chain branching distributions of the resulting copolymers while maintaining narrow molecular weight distributions. To further investigate the capabilities of this in-situ supported catalyst system, an experimental design was carried out to study the effect of polymerization conditions on the catalyst activity and microstructure of poly(ethylene-co-1-octene). The parameters investigated were: polymerization temperature, monomer pressure, chain transfer to hydrogen, comonomer/ethylene feed ratio and concentration of alkylaluminum. The effect of each parameter on the catalyst activity, comonomer incorporation and molecular weight distribution was investigated. The results obtained were not typical of a conventional single-site catalyst. The copolymerization system was sensitive to all of the parameters and many interactions were evident. The most prominent effect was the catalyst response to temperature. As the temperature was decreased, the short chain branching distributions of the copolymers became broad and bimodal. Overall, it was found that a wide range of microstructures could be produced, ranging from copolymers with low and high 1-octene content with unimodal to broad short chain branching distributions, and from low to high molecular weight with narrow to broad molecular weight distributions. To examine the effect of these broad short chain branching distributions on the polymer properties, a series of poly(ethylene-co-1-hexene) resins with very distinct, and in some cases bimodal crystalline distributions, were synthesized. The attractive feature of the resins in this study is that their molecular weight distributions are similar but each possesses a different short chain branching distribution, thus effectively minimizing the effect of molecular weight on the properties investigated. It was found that the tensile properties of a copolymer could be controlled by the ratio of the crystalline species present in the sample. In this study, a balance of stiffness and toughness was exhibited by a copolymer containing a large proportion of crystalline material and a small fraction of material of lower crystallinity. A series of poly(ethylene-co-1-octene) resins with tailored molecular weight and short chain branching distributions were synthesized with a heterogeneous metallocene catalyst in a two-stage polymerization process. Blends of high molecular weight copolymer and low molecular weight homopolymer and reverse blends of low molecular weight copolymer and high molecular weight homopolymer were produced. The physical properties of these resins were tested for their dynamic mechanical (tensile) and rheological properties. Increasing the copolymer content in the blend resulted in a decrease in stiffness. However, the energy dampening properties of these blends benefit from the presence of the copolymer. It was also confirmed that the melt flow properties of polymers mostly depend on their molecular weight distribution. Regardless of the comonomer content, the melt viscosities decreased with the addition of low molecular weight polymer.
140

The effect of field pea (<i>Pisum sativum </i> L.) basal branching on optimal plant density and crop competitiveness

Spies, Joshua Michael 09 April 2008 (has links)
Field pea is an important crop in western Canada. The current recommended seeding rate in field pea is 88 plants m-2. As certain pea genotypes have the ability for increased branching, it may be possible for a producer to seed at a lower plant population without reduced yield or to choose a highly branched cultivar to have reduced risk of yield loss under conditions of poor emergence. The objective of this research was to determine how differences in branching among seven representative pea cultivars affected crop yield at different seeding rates, and to determine if branching affected the competitive ability of pea cultivars. In the plant population experiment, seven pea cultivars were seeded at five target plant populations (10, 30, 90, 120, and 150 plant m-2) during 2005 and 2006 at Rosthern and Saskatoon, Saskatchewan. The competition experiment involved eight cultivars being seeded at 50 plants m-2 to measure competitiveness with weeds. Plant emergence, number of branches, light interception, harvest index and grain yield were measured. Growth, seasonal temperature and rainfall were near normal in 2005. Severe terminal drought occurred in 2006 which may have lead to decreased yields. Branching was greatest at low plant densities and decreased as plant density increased. Grain yield increased as plant density increased until it plateaued at 80 100 plants m-2. The response of yield to plant density differed to some extent among cultivars, with CDC Acer and CDC Bronco achieving more of their potential yield at lower densities, while Carrera and Courier required higher densities to reach the same proportion of potential yield. Weed biomass was lowest in plots sown to longer vined cultivars with normal leaf type. Branching habit did not affect the competitiveness of pea cultivars. Potential exists to plant highly branched cultivars to reduce risk of yield loss in situations where low plant emergence might occur.

Page generated in 0.0798 seconds