• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 24
  • 5
  • 3
  • Tagged with
  • 81
  • 53
  • 40
  • 31
  • 24
  • 24
  • 19
  • 19
  • 18
  • 18
  • 17
  • 17
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Biochemical properties and regulation of the TopoVI-like complex responsible for the initiation of meiotic recombination / Propriétés biochimiques et régulation du complexe TopoVI-like responsable de l'initiation de la recombinaison méiotique

Nore, Alexandre 29 November 2018 (has links)
Afin de transmettre leurs informations génétiques d'une génération à l'autre, les organismes à reproduction sexuée doivent réduire de moitié leur contenu chromosomique pour former des gamètes haploïdes. Cette réduction se produit lors d'une division cellulaire appelée méiose, durant laquelle une étape de réplication est suivie de deux divisions successives, la méiose I et II. Au cours de la méiose I, les chromosomes homologues se séparent et leur bonne ségrégation dépend de la création entre eux d’un lien physique. En méiose c’est le processus de réparation appelé recombinaison homologue, qui à la suite de l’induction dans le génome de centaine de cassures double brin par la protéine Spo11, permet d’établir ce lien. Spo11 est l'orthologue méiotique de la sous-unité catalytique de la topoisomérase VI, TopoVIA. Comme TopoVI est composée de deux sous-unités, TopoVIA et TopoVIB, l’existence d’un orthologue méiotique de TopoVIB était une question posée depuis l'identification de Spo11. Au cours de ma thèse, j'ai contribué à identifier une nouvelle famille de protéine, que l’on a nommé TopoVIB-like, orthologue à TopoVIB et nécessaire à la formation des cassures double-brin d'ADN méiotiques(Robert et al, 2016). Ces protéines ont des domaines similaires à ceux de TopoVIB, à savoir un GHKL (impliqué dans la liaison et l'hydrolyse de l'ATP), un domaine transducteur et un domaine CTD. Nous avons démontré que chez la souris, SPO11 forme un complexe avec TOPOVIBL. De plus, nous avons démontré que cette protéine est nécessaire à la formation des CDB. Ces résultats suggèrent que chez la souris, les CDB méiotiques sont catalysées par un complexe TopoVI-like. Chez S. cerevisiae, il n'y a pas d'orthologue clair de TopoVIB, mais nous avons trouvé que la protéine Rec102, connue pour être nécessaire à la formation des CDB méiotiques, présente une homologie partielle avec le domaine transducteur des TopoVIB-like. Rec102 forme un complexe avec Rec104, une protéine également requise pour la formation des CDB. Ainsi, nous avons émis l'hypothèse que le complexe Rec102 / Rec104 était l'orthologue méiotique de TopoVIB chez la levure, interagissant avec Spo11 pour former un complexe de type TopoVI-like. Malgré l'importance de Spo11, son mode d'action est mal connu. Cette absence de données biochimiques est due à l’insolubilité de la protéine. Le but de ma thèse était de caractériser le mode d'action et la régulation du complexe TopoVI-like dans la formation des CDB méiotiques. Tout d'abord, biochimiquement, en purifiant in vitro une forme soluble du complexe TopoVI-like de levure composé de Spo11 / Rec102 / Rec104 / Ski8 (un partenaire direct de Spo11) en co-exprimant ces protéines dans deux systèmes d'expression, E. coli et S. cerevisiae. En utilisant E. coli, j'ai réussi à purifier un complexe soluble formé par Spo11 / Rec102 / Rec104 / Ski8 et en utilisant S. cerevisiae, j'ai purifié deux complexes différents, l'un formé par les quatre protéines, et un formé uniquement par Spo11 et Rec102. Néanmoins, les tests d'activité sur différents substrats d'ADN n'ont révélé aucune activité de coupure de l’ADN. Le deuxième objectif de ma thèse était d'étudier comment, chez la souris, TOPOVIBL régule l'activité de SPO11 en interagissant avec d'autres protéines nécessaires à la formation des CDB. En double hybride, j'ai prouvé que, comme chez la levure, l'orthologue méiotique de TopoVIB chez la souris interagissait avec REC114, une autre protéine nécessaire à la formation des CDB. La cartographie de cette interaction à l'échelle de l’acide aminé a conduit à l'identification d'un résidu sur TOPOVIBL essentiel pour l'interaction entre TOPOVIBL et REC114. Afin d'étudier in vivo le rôle de l'interaction entre TOPOVIBL et REC114, une souris mutante pour le résidu identifié de TOPOVIBL a été générée à l'aide de CRISPER-Cas9 et son phénotype a été analysé. / To properly transmit their genetic information from one generation to another, sexually reproductive organisms need to halve their genome to form haploid gametes. This reduction occurs during a special cell division called meiosis, which proceeds through one round of DNA replication followed by two successive divisions called meiosis I and II. During meiosis I homologous chromosomes segregate, and their proper segregation depends on the homologous recombination pathway that establishes a physical link between the homologues. During meiosis, homologous recombination events are triggered by the formation of DNA double strand break (DSB) catalyzed by the evolutionarily conserved Spo11 protein. Spo11 is the meiotic ortholog of the catalytic subunit of the TopoVI topoisomerase, TopoVIA. As TopoVI is composed of two subunits, TopoVIA and TopoVIB, the requirement for meiotic DSB formation of a B subunit was under investigation since the identification of Spo11. During my PhD, I contributed to the identification of a new family of protein, the TopoVIB-like family, ortholog to the Topoisomerase VI B subunit (TopoVIB) and required for meiotic DNA double strand break formation (Robert et al, 2016). These proteins share domains in part similar to the canonical TopoVIB which are a GHKL domain (involved in ATP binding and hydrolysis), a transducer domain and a CTD domain. We demonstrated that in mice, SPO11 forms a complex with TOPOVIBL. Biochemical characterization of this complex showed a structure compatible with an A2B2 organization. Furthermore, we demonstrated that this protein is required for meiotic DSB formation. These results suggest the existence, in mice, of a TopoVI-like complex that catalyzes the formation of meiotic DSB. In S. cerevisiae, there is no clear TopoVIB-like ortholog, but we found that the Rec102 protein, which is known to be required for the formation of meiotic DSB, shows a partial homology with the transducer domain of the TopoVIB-like proteins. Rec102 forms a complex with Rec104, a protein also essential for DSB formation. Thus, we hypothesized that the Rec102/Rec104 complex is the yeast meiotic ortholog of TopoVIB, interacting with Spo11 to form a meiotic TopoVI-like complex. Despite the importance of Spo11 little is known about its mode of action. This absence of biochemical data is due to the lack of solubility of the protein. The aim of my PhD was to characterize the mode of action and regulation of the TopoVI-like complex for meiotic DSB formation. First, biochemically, by purifying in vitro a soluble form of the yeast TopoVI-like complex composed by Spo11/Rec102/Rec104/Ski8. To achieve this objective, I co-expressed these proteins in two different expression systems, E. coli and meiotic culture of S. cerevisiae. Using E. coli I managed to purify a soluble complex formed by Spo11/Rec102/Rec104/Ski8, and using meiotic culture of S. cerevisiae, I purified two different complexes, one formed, by the four proteins, and one formed only by Spo11 and Rec102. Nevertheless, in vitro activity essays on different DNA substrates did not reveal any DNA cleavage activity. The second goal of my PhD was to study how in mouse, the activity of TOPOVIBL / SPO11 may be regulated by other proteins known to be required for DSB formation. Using Y2H experiment I was able to prove that, as in yeast, mouse TOPOVIBL interacts with REC114, a protein required for DSB formation. The mapping of this interaction at the amino-acid scale, leads to the identification of one residue on TOPOVIBL essential for the interaction between TOPOVIBL and REC114. In order to investigate in vivo the role of the interaction between TOPOVIBL and REC114, a mutant mouse carrying a mutation in the identified residue of TOPOVIBL was generated using CRISPER-Cas9, and its phenotype analyzed.
32

Mécanismes et fonctions de la voie d'ARN interférence induite par ARN double brin chez Paramecium tetraurelia / Mechanisms and functions of the dsRNA-inducible RNAi pathway in Paramecium tetraurelia

Carradec, Quentin 29 September 2014 (has links)
Le cilié Paramecium tetraurelia est un modèle intéressant pour l'étude de la diversité et de l'évolution des voies d'ARN interférence (ARNi) chez les eucaryotes. L'une des voies d'ARNi végétatives peut être induite en nourrissant les paramécies de bactéries produisant un ARN double-brin (ARNdb) homologue à un gène donné, dont l'expression est inactivée de manière post-transcriptionnelle par la production de siARN de 23 nt. Un crible de mutagénèse a permis d'obtenir des mutants mendéliens déficients pour l'ARNi, dont les génomes ont été séquencés afin d'identifier sans a priori des gènes impliqués dans cette voie. 6 gènes ont été identifiés: un Dicer, deux ARN polymérases ARN-dépendantes (RDR1 et 2), une nucléotidyl-transférase (CID1) et deux gènes codant de nouvelles protéines (PDS1 et 2). Pour étudier leur rôle dans la biosynthèse ou l'action des siARN, ces derniers ont été séquencés à partir de cellules sauvages ou mutantes, nourries d'un ARNdb homologue à un gène non essentiel. L'analyse bio-informatique a montré que des siARN dits 'primaires' sont produits à partir de l'ARNdb bactérien, tandis que des siARN dits 'secondaires' sont produits à partir de la totalité de l'ARNm endogène ciblé, et sont majoritairement de polarité anti-sens. Alors que la production des siARN primaires dépend de tous les gènes étudiés, les résultats n'impliquent que RDR2 dans celle des siARN secondaires. Enfin, j'ai montré que certains clusters de siARN endogènes dépendent de RDR1 et de CID1, tandis que d'autres dépendent de RDR2. La paramécie produit également des siARN antisens aux ARN ribosomaux bactériens, suggérant de nouvelles hypothèses quant à la fonction naturelle de cette voie. / The ciliate Paramecium tetraurelia is an interesting model to study the diversity and evolution of RNA interference (RNAi) pathways. One of the vegetative RNAi pathways is induced by feeding cells with bacteria producing double-stranded RNA (dsRNA) homologous to a given gene, which is then post-transcriptionally silenced through the production of 23-nt siRNAs. A forward genetic screen allowed us to obtain Mendelian mutants deficient in dsRNA-induced RNAi, and mutated genes were identified by whole-genome resequencing. 6 genes were identified: one Dicer, two RNA-dependent RNA polymerases (RDR1 et 2), one nucleotidyl-transferase (CID1) and two genes encoding novel poteins (PDS1 and 2). To study their roles in siRNA biosynthesis or action, we sequenced small RNAs from wild-type or mutants cells fed with a dsRNA homologous to a non-essential endogenous gene. Bioinformatic analyses showed that 'primary' siRNAs are produced from the bacterial dsRNA trigger, while 'secondary' siRNAs, predominantly of antisense polarity, are produced from the whole length of the targeted endogenous mRNA. While primary siRNA production requires all of the genes studied, the results only implicate RDR2 in the production of secondary siRNAs. Finally, I showed that some clusters of endogenous siRNAs depend on RDR1 and CID1, whereas others depend on RDR2. Paramecium was also shown to produce siRNAs that are antisense to bacterial ribosomal RNAs, suggesting new hypotheses about the possible natural functions of this pathway.
33

Etude du rôle de la protéine phosphatase de type 1 Glc7 dans l'inactivation des mécanismes de surveillance de l'ADN et analyse des interrégulations entre le mécanisme de surveillance de l'ADN et celui du fuseau mitotique chez la levure Saccharomyces cerevisiae.

Clemenson, Céline 04 May 2007 (has links) (PDF)
Chez les eucaryotes, la transmission correcte du patrimoine génétique au cours de la division cellulaire repose en partie sur l'existence de voies de surveillance ou « checkpoints » contrôlant d'une part l'intégrité de l'ADN et d'autre part la répartition équitable du génome dupliqué dans les cellules-filles au cours de la mitose. Des altérations dans la machinerie de ségrégation des chromosomes activent le checkpoint du fuseau mitotique, tandis que les checkpoints de l'ADN sont activés suite à des lésions de l'ADN ou à des défauts de la réplication. Ces systèmes de surveillance contrôlent de multiples réponses dont des arrêts de la progression du cycle de division cellulaire. Ces voies de surveillance sont très conservées chez les eucaryotes et des mutations affectant leurs composants sont fréquemment retrouvées dans des lignées tumorales humaines.<br />L'activation des checkpoints de l'ADN est, à ce jour, assez bien appréhendée et met en jeu de nombreux événements de phosphorylation. La reprise du cycle concomitante à la désactivation de ces checkpoints est moins bien comprise alors qu'elle constitue une étape tout aussi essentielle à la survie cellulaire. Nous avons montré que la surexpression de la protéine phosphatase de type 1 Glc7 facilitait l'inactivation des checkpoints de l'ADN en cas de cassures double-brin de l'ADN chez un eucaryote modèle, la levure Saccharomyces cerevisiae.<br />Les checkpoints de l'ADN et du fuseau étaient considérés comme des voies indépendantes, mais nos travaux ont montré qu'il existe des interconnections entre les deux. Nous avons observé que, d'une part, l'activité du checkpoint du fuseau et ses composants influencent la réponse au stress génotoxique, et que, d'autre part, l'état de phosphorylation de deux composants centraux des checkpoints de l'ADN, Rad53 et Rad9, était modifié en cas d'activation du checkpoint du fuseau. Nous présentons ici la caractérisation de ces modifications post-traductionnelles ainsi que la recherche de leurs significations physiologiques.
34

Comprendre le rôle de RecN dans la voie de réparation CDB chez Deinococcus radiodurans

Pellegrino, Simone 28 February 2012 (has links) (PDF)
Deinococcus radiodurans est une bactérie à gram-positive connue pour son extrême résistance à une grande variété d'agents endommageant l'ADN. Parmi ces derniers, les rayonnements ionisants et la dessiccation sont les plus nocifs pour la cellule, car ils introduisent des cassures dans le génome. Les cassures double brin (CDB) sont particulièrement dangereuses et doivent être réparées de façon très efficace, afin d'éviter l'apparition de mutations pouvant mener à la mort de la cellule ou de l'organisme. La recombinaison homologue (RH) est le mécanisme le plus efficace pour la réparation des CDBs. D. radiodurans est capable de restaurer entièrement son génome en à peine 3 heures, et elle accomplit la totalité du processus par la voie RecFOR. Afin d'être réparées, les CDBs doivent d'abord être reconnu. Cette étape importante, qui a lieu peu de temps après l'apparition du dommage dans la cellule, implique la protéine RecN. RecN est recrutée dès les premières étapes de la réparation de l'ADN et des études in vivo ont démontré qu'elle avait tendance à se localiser dans des foyers discrets. Des études in vitro suggèrent également que RecN favorise l'assemblage de fragments d'ADN, une fonction décrite précédemment pour les protéines SMC (telle que cohesin), qui sont structurellement similaires à RecN. De nombreuses études structurales ont été effectuées sur la protéine de type SMC, Rad50, alors qu'à présent aucune information structurale n'est disponible pour RecN. Le travail présenté ici a porté sur la caractérisation structurale de RecN et de ses domaines. Nous avons obtenu les structures cristallines de trois constructions (se chevauchant partiellement) de RecN et une étude de diffusions des rayons X aux petits angles a été effectuée sur les domaines séparés de RecN et sur la protéine entière. Les données obtenues en solution ont complété notre étude cristallographique et nous ont permis de construire un modèle atomique de la protéine entière. Des mutations ont été conçues et les protéines mutées ont été produites et utilisées pour la caractérisation de l'activité d'hydrolyse de l'ATP caractéristique de cette famille de protéines. Des études biochimiques approfondies ont été effectuées sur les différentes constructions et mutants de RecN afin de déterminer le rôle de chacun des ses domaines. Nos résultat nous ont permis de proposer un modèle qui explique comment RecN reconnaît les CDB, maintient les deux extrémités de l'ADN, et prépare l'ADN pour la réparation par les protéines RecFOR.
35

Comprendre le rôle de RecN dans la voie de réparation CDB chez Deinococcus radiodurans / Understanding the role of RecN in DSB repair pathway in Deinococcus radiodurans

Pellegrino, Simone 28 February 2012 (has links)
Deinococcus radiodurans est une bactérie à gram-positive connue pour son extrême résistance à une grande variété d'agents endommageant l'ADN. Parmi ces derniers, les rayonnements ionisants et la dessiccation sont les plus nocifs pour la cellule, car ils introduisent des cassures dans le génome. Les cassures double brin (CDB) sont particulièrement dangereuses et doivent être réparées de façon très efficace, afin d'éviter l'apparition de mutations pouvant mener à la mort de la cellule ou de l'organisme. La recombinaison homologue (RH) est le mécanisme le plus efficace pour la réparation des CDBs. D. radiodurans est capable de restaurer entièrement son génome en à peine 3 heures, et elle accomplit la totalité du processus par la voie RecFOR. Afin d'être réparées, les CDBs doivent d'abord être reconnu. Cette étape importante, qui a lieu peu de temps après l'apparition du dommage dans la cellule, implique la protéine RecN. RecN est recrutée dès les premières étapes de la réparation de l'ADN et des études in vivo ont démontré qu'elle avait tendance à se localiser dans des foyers discrets. Des études in vitro suggèrent également que RecN favorise l'assemblage de fragments d'ADN, une fonction décrite précédemment pour les protéines SMC (telle que cohesin), qui sont structurellement similaires à RecN. De nombreuses études structurales ont été effectuées sur la protéine de type SMC, Rad50, alors qu'à présent aucune information structurale n'est disponible pour RecN. Le travail présenté ici a porté sur la caractérisation structurale de RecN et de ses domaines. Nous avons obtenu les structures cristallines de trois constructions (se chevauchant partiellement) de RecN et une étude de diffusions des rayons X aux petits angles a été effectuée sur les domaines séparés de RecN et sur la protéine entière. Les données obtenues en solution ont complété notre étude cristallographique et nous ont permis de construire un modèle atomique de la protéine entière. Des mutations ont été conçues et les protéines mutées ont été produites et utilisées pour la caractérisation de l'activité d'hydrolyse de l'ATP caractéristique de cette famille de protéines. Des études biochimiques approfondies ont été effectuées sur les différentes constructions et mutants de RecN afin de déterminer le rôle de chacun des ses domaines. Nos résultat nous ont permis de proposer un modèle qui explique comment RecN reconnaît les CDB, maintient les deux extrémités de l'ADN, et prépare l'ADN pour la réparation par les protéines RecFOR. / Deinococcus radiodurans is a Gram-positive bacterium known for its extreme resistance to a broad variety of DNA damaging agents. Among these, Ionizing Radiations and desiccation are the most harmful for the cell, since they introduce breaks in the genome. Double Strand Breaks (DSB) are particularly hazardous for the cell and they need to be repaired very efficiently, in order to avoid mutations leading to altered, if not lethal, phenotypes. Homologous Recombination (HR) is the most efficient mechanism by which DSBs are repaired. D. radiodurans is able to completely restore its genome in only 3 hours, and it accomplishes the entire process through the RecFOR pathway. In order to be repaired, DSBs first need to be recognized. The protein believed to be responsible for this important step that takes place soon after the damage occurs in the cell, is RecN. RecN is recruited at the early stages of DNA repair and in vivo studies have demonstrated its propensity to localize to discrete foci. In vitro studies also suggest that RecN possesses a DNA end-joining activity previously observed for SMC proteins (such as cohesin), which are structurally related to RecN. Several structural studies have been carried out on the SMC-like protein, Rad50, but so far no structural information is available for RecN. The work presented here focused on the structural characterization of RecN and its constitutive domains. We obtained crystal structures of three partially overlapping constructs of RecN and Small Angle X-ray Scattering was performed on the individual domains and the full-length protein. The study of RecN in solution complemented our crystallographic study and enabled us to build a reliable, atomic model of the full-length protein. Mutations were designed and the mutant RecN proteins were produced in order to characterize the ATP hydrolysis activity of RecN, which is a conserved feature of this family of proteins. Extensive biochemical studies were carried out on wild-type and mutants of both the full-length protein and the single domains, in order to determine the role and function of each of the domains. Our results led us to propose a model for how RecN might recognize DSBs, tether two broken DNA ends and prepare the DNA for subsequent repair by the RecFOR machinery.
36

Mécanismes de maintenance de l'intégrité de l'ADN mitochondrial humain suite à des cassures double-brin / Maintenance of human mitochondrial DNA after double-strand breaks

Moretton, Amandine 08 December 2017 (has links)
Les mitochondries sont des organites qui possèdent leur propre ADN (ADNmt), codant pour des gènes de la chaine respiratoire. La réparation des dommages dus aux ROS, une réplication défectueuse ou d’autres sources exogènes tels des agents chimiothérapeutiques ou des irradiations ionisantes peuvent générer des cassures double-brin (CDB) de l’ADNmt. L’ADNmt code pour des protéines essentielles à la production d’énergie, et des systèmes de maintenance de l’intégrité de ce génome efficaces sont donc nécessaires pour la viabilité des cellules. En effet des mutations de l’ADNmt sont présentes dans de nombreuses pathologies comme les myopathies mitochondriales, les cancers et les maladies neurodégénératives. Cependant les processus responsables de la maintenance de l’ADNmt suite à des CDB restent controversés.Pour élucider les mécanismes impliqués, nous avons généré des CDB mitochondriales en utilisant une lignée cellulaire humaine exprimant de manière inductible l’enzyme de restriction PstI liée à une séquence d’adressage mitochondrial. Nos résultats montrent, dans notre système, une première phase de dégradation de l’ADNmt lésé avec une cinétique rapide, n’impliquant pas l’autophagie ou l’apoptose, suivie de la ré-amplification d’ADNmt intact dans un deuxième temps. Contrairement à d’autres études nous n’avons pas pu détecter d’évènements de réparation des CDB mitochondriales générées. Nous avons ensuite cherché à identifier les protéines impliquées dans la dégradation de l’ADNmt lésé que nous observons, mais aucune nucléase testée ne semble responsable de ce processus. Des approches plus globales sont mises au point pour identifier de nouveaux acteurs, notamment un crible RNAi à grande échelle. Parallèlement nous nous intéressons aussi à une famille de phosphohydrolases, les Nudix, et à leur rôle protecteur en assainissant le réservoir de nucléotides libres. / Mitochondria are organelles that possess their own genome, the mitochondrial DNA (mtDNA). Repair of oxidative damages, defective replication, or various exogenous sources, such as chemotherapeutic agents or ionizing radiations, can generate double-strand breaks (DSBs) in mtDNA. MtDNA encodes for essential proteins involved in ATP production and maintenance of integrity of this genome is thus of crucial importance. Mutations in mtDNA are indeed found in numerous pathologies such as mitochondrial myopathies, neurodegenerative disorders or cancers. However, the mechanisms involved in mtDNA maintenance after DSBs remain unknown.To elucidate this question, we have generated mtDNA DSBs using a human inducible cell system expressing the restriction enzyme PstI targeted to mitochondria. Using this system, we could not find any support for DSBs repair of mtDNA. Instead we observed a loss of the damaged mtDNA molecules and a severe decrease in mtDNA content, followed by reamplification of intact mtDNA molecules. We have demonstrated that none of the known mitochondrial nucleases are involved in mtDNA degradation and that DNA loss is not due to autophagy, mitophagy or apoptosis but to a selective mechanism. Our study suggests that a still uncharacterized pathway for the targeted degradation of damaged mtDNA in a mitophagy/autophagy-independent manner is present in mitochondria, and might provide the main mechanism used by the cells to deal with DSBs. Global approaches are ongoing to identify proteins involved in degradation of damaged mtDNA following DSBs, mainly an RNAi screen targeting 80 nucleases. In parallel we are interested in a family of phosphohydrolases named Nudix and their putative protective role in sanitizing the nucleotides pool in mitochondria.
37

Mécanisme moléculaire de reconnaissance et de clivage du génome chez le bactériophage SPP1, un virus à ADN double-brin / Molecular mechanisms of recognition and cleavage of the genome of bacteriophage SPP1, a double-stranded DNA virus

Djacem, Karima 08 December 2016 (has links)
La reconnaissance spécifique du génome viral et son encapsidation est une étape cruciale pour l’assemblage de particules virales. Chez SPP1, comme chez d’autres bactériophages à queue, le moteur moléculaire qui encapside le génome viral est composé de la terminase, une enzyme hétéro-oligomérique qui possède une activité ATPasique et nucléasique, et de la protéine portale, un oligomère cyclique par lequel l’ADN viral est transloqué. Dans un grand nombre de ses virus, l’encapsidation de l’ADN est initiée par la reconnaissance et le clivage d’une séquence spécifique nommée « pac ». C’est un évènement qui se produit une seule fois au début d’une série de cycles d’encapsidation processive à partir d’un concatémère issu de la réplication du génome du phage. La région pac de SPP1 contient deux séquences (pacL et pacR) où TerS (gp1) se lie entourant la région (pacC) où TerL (gp2) coupe l’ADN de SPP1.Ici, nous montrons qu’une région de la séquence pacL et qu’un motif polyadénine de pacR agissent ensemble pour promouvoir le clivage en pacC. La dégénération de la région pacC n’a pas montré d’effet sur que le clivage endonucléolytique qui a lieu à une position bien définie de pacC avec une précision de ~6 pb. Des études avec des phages proches de SPP1 ont montré une conservation dans la position du clivage, malgré des variations dans pacC, pacR ou dans la distance entre pacL et pacC. Les données sont compatibles avec un modèle dans lequel TerS interagit spécifiquement avec la région pacL, sur laquelle le multimère cyclique TerS doit s’enrouler, et le motif polyadénine de la région pacR. Le complexe nucléoprotéique résultant va créer un contexte structural qui permet de recruter et positionner le domaine nucléase de TerL pour une coupure très précise sur pacC sans spécificité de séquence. / The specific recognition of the viral genome and its packaging is a critical step in viral particle assembly. In SPP1, as in many tailed bacteriophages, the macromolecular motor that encapsidates viral DNA is composed of terminase, a hetero-oligomeric enzyme possessing ATPase and nuclease activities, and of portal protein, a cyclic oligomer through which DNA is translocated. In a large number of these viruses, DNA packaging is initiated by recognition and cleavage of a specific sequence pac. This event occurs once at the beginning of a series of processive encapsidation events along a substrate concatemer of replicated phage genomes. The SPP1 pac region has two sequences where TerS (gp1) binds (pacL and pacR) flanking the segment where TerL (gp2) cleaves the SPP1 DNA (pacC). Here we show that a sequence segment of pacL and a poly-adenine motif in pacR act together to promote cleavage at pacC. Extensive degeneration of pacC sequence has no detectable effect in pac cleavage. The endonucleolytic cut occurs at a defined position with a precision of ~6 bp. Studies with SPP1-related phages show conservation of the cut position, irrespectively of sequence variation in pacC, in pacR or changes in pacL-pacC distance. The data is compatible with a model in which TerS interacts specifically with a region of pacL that probably wraps around the TerS cyclical multimer, and a poly-A tract in pacR. The resulting nucleoprotein complex architecture positions TerL for accurate cleavage at pacC without specific sequence requirement.
38

Relations structure-fonction du premier transfert de brin chez le vih-1 / Structure-function relationships of the first strand transfer in hiv-1

Maskri, Ouerdia 09 December 2016 (has links)
Les premier et second transferts de brin sont deux étapes essentielles de la transcription inverse du génome du virus de l’immunodéficience humaine de type 1 (VIH-1). De nombreuses études in vitro suggèrent que les transferts nécessitent l’action de la protéine de nucléocapside du VIH-1 (NC). Le premier transfert, se produisant de l’extrémité 5’ vers l’extrémité 3’ de l’ARN génomique du VIH-1, repose en grande partie sur un appariement ADN-ARN impliquant la région r de l’ADN strong-stop (ADNss) et la région R située à l’extrémité 3’ de l’ARN viral (ARN 3’UTR). Les structures, interactions et dynamiques qui gouvernent cet appariement sont mal connues. Jusqu’à notre étude, la formation de l’hybride ADN-ARN n’avait été étudiée in vitro qu’avec des courts acides nucléiques qui ne reflètent que partiellement les structures formées par l’ADNss et l’ARN 3’UTR dans le virus en cours de réplication. L’objectif principal de ma thèse a été de caractériser in vitro les mécanismes moléculaires qui gouvernent l’hybridation de l’ADNss avec l’ARN 3’UTR. Pour atteindre cet objectif, j’ai utilisé des méthodes de la biologie moléculaire et j’ai analysé la structure secondaire de l’ADNss entier avec trois sondes de structure (DNase I, mung bean nuclease et permanganate de potassium) : i) en l’absence de NC ; ii) en présence de NC ; iii) en présence de l’ARN 3’UTR.Les résultats obtenus nous ont permis d’être les premiers à déterminer in vitro la structure secondaire de l’ADNss entier du VIH-1 et à identifier dans celui-ci quatre sites sur lesquels se fixe préférentiellement la NC. A notre connaissance, les structures secondaires des ADNss d’autres rétrovirus n’ont pas été déterminées. Nos données structurales sont en faveur d’une structure secondaire de l’ADNss du VIH-1 constituée de trois tiges-boucles (u5, cpoly(A) et cTAR) et trois régions simple-brin en l’absence ou présence de NC. Notre analyse phylogénétique suggère que la structure secondaire de l’ADNss et les sites forts NC sont conservés parmi les différents groupes du VIH-1. Nos résultats suggèrent aussi qu’une partie de la région u5 de l’ADNss établit des interactions très faibles et probablement transitoires avec une partie de la région U3 de l’ARN 3’UTR en l’absence de NC. En réalisant des cinétiques d’hybridation et en utilisant deux ADNss mutés, nous avons montré que l’hybridation ADNss-ARN 3’UTR nécessite l’activité de la NC et que ce processus ne repose pas sur une seule voie d’initiation. Nos résultats supportent un modèle dans lequel la première étape est la fixation de la NC au niveau des quatre sites, ce qui va déclencher l’ouverture de la structure tridimensionnelle de l’ADNss et favoriser ainsi l’accessibilité de la région r ; la seconde étape étant la déstabilisation par la NC des structures secondaires ; la troisième étape étant l’appariement par la NC des régions complémentaires r et R. L’ensemble des résultats obtenus permet à mon équipe d’accueil d’initier de nouvelles études in vitro et ex vivo. / An essential step of human immunodeficiency virus type 1 (HIV-1) reverse transcription is the first trand transfer that requires base pairing of the R region at the 3’- end of the genomic RNA with the complementary r region at the 3’-end of minus strand strong-stop DNA (ssDNA). HIV-1 nucleocapsid protein (NC) facilitates this annealing process. Determination of the ssDNA structure is needed to understand the molecular basis of NC-mediated genomic RNA-ssDNA annealing. For this purpose, we investigated ssDNA using structural probes (nucleases and potassium permanganate). This study is the first to determine the secondary structure of the fulllength HIV-1 ssDNA in the absence or presence of NC.Our probing data obtained in the absence of NC, suggest weak contacts between the u5 region of ssDNA and the U3 region the genomic RNA. The probing data and phylogenetic analysis support the folding of ssDNA into three stem-loop structures and the presence of four high-affinity binding sites for NC. Using the gel retardation assay, we analyzed the interaction of NC with each site. Taken together, our results support a model for the NC-mediated annealing process in which the preferential binding of NC to four sites triggers unfolding of the threedimensional structure of ssDNA, thus facilitating interaction of the r sequence of ssDNA with the R sequence of the genomic RNA. In addition, using gel retardation assays and ssDNA mutants, we show that the annealing of ssDNA to the 3’- end of the genomic RNA requires NC activity and does not rely on a single pathway (zipper intermediate or kissing complex).
39

Etude de la dynamique des repetitions dans les genomes eucaryotes: de leur formation a leur elimination

Fiston-Lavier, Anna-Sophie 26 March 2008 (has links) (PDF)
De la bactérie à l'homme, dispersées ou en tandem, les répétitions peuvent représenter jusqu'à 90 % de la séquence génomique. Malgré leur impact sur la plasticité et l'évolution des génomes eucaryotes, leurs mécanismes de formation sont encore très spéculatifs. L'insertion continue de nouvelles répétitions devrait conduire à une augmentation constante de la taille des génomes. Or, il ne semble pas que ce soit le cas. Y a t-il régulation de la taille des génomes? Le processus de régulation est-il le même dans l'euchromatine et l'hétérochromatine? Afin d'étudier la dynamique des répétitions, j'ai développé un ensemble de programmes informatiques pour la détection des duplications segmentaires (DS) et des répétitions en tandem (RT). A partir des caractéristiques des DS détectées chez Drosophila melanogaster, j'ai proposé un modèle de formation des DS, basé sur un modèle de recombinaison homologue non-allélique. J'ai également identifié les traces de l'implication des éléments transposables (ET) dans ce processus. Afin de caractériser la relation existante entre les répétitions et la structure de la chromatine, j'ai ensuite réalisé une analyse comparative de la dynamique des répétitions euchromatiques et hétérochromatiques. Pour ce travail, nous avons choisi comme modèle d'étude Arabidopsis thaliana. La construction d'arbres phylogénétiques des séquences répétées m'a permis de dater les répétitions. Nous suggérons ainsi une propagation par « vague » des ET. J'ai ensuite estimé les forces d'élimination des copies d'ET. Nos résultats suggèrent que dans l'euchromatine, la pression de sélection due aux gènes induit l'élimination des répétitions. Dans l'hétérochromatine, la faible densité en gènes permet de maintenir une forte densité en ET. Pourtant, les estimations du taux de perte en ADN, prédisent un turnover aussi rapide dans l'euchromatine que dans l'hétérochromatine. Afin de contre-balancer l'insertion des ET dans l'hétérochromatine, nous pouvons invoquer la recombinaison homologue non-allélique.
40

Étude des mécanismes de dégradation sélective de l’ARN par la RNase III de Saccharomyces cerevisiae / Studies of the mechanisms of selective RNA degradation by the RNase III of Saccharomyces cerevisiae

Lavoie, Mathieu January 2014 (has links)
Résumé : Chez toutes les cellules, une modulation précise de l’expression des gènes est essentielle afin de réguler adéquatement leur métabolisme et de s’adapter aux changements environnementaux. En effet, c’est l’expression des gènes, plutôt que la séquence d’ADN, qui détermine en grande partie la diversité et la complexité des organismes. Celle-ci dépend principalement des changements dans les niveaux d’ARNs cellulaires résultant de la modification de l’équilibre entre leurs taux relatifs de synthèse et de dégradation. Alors que la régulation transcriptionnelle a été largement étudiée par le passé, des études récentes révèlent que la stabilité de l’ARN joue aussi un rôle important dans le modelage du transcriptome. Toutefois, les mécanismes qui assurent la dégradation précise et sélective des ARNs sont globalement mal compris. Au cours de cette thèse, j’ai utilisé la ribonucléase III de levure Saccharomyces cerevisiae (Rnt1p) comme modèle pour étudier comment des transcrits spécifiques sont ciblés pour la dégradation et évaluer sa contribution à la régulation de l’expression génique. Les résultats indiquent que Rnt1p régule l’expression des gènes en utilisant une spécificité élargie pour des structures tige-boucles d’ARN. En effet, un nouveau motif structurel de Rnt1p permet la discrimination des tige-boucles ayant une séquence spécifique tout en bloquant la liaison à des hélices génériques d’ARN double-brin. D’un autre côté, l’identification des signaux de dégradation de Rnt1p à l’échelle du transcriptome a permis de révéler plus de 384 transcrits clivés par Rnt1p, dont la majorité sont des ARN messagers. En outre, l’impact de la délétion de RNT1 sur l’expression de ces gènes est influencé par les conditions de culture des cellules, ce qui suggère que Rnt1p est un important régulateur conditionnel de l’expression génique. Somme toute, les résultats présentés dans cette thèse démontrent comment des ARNs sont spécifiquement choisis pour la dégradation et soulignent l’importance de la dégradation nucléaire dans la régulation de l’expression génique en réponse à des changements environnementaux. // Abstract : Precise modulation of gene expression is essential for any cell in order to regulate its metabolism and adapt to environmental changes. In fact, it is gene expression, rather than DNA sequence alone, which mostly explains the functional diversity and complexity between the different cell types. As such, gene expression mainly results from changes in the levels of cellular RNAs which are, in turn, dependent on the equilibrium between their relative rates of synthesis and degradation. While transcriptional control has been largely studied in the past, recent publications reveal that changes in RNA stability also play an important role in shaping the transcriptome. Unfortunately though, the mechanisms ensuring precise and selective RNA degradation remains poorly understood. In this thesis, I have used the yeast Saccharomyces cerevisiae ribonuclease III (Rnt1p) as a model to study how specific transcripts are targeted for degradation and evaluate its contribution to the regulation of gene expression. The results indicate that Rnt1p regulates gene expression using a broad specificity for structured RNA stem loops. Indeed, a new structural motif of Rnt1p permits discrimination of hairpins with specific sequence while blocking the binding of the generic RNA duplexes recognized by other members of the RNase III family. This highly specific mode of substrate recognition was found to be easily modulated by a flexible network of protein RNA interactions. On the other hand, transcriptome-wide identification of Rnt1p degradation signals uncovered more than 384 transcripts, including 291 mRNAs. Interestingly, the impact of RNT1 deletion on mRNA expression is modulated by changes in the growth conditions of the cell, indicating that Rnt1p is an important regulator of conditional gene expression. Overall, the results presented in this thesis demonstrate how specific RNAs are selected for degradation and highlight the importance of nuclear RNA decay for fine tuning gene expression in response to changes in growth conditions.

Page generated in 0.0461 seconds