151 |
Atomistically Deciphering Functional Large Conformational Changes of Proteins with Molecular Simulations / 分子シミュレーションによるタンパク質の機能的大規模構造変化の原子論的解明Tamura, Kouichi 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19521号 / 理博第4181号 / 新制||理||1600(附属図書館) / 32557 / 京都大学大学院理学研究科化学専攻 / (主査)教授 林 重彦, 教授 谷村 吉隆, 教授 松本 吉泰 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
152 |
A Biophysical Investigation of Calcineurin Binding to CalmodulinYadav, Dinesh Kumar 08 December 2017 (has links)
Calcineurin (CaN) plays an important role in T-cell activation, cardiac system development, and nervous system function. Previous studies have suggested that the regulatory domain (RD) of CaN binds Calmodulin (CaM) towards the N-terminal end of CaN. Calcium-loaded CaM activates the serine/threonine phosphatase activity of CaN by binding to the regulatory domain, although the mechanistic details of this interaction remain unclear. It is thought that CaM binding at the RD displaces the auto inhibitory domain (AID) from the active site of CaN, which activates phosphatase activity. In the absence of calcium-loaded CaM, the RD is at least partially disordered, and binding of CaM induces folding in the RD. Previous studies have shown that an ?-helical structure forms in the N-terminal half of the RD, but organization may occur in the C-terminal region as well. Here, we are presenting a model for the structural transition of the full length RD as it binds to CaM. Using nuclear magnetic resonance (NMR) spectroscopy, we have successfully assigned >85% of the 15N, 13C?, 13C? and HN chemical shifts of the unbound, regulatory domain of CaN. Secondary chemical shifts support a model where the RD is highly disordered. Our study of the CaM and CaN interaction supports the formation of a distal helix in the region between the AID and calmodulin-binding region. Heat capacity changes upon binding predict that 43 residues fold when CaM binds to CaN, consistent with the formation of this distal helix. Paramagnetic relaxation enhancement (PRE) studies of this interaction suggest a potential binding mode where the distal helix binds to CaM near residues I10-A11. Mutagenesis in the distal helix disrupts PREs, further supporting this hypothesis. Together, these data suggest that the interactions between CaM and the distal helix of CaN can be important in regulation of phosphatase activity.
|
153 |
Novel calmodulin variant p.E46K associated with severe CPVT produces robust arrhythmogenicity in human iPSC-derived cardiomyocytes / 重症CPVTを引き起こす新規カルモジュリン変異p.E46Kは、ヒトiPS細胞由来心筋細胞において重度な催不整脈性を示すGao, Jingshan 25 September 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24878号 / 医博第5012号 / 新制||医||1068(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 萩原 正敏, 教授 湊谷 謙司, 教授 江藤 浩之 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
154 |
Bidirectional Regulation of AMPA and NMDA Receptors during Benzodiazepine WithdrawalShen, Guofu 14 July 2009 (has links)
No description available.
|
155 |
Engineering an Anti-arrhythmic CalmodulinWalton, Shane David 26 September 2016 (has links)
No description available.
|
156 |
Testing and implementation of a titration technique for use in the determination of Ca<sup>2+</sup> binding constantsRotterman, Erik M. 04 May 2011 (has links)
No description available.
|
157 |
Computational Study of Calmodulin’s Ca2+-dependent Conformational EnsemblesWesterlund, Annie M. January 2018 (has links)
Ca2+ and calmodulin play important roles in many physiologically crucial pathways. The conformational landscape of calmodulin is intriguing. Conformational changes allow for binding target-proteins, while binding Ca2+ yields population shifts within the landscape. Thus, target-proteins become Ca2+-sensitive upon calmodulin binding. Calmodulin regulates more than 300 target-proteins, and mutations are linked to lethal disorders. The mechanisms underlying Ca2+ and target-protein binding are complex and pose interesting questions. Such questions are typically addressed with experiments which fail to provide simultaneous molecular and dynamics insights. In this thesis, questions on binding mechanisms are probed with molecular dynamics simulations together with tailored unsupervised learning and data analysis. In Paper 1, a free energy landscape estimator based on Gaussian mixture models with cross-validation was developed and used to evaluate the efficiency of regular molecular dynamics compared to temperature-enhanced molecular dynamics. This comparison revealed interesting properties of the free energy landscapes, highlighting different behaviors of the Ca2+-bound and unbound calmodulin conformational ensembles. In Paper 2, spectral clustering was used to shed light on Ca2+ and target protein binding. With these tools, it was possible to characterize differences in target-protein binding depending on Ca2+-state as well as N-terminal or C-terminal lobe binding. This work invites data-driven analysis into the field of biomolecule molecular dynamics, provides further insight into calmodulin’s Ca2+ and targetprotein binding, and serves as a stepping-stone towards a complete understanding of calmodulin’s Ca2+-dependent conformational ensembles. / <p>QC 20180912</p>
|
158 |
The role of the LAMMER kinase Kns1 and the calcium/calmodulin-dependent kinase Cmk2 in the adaptation of Saccharomyces cerevisiae to alkaline pH stressMarshall, Maria Nieves Martinez 01 February 2013 (has links)
Die LAMMER-Kinasen sind Dual-Spezifität-Proteinkinasen, die durch das namensgebende einzigartige LAMMER-Motiv gekennzeichnet sind. Sie sind evolutionär hoch konserviert und in den meisten Eukaryonten vorhanden. Die vorliegende Arbeit stellt die erste funktionelle Charakterisierung eines bisher kaum erforschten Vertreters der LAMMER-Proteinkinase Familie Kns1 aus der Bäckerhefe dar. Phänotypische Analysen belegten eine entscheidende Rolle für Kns1 in der Regulation der Toleranz gegenüber basischem pH-Stress. Das Entfernen des KNS1 Gens führte zu einer gesteigerten Empfindlichkeit der Zellen gegenüber basischen Wachstumsbedingungen. Weitere Analysen zeigten, dass Kns1 neben der katalytischen Aktivität auch nicht-katalytischen Mechanismen zur Förderung des Zellwachstums unter alkalischem pH-Stress nutzt. Die Reinigung des Kns1 Proteins in voller Länge aus E. coli ermöglichte die Identifizierung von neun in vitro-Autophosphorylierungsstellen mittels Massenspektrometrie. Die Mutation von Thr562, eine Autophosphorylierungsstelle innerhalb des LAMMER-Motivs, zu Alanin ergab in vitro eine Kinase mit intrinsischer katalytischer Aktivität, die sich jedoch in vivo hauptsächlich wie die katalytisch inaktive Kns1-Mutante verhielt. Die Calcium/Calmodulin-abhängige Proteinkinase II Cmk2, die konstitutiv autokatalytische Eigenschaften besitzt, wurde früher als mögliches in vitro Substrat von Kns1 vorgeschlagen. In dieser Arbeit beweise ich durch Verwendung einer katalytisch inaktiven Cmk2-Mutante als Substrat, dass Kns1 Cmk2 in vitro phosphoryliert. Darüber hinaus zeige ich, dass Cmk2 die basische pH-Toleranz der Zellen beschränkt. Gestützt durch genetische Hinweise agieren beide Proteine gemeinsam bei der Regulation der alkalischen Stresstoleranz, wobei Kns1 möglicherweise Cmk2 herabreguliert. Zusammenfassend beschreibt diese Arbeit eine neue und entscheidende Rolle von Kns1 und Cmk2 bei der Anpassung der Hefe an alkalisches Milieu. / The LAMMER protein kinases, termed after a unique signature motif found in their catalytic domains, are an evolutionary conserved family of dual-specificity kinases that are present in most eukaryotes. Here I report the first functional characterization of one of the most unexplored members of the LAMMER family, the budding yeast Kns1. Phenotypic analysis uncovered a crucial role for Kns1 in the control of the yeast tolerance to high pH stress. Deletion of the KNS1 gene conferred high sensitivity to alkaline pH, whereas its overexpression increased tolerance to this stress. Further analysis established that Kns1 promotes growth under alkaline pH stress using not only its catalytic activity but also non-catalytic mechanisms. Large-scale purification of full-length Kns1 from E. coli allowed for the identification of nine in vitro autophosphorylation sites on Kns1 by mass spectrometry. Mutation of the threonine residue at position 562, an autophosphorylation site located within the LAMMER motif, to a non-phosphorylatable residue yielded a kinase that preserves intrinsic catalytic activity in vitro but mostly behaves like the catalytically inactive mutant in vivo. This finding showed the physiological importance of autophosphorylation site Thr562 in the regulation of Kns1 function. The protein Cmk2, a calcium/calmodulin-dependent protein kinase II with autocatalytic properties, has been previously proposed as a possible in vitro substrate for Kns1. Here I demonstrate that Kns1 phosphorylates Cmk2 in vitro using a catalytically inactive Cmk2 mutant as substrate and show that Cmk2 restricts alkaline tolerance. Genetic evidence suggested that both proteins act in concert on a common pathway, in which Kns1 may downregulate Cmk2 to confer alkaline tolerance. In conclusion, this thesis describes a novel and crucial role for Kns1 and its in vitro substrate Cmk2 in the adaptation of yeast to alkaline stress.
|
159 |
Induction and Maintenance of Synaptic PlasticityGraupner, Michael 11 September 2008 (has links) (PDF)
Synaptic long-term modifications following neuronal activation are believed to be at the origin of learning and long-term memory. Recent experiments suggest that these long-term synaptic changes are all-or-none switch-like events between discrete states of a single synapse. The biochemical network involving calcium/calmodulin-dependent protein kinase II (CaMKII) and its regulating protein signaling cascade has been hypothesized to durably maintain the synaptic state in form of a bistable switch. Furthermore, it has been shown experimentally that CaMKII and associated proteins such as protein kinase A and calcineurin are necessary for the induction of long-lasting increases (long-term potentiation, LTP) and/or long-lasting decreases (long-term depression, LTD) of synaptic efficacy. However, the biochemical mechanisms by which experimental LTP/LTD protocols lead to corresponding transitions between the two states in realistic models of such networks are still unknown. We present a detailed biochemical model of the calcium/calmodulin-dependent autophosphorylation of CaMKII and the protein signaling cascade governing the dephosphorylation of CaMKII. As previously shown, two stable states of the CaMKII phosphorylation level exist at resting intracellular calcium concentrations. Repetitive high calcium levels switch the system from a weakly- to a highly phosphorylated state (LTP). We show that the reverse transition (LTD) can be mediated by elevated phosphatase activity at intermediate calcium levels. It is shown that the CaMKII kinase-phosphatase system can qualitatively reproduce plasticity results in response to spike-timing dependent plasticity (STDP) and presynaptic stimulation protocols. A reduced model based on the CaMKII system is used to elucidate which parameters control the synaptic plasticity outcomes in response to STDP protocols, and in particular how the plasticity results depend on the differential activation of phosphatase and kinase pathways and the level of noise in the calcium transients. Our results show that the protein network including CaMKII can account for (i) induction - through LTP/LTD-like transitions - and (ii) storage - due to its bistability - of synaptic changes. The model allows to link biochemical properties of the synapse with phenomenological 'learning rules' used by theoreticians in neural network studies.
|
160 |
Kardiale Phänotypisierung einer transgenen Mauslinie mit herzspezifischer Calcium-Calmodulin-Kinase IIδc- Überexpression auf einem Phosphatase-Inhibitor-1- Knockout-Hintergrund / Cardiac phenotyping of a transgenic mouse model with cardiac specific Ca2+/calmodulin-dependent protein kinase IIδc overexpression on a phosphatase inhibitor -1 knockout backgroundBrammen, Christina Andrea Anna 29 September 2015 (has links)
No description available.
|
Page generated in 0.0571 seconds