• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 39
  • 16
  • 7
  • 2
  • 2
  • Tagged with
  • 136
  • 65
  • 44
  • 24
  • 18
  • 17
  • 16
  • 16
  • 15
  • 12
  • 12
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Fate and transport of POPs in the aquatic environment : with focus on contaminated sediments

Josefsson, Sarah January 2011 (has links)
Persistent organic pollutants (POPs) are hydrophobic substances that readily sorb to organic matter in particles and colloids instead of being freely dissolved in the water phase. This sorption affects the bio­availability and environmental transport of the POPs. The major part of this thesis concerns the role of sediments as secondary sources of POPs. As the primary emissions decrease, contaminated sediments where POPs have accumulated can become the main source of contamination. If the contaminated sediment by time becomes covered with cleaner layers, the POPs are buried and no longer in contact with the aquatic environment. Experiments in this thesis showed, however, that new invading species can alter the sediment-water dynamics as a result of their bioturbation, i.e. mixing of sediment particles and pore-water. Marenzelleria spp., invading species in the Baltic Sea that burrow deeper than native species, were found to increase the remobilization of buried contaminants. The sediment-to-water flux was inversely related to the burial depth (2-10 cm) of the POP congeners (polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers) and also inversely related to the hydrophobicity of the congener. The flux was therefore most pronounced for less hydrophobic contaminants, which was linked to the bioirrigating behaviour of these species. Marenzelleria spp. also accumulated the buried POPs and increased concentrations in surface sedi­ment. Contaminants previously considered buried at a ’safe’ depth can thus be remobilized as a result of the invasion of Marenzelleria spp. in the Baltic Sea. One method to decrease the remobilization of contaminants from sediments is ’capping’, i.e. a layer of clean material is placed as a cap on the sediment. By amending the cap with active materials, which sequester the POPs and decrease their availability, thinner layers can be used (’active capping’ or ’thin-layer capping’). Results from an experiment with thin-layer capping using different active materials (activated carbon (AC) and kraft lignin) showed that both the sediment-to-water flux and the bioaccumulation by benthic species of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), hexachlorobenzene (HCB) and octachlorostyrene (OCS) decreased with increased thick­ness of the cap layer (0.5-5 cm). Amendments with active materials further increased the cap efficiency. AC was more efficient than kraft lignin, and a 3 cm cap with 3.3% AC reduced the flux and bioaccumulation with ~90%. The reduction of the sediment-to-water flux was inversely related to the hydrophobicity of the POP, and reductions in the flux had similar magnitudes as reductions in the concentration in deep-burrowing polychaetes, demonstrating the importance of bioturbation for sediment-to-water transport. In a one-year study on the levels of PCDD/Fs, PCBs, and HCB in a coastal area of the Baltic Sea, the correlations between the POP levels and the levels of particles and organic carbon in the water were found to differ for POPs of different structure and hydrophobicity. The levels of PCDD/Fs decreased to one third in May, which could be related to the increased sedimentation, i.e. water-to-sediment transport, during spring bloom.
122

Targeting Infectious Disease : Structural and functional studies of proteins from two RNA viruses and Mycobacterium tuberculosis

Jansson, Anna M. January 2013 (has links)
The recent emergence of a number of new viral diseases as well as the re-emergence of tuberculosis (TB), indicate an urgent need for new drugs against viral and bacterial infections. Coronavirus nsp1 has been shown to induce suppression of host gene expression and interfere with host immune response. However, the mechanism behind this is currently unknown. Here we present the first nsp1 structure from an alphacoronavirus, Transmissible gastroenteritis virus (TGEV) nsp1. Contrary to previous speculation, the TGEV nsp1 structure clearly shows that alpha- and betacoronavirus nsp1s have a common evolutionary origin. However, differences in conservation, shape and surface electrostatics indicate that the mechanism for nsp1-induced suppression of host mRNA translation is likely to be different in the alpha- and betacoronavirus genera. The Modoc virus is a neuroinvasive rodent virus with similar pathology as flavivirus encephalitis in humans. The flaviviral methyltransferase catalyses the two methylations required to complete 5´ mRNA capping, essential for mRNA stability and translation. The structure of the Modoc NS5 methyltransferase domain was determined in complex with its cofactor S-adenosyl-L-methionine. The observed methyltransferase conservation between Modoc and other flaviviral branches, indicates that it may be possible to identify drugs that target a range of flaviviruses and supports the use of Modoc virus as a model for general flaviviral studies. 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is part of the methylerythritol phosphate (MEP) pathway that produces essential precursors for isoprenoid biosynthesis. This pathway is used by a number of pathogens, including Mycobacterium tuberculosis and Plasmodium falciparum, but it is not present in humans. Using a structure-based approach, we designed a number of MtDXR inhibitors, including a novel fosmidomycin-analogue that exhibited improved activity against P.falciparum in an in vitro blood cell growth assay. The approach also allowed the first design of an inhibitor that bridge both DXR substrate and co-factor binding sites, providing a stepping-stone for further optimization.
123

Design And Synthesis Of Novel Soft Composites From Physical Gels And Nanomaterials

Pal, Asish 01 July 2008 (has links)
The present thesis entitled “Design and Synthesis of Novel Soft Composites from Physical Gels and Nanomaterials” deals with soft materials derived from low molecular weight gels and nanomaterials. Chapter 1 gives a general introduction and overview of the low molecular weight gel (LMOG) which forms the basis of the work. It delves with the history of research in physical gel field, design of different types of gelator molecules, their interesting self-assembly patterns, potential applications of these gelator molecules as well as challenges to design new gelator molecules. It also encompasses the relatively recent area of two component gel system to conveniently bypass the cumbersome synthetic protocol. The aspect of liquid crystallinity in the gel phase is also discussed to throw light on the pattern of assembly and potential uses of these materials. Towards the end there is a comprehensive discussion on the smart nanocomposites derived from LMOGs and nanomaterials. The design, synthesis and numerous applications of inorganic-organic hybrid composites are discussed. Chapter 2A describes the synthesis and characterization of a variety of fatty acid amides of different naturally occurring L-amino acids whose molecular structures are shown in Chart 2A.1. Some of them were found to form gels with various hydrocarbons. The gelation properties of these compounds were studied by a number of physical methods including FT-IR spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry, rheology and it was found that gelation was critically dependent on the fatty acid chain length and nature of the amino acid. Among them, L-alanine based gelators were found to be the most efficient and versatile as they self-assemble into a layered structure to form the gel network. Mechanisms for the assembly and formation of gels from these molecules are discussed. (Structural formula) Chart 2A.1. Molecular structures of various fatty acid amides of different amino acids. Chapter 2B describes efficient gelation of both aliphatic and aromatic hydrocarbon solvents by a fatty acid amide, n-lauroyl-L-alanine (Chapter 2B.1). In addition, this compound was found to gelate the binary solvent mixtures comprised of aromatic hydrocarbon e.g. toluene and aliphatic hydrocarbon e.g. n-heptane. SEM and AFM showed that the fiber thickness of the gel assembly increases progressively in the binary mixture of n-heptane and toluene with increasing percentage of toluene. The self- Chart 2B.1. Molecular structure of the gelator. assembly patterns of the gels in individual solvents, n-heptane and toluene are however, different. The toluene gel consists of predominantly one type of morphological species while n-heptane gel has more than one species leading to polymorphic nature of the gel. The n-heptane gel is thermally more stable than the toluene gel as evident from the measurement using differential scanning calorimetry. The thermal stability of the gels prepared in the binary mixture of n-heptane and toluene is dependent on the composition of solvent mixture. Rheology of the gels shows that they are shear-thinning material and show characteristic behavior of soft viscoelastic solids. For the gels prepared from binary solvent mixture of toluene and n-heptane, with incorporation of more toluene in the binary mixture, the gel becomes a more viscoelastic solid. The time sweep rheology experiment demonstrates that the gel made in n-heptane has faster gel formation kinetics than that prepared in toluene. Chapter 2C describes lyotropic mesophase formation by organogels of different fatty acid amides of L-alanine in aromatic solvents. The helical assembly, characteristic of the cholesteric mesophase was found to exhibit reflection bands in circular dichroism spectra. The reflection bands corresponded to the pitch of the helical arrangement of the gelator molecules in the aromatic solvent. Transmission Electron Microscopy (TEM) showed presence of twist in the gel fibres. Polarising optical microscopy of the organogel exhibited weak birefringence confirming lyotropic nature of the assembly. Chapter 3 deals with synthesis and characterization of a new class of molecules with molecular structures shown in Chart 3.1. Among a variety of amino acid based molecules only alanine and serine based molecules were found to form translucent gels in aliphatic hydrocarbons such as n-heptane. TEM showed presence of fiber like structures for alanine whereas serine based gelator produces unique network like structures. SEM of the dried gels exhibited presence of three dimensional fibrous networks to spongy globular cauliflower like structures depending on the molecular structure of the gelators. Rheological studies of the organogels showed that they behave like typical LMOG gels. The oscillatory rheological studies demonstrated that the L-serine based gelator, 5 formed more viscoelastic solid like gel than that of L-alanine based gelator, 1 in n-heptane. Chart 3.1. Molecular structures of different amino acid derivatives from 3,4,5-tri-dodecyloxybenzoic acid scaffold. Chapter 4A presents design and properties of new nanocomposites from LMOG and metal nanoparticles (Chart 4A.1). The profound influence of nanoparticle (NP) incorporation into physical gels was evident from various microscopic and bulk properties. The interaction of nanoparticles with the gelator assembly was found to depend critically on the capping agent coating the nanoparticles. TEM showed long range Chart 4A.1. Molecular structures of the gelator and various AuNPs synthesized. directional assembly of the certain AuNPs along the gel fibers. SEM of the dried gels and nanocomposites indicated that the morphological transformation in the composite microstructures depended profoundly on the capping agent of the nanoparticle. Differential Scanning Calorimetry showed that gel formation from sol postponed to lower temperature with incorporation of AuNPs having capping agents which were able to interact with the gel fibers. Rheological studies indicated that the gel-nanoparticle composites exhibit greater rigidity as compared to the naked gel only when the capping agents were able to interdigitate into the gelator assembly. Also, very low percentage of the AuNPs incorporation could switch the cholesteric mesophase of gel assembly, as evident from circular dichroism. We have been able to define a relationship between materials and molecular properties via manipulation of the molecular structures of NP capping agents. Chapter 4B discusses the design and preparation of novel organogel-carbon nanotube composites by incorporation of single-walled carbon nanotubes (SWNT) into physical gels formed by an L-alanine based Low Molecular Mass Organogelator (Chart 4B.1). The gelation process and the properties of the resulting nanocomposites were found to depend on the kind of SWNTs incorporated in the gels. With pristine SWNTs, only a limited amount could be dispersed in the organogels. Attempted incorporation of higher amounts of pristine SWNTs led to precipitation from the gel. To improve their solubility in the gel matrix, a variety of SWNTs functionalized with different aliphatic and aromatic chains were synthesized (Chart 4B.1). Scanning electron microscope images of the nanocomposites showed that the texture and organization of the gel aggregates were altered upon incorporation of SWNTs. The microstructures of nanocomposites were found to depend on the kind of SWNTs used. Incorporation of functionalized SWNTs into the organogels depressed the sol to gel transition temperature, with the n-hexadecyl chain functionalized SWNTs being more effective than the n-dodecyl chain functionalized counterpart. Rheological investigations of pristine SWNT containing gels indicated that the flow of nanocomposites became resistant to applied stress at a very low wt-% of SWNT incorporation. Again, more effective control of flow behavior was achieved with functionalized SWNTs possessing longer hydrocarbon chains. This happens presumably via effective interdigitation of the pendant chains with the fatty acid amides of L-alanine in the gel assembly. Also, the helical cholesteric mesophase formed by the toluene gel could be switched to a layer stacked assembly by doping functional SWNT. Remarkably, by using a near IR laser irradiation at 1064 nm for a short duration (1 min) at room temperature, it was possible to selectively induce a gel-to-sol phase transition of the nanocomposites, while prolonged irradiation (30 min) of the organogel under identical conditions did not cause gel melting. Chart 4B.1. Molecular structures of the gelator and different functionalized SWNT synthesized. Chapter 5A presents design of two component hydrogels and their potential utilization as a template for metal nanoparticle synthesis. Among a variety of acids and amines (Chart 5A.1) only stearic acid or eicosanoic acid when mixed with di- or oligomeric amines in specific molar ratios form stable gels in water. The formation of such hydrogels depends on the hydrophobicity of the fatty acid, and also on the type of amine used. The gelation properties of these two component systems were investigated using electron microscopy, FTIR, 1H NMR spectroscopy, differential scanning calorimetry (DSC) and both single crystal and cast film X-ray diffraction. FTIR spectral analysis suggests salt formation during gelation. 1H NMR of the gels indicates that the fatty acid chains are immobilized in the gel state and when the gel is melted, these chains regain their mobility. Analysis of DSC data indicates that increase in spacer length in the di-/oligomeric amine lowers the gel melting temperature. Two of these gelator salts developed into crystals and structural details of such systems could be secured by single-crystal X-ray diffraction analysis. The structural information of the salts thus obtained was compared with the XRD data of the self-supporting films of those gels. Such analyses provided pertinent structural insight on the supramolecular interactions that prevail within these gelator assemblies. From the crystal structure it is confirmed that the multilayered lamellar aggregates exist in the gel and it also showed that only one plane of symmetry is present in the gel state. Finally, the hydrogel was used as a medium for the synthesis of silver nanoparticles. The nanoparticles were found to position themselves on the fibers and produce a long ordered assembly of gel-nanoparticle composite (Figure 5A.1). Chart 5A.1. Structures and abbreviations of different acids and amines checked for gelation. Figure 5A.1. TEM images of gel-Ag-NP composite. (a) Ag-NP synthesized in hydrogel of SA-IBPA (1:3.5), (b) Magnified images of Ag-NP preferentially residing on gel fibers. Chapter 5B demonstrates the aptitude of supramolecular hydrogel formation using simple bile acids e.g. lithocholic acid (LCA) in aqueous solution containing di- or oligomeric amines (Chart 5B.1). By variation of the choice of the amines in such mixture the hydrogelation properties could be modulated. However, replacement of LCA by cholic acid or deoxycholic acid resulted in no hydrogelation. FT-IR studies show that the carboxylate and ammonium residues of the two components are primarily involved in salt formation. This promotes further assembly of the components reinforced by continuous Chart 5B.1. Structures and abbreviations of different bile acids and amines checked for gelation. hydrogen bonded network leading to gelation. Electron microscopy shows that the morphology of the gels of two component systems which also depends strongly on the amine part. Variation of amine component from the simple ethanediamine (EDA) to oligomeric amine with lithocholic acid changes the morphology of the assembly from long one dimensional nanotubes to three dimensional complex structures. Single crystal X-ray diffraction analysis with one of the amine-LCA complexes suggested the motif of fiber formation where the amines participate with the carboxylate and hydroxyl moiety through H-bonding and electrostatic forces. The rheological properties of this class of two component system provide clear evidence that this system is a shear-sensitive hydrogel and the flow behavior can be modulated varying the acid-amine ratio. From small angle neutron scattering study, it becomes clear that loose gel from LCA-EDA shows scattering oscillation due to the presence of non interacting nanotubules while for gels of LCA with oligomeric amine the individual fibers come together to form complex three dimensional structures of higher length scale.(For structural formula pl refer the pdf file)
124

Evaluating organic compound sorption to several materials to assess their potential as amendments to improve in-situ capping of contaminated sediments

Dunlap, Patrick John 08 July 2011 (has links)
Contaminated sediments represent a common environmental problem because they can sequester large quantities of contaminants which can remain long after the source of pollution has been removed. From the sediment these hazardous compounds are released into the sediment porewater where it can partition into organisms in the sediment and bioaccumulate up the food web; leading to an ecological and human health concern. The objective of this work is to investigate an emerging option in contaminated sediment remediation; specifically an option for in-situ treatment known as active capping. Conventional capping uses clean sediment or sands to separate contaminated sediment from overlying water and biota. Active capping is the use of a sorptive amendment to such a cap to improve its effectiveness. This work focuses on granular materials as direct amendments to conventional caps including; granular activated carbon (GAC), iron/palladium amended GAC, alumina pillared clay, rice husk char, and organically modified clays. All materials were investigated in batch sorption tests of benzene, chlorobenzene, and naphthalene in DI water. Additionally porewaters from three sites were extruded and the concentrations of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were measured. At Manistique Harbor and Ottawa River PCBs were identified as the primary contaminant of concern while PAHs were the contaminant of concern at the Grand Calumet River. At these sites a solvent extraction method was used to analyze the sediment concentrations of the contaminants of concern. From the former batch tests activated carbon and a commercially available organoclay were chosen for further investigation. This includes PAHs in batch sorption tests using extruded sediment porewater to investigate matrix effects, and PCB sorption in distilled water. / text
125

Effect of amine-based water treatment polymers on the formation of N-nitrosodimethylamine (NDMA) disinfection by-product

Park, Sang Hyuck 17 January 2008 (has links)
In recent years, a compound N-nitrosodimethylamine (NDMA), a probable human carcinogen, has been identified as an emerging disinfection by-product (DBP) since its formation and detection were linked to chlorine-based disinfection processes in several water utilities in the U.S. and Canada. Numerous organic nitrogen compounds present in water may impact the formation of NDMA during disinfection. Amine-based water treatment polymers used as coagulants and flocculants have been suggested as potential NDMA precursors due to the presence of amine functional groups in their structures, as well as the possible presence of dimethylamine (DMA) residues in polymer products. To minimize the potential risk of NDMA associated with water treatment polymers, the mechanisms of how the polymers behave as NDMA precursors and their contribution to the overall NDMA formation under actual water treatment conditions need to be elucidated. This research involved a systematic investigation to determine whether amine-based water treatment polymers contribute to NDMA formation under drinking water and wastewater treatment conditions, to probe the involved reaction mechanisms, and to develop strategies to minimize the polymers NDMA formation potential. The investigation included five research tasks: (1) General screening of NDMA formation potential of commonly used amine-based water treatment polymers, (2) NDMA formation from amine-based water treatment polymers under relevant water treatment conditions, (3) Probing the mechanisms of NDMA formation from polyamine and PolyDADMAC, (4) Effect of water treatment processes on NDMA formation from amine-based water treatment polymers, and (5) Developing strategies to reduce polymers NDMA formation potential. Direct chloramination or chlorination of high doses of polymers in deionized water at longer than typical contact time was used in the general screening of the NDMA formation potential of water treatment polymers and in the studies to identify reaction mechanisms. On the other hand, realistic dosages of chloramines and polymers and contact time were used in simulating representative water treatment conditions to evaluate the contribution of polymers to the overall NDMA formation in real systems. On the basis of the study results, strategies were developed to reduce the NDMA formation potential of amine-based water treatment polymers, which include modification of polymer structures and treatment parameters.
126

Avaliação da expressão da fibronectina e tenascina após capeamento pulpar utilizando diferentes agentes hemostáticos (modelo humano) e diferentes materiais capeadores (modelo animal) / Tenascin and fibronectin expression in human pulp repair after capping with calcium hydroxide and homeostasis with different agents

Baldissera, Elaine de Fátima Zanchin 06 July 2006 (has links)
Made available in DSpace on 2014-08-20T14:30:18Z (GMT). No. of bitstreams: 1 Elaine Baldissera_TESE.pdf: 2456356 bytes, checksum: eaccf33a07294f70b9babaa3140cc017 (MD5) Previous issue date: 2006-07-06 / Aim Based on the great importance of the extracellular matrix (EM) in tissue development and repair, the aim of this study was to investigate the expression of their major glycoproteins, tenascin (TN) and fibronectin(FN) in the human pulp repair. Methodology Using immunohistochemistry, the expression of TN and FN was analyzed in forty-two human teeth, which were taken from a previous study. TN and FN profiles were evaluated after 7, 30, and 90 days after pulp capping with calcium hydroxide, being used three different haemostatic agents (0.9% salin solution, 5.25% sodium hypoclorite and 2% chlorhexidine digluconate) before pulp capping. Results There was no difference in the expression of TN and FN among the distinct haemostatic agents being all the time intervals taken into consideration. Both glycoproteins were found in all the pulp tissue, accomplishing the collagen fiber, and they were absent in all the mineralized tissues. Within 7 days post-treatment, it was observed a slightly more pronounced immunostaining on the exposure pulp site. Within 30 days, TN and FN demonstrated a stronger expression around the dentin barrier. TN also showed focal staining inside the reparative dentin, which was in mineralization. Within 90 days, it was observed a thin and linear expression of TN and FN delimitating the reparative dentin. In the predentin, TN showed strong immunostaining, and FN had a variable expression. Conclusions Based on the results, it may be concluded that there was no difference in the expression of TN and FN among the distinct haemostatic agents being all the time intervals taken into account. Moreover, TN and FN were present in pulp repair,confirming their active participation in this event. It might also be suggested that both glycoproteins are responsible for the odontoblastic differentiation and for the maintenance of the cell shape. It can also be concluded that TN and FN are important factors in the mineralization of the newly-formed dentin matrix. / O controle do sangramento frente a uma exposição pulpar é de fundamental importância no sucesso do capeamento direto. As soluções de hipoclorito de sódio e de gluconato de clorexidina têm sido utilizadas como agentes de limpeza e hemostasia na terapia pulpar conservadora. Alguns estudos têm indicado para o controle da hemorragia e sucesso do capeamento pulpar adesivo o hipoclorito de sódio (COX et al, 1998; COX et al., 1999). Além de ser bom agente antimicrobiano, o hipoclorito possui elevado Ph, o que implicaria na solubilização de fatores de crescimento da dentina, e conseqüentemente, na estimulação à formação de dentina (SMITH et al., 2002). No entanto, pesquisas também demonstram a atividade de dissolução tecidual do hipoclorito quando empregado a 5.25%. Porém esta é limitada às células superficiais pulpares sem efeitos adversos sobre o tecido pulpar subjacente (SENIA et al., 1971; ROSENFELD et al., 1978). Pouco se sabe a respeito da biocompatibilidade da clorexidina (THOMAS et al., 1995). Cox et al. (1998) sugeriram que esta substância poderia ser a causa de desastrosos resultados encontrados no estudo de Pameijer & Stanley (1998). Em contrapartida, a clorexidina a 0,2% utilizada no capeamento pulpar direto como agente hemostático e de limpeza, tem demonstrado boa performance em estudos em humanos (HORSTED et al., 2003) e em macacos (MURRAY et al. 2004) Diante das evidências apresentadas, pode-se observar que não há unanimidade entre os pesquisadores a respeito de qual dessas substâncias e suas respectivas concentrações seria mais efetiva na realização das terapias conservadoras vitais, especialmente no capeamento pulpar direto. Adicionalmente, as alterações na distribuição de componentes da matriz extracelular (ME) têm sido estudadas durante o desenvolvimento dentário e nos processos de reparo pulpar. As duas maiores glicoproteínas da ME, Fibronectina (FNC) e Tenascina (TNC) têm sido descritas como importantes para o estímulo e mobilidade celulares, durante a diferenciação de células odontoblastóides a partir de células multipotentes da polpa. No entanto, a participação da ME e sua interação com as reações celulares têm sido pouco exploradas e compreendidas. Desta forma, tornam-se fundamentais as investigações sobre a expressão dos componentes da 15 ME durante o processo de reparo pulpar, na tentativa de buscar melhor entendimento dos eventos de resposta deste tecido após o capeamento direto. O objetivo deste estudo é avaliar a biocompatibilidade do hipoclorito de sódio e do gluconato de clorexidina em diferentes concentrações, através de estudo in vitro de cultivo celular; a genotoxicidade dessas duas soluções, utilizando a reação de Feulgen para detecção e análise de micronúcleos e a expressão de componentes da matriz extracelular, através de estudo imunoistoquímico (técnica da estreptoavidina-biotina) em polpas humanas expostas, tratadas com os agentes hemostáticos hipoclorito de sódio a 5,25% e gluconato de clorexidina a 2%, empregados previamente ao capeamento pulpar direto. Para o ensaio de citotoxicidade do MTT será utilizada a linhagem celular NIH/3T3 (fibroblastos de rato). Este ensaio foi escolhido porque estudos prévios (COSTA, 2001; ZHANG et al., 2003) têm mostrado ser o mesmo apropriado para a avaliação da viabilidade ou citotoxicidade celulares, frente a materiais de uso odontológico. Serão testadas em diferentes tempos de exposição, as soluções de hipoclorito de sódio a 0,5%, 1%, 2,5% e 5,25% e de gluconato de clorexidina a 0,12%, 0,2%, 1% e 2%, bem como a solução salina 0,9%, que funcionará como controle negativo dos testes. Para o ensaio de genotoxicidade, será feita a análise semi-quantitativa dos micronúcleos de amostras previamente emblocadas, oriundas de 45 espécimens com polpas humanas tratadas com hipoclorito de sódio a 5,25% (n=16), gluconato de clorexidina (n=15) e
127

Quantum dots-amplified electrochemical cytochrome P450 phenotype sensor for tamoxifen, a breast cancer drug

Feleni, Usisipho January 2017 (has links)
Philosophiae Doctor - PhD / Breast cancer is regarded as the most common cancer in South Africa and its rate of occurrence is increasing. About one in every 31 South African women are at the risk of developing breast cancer and early diagnosis and treatment guarantee 90% survival rate. Tamoxifen is the drugs of choice for the treatment of all stages of breast cancer. The drug binds with estrogen receptor (ER) to minimize the transcription of estrogen dependent genes. However, nearly 50% of ER-positive breast cancer patients either become resistant or fail to respond to tamoxifen resulting in a serious clinical challenge in breast cancer management. The Grand Health Challenges of South Africa includes the development of cost effective diagnostic systems suitable for early detection of diseases and drug resistivity for timely invention and better patient management. / 2020-08-31
128

Identification of the Minimal Domain of RNA Trihosphastase Activity in the L Protien of Rinderpest Virus and Charecterization of its Enzymatic Activities

Singh, Piyush Kumar January 2013 (has links) (PDF)
Morbilliviruses belong to the family Paramyxoviridae of the Mononegavirale order of viruses. The Mononegavirale order contains viruses which contain negatively-polar, non-segmented and single stranded RNA genomes. This order contains some of most lethal pathogens known to the humankind. Ebola virus and Marburg virus are perhaps the most lethal human pathogens. Rinderpest virus, declared eradicated in 2011, was known to be the most significant cattle killer. Similarly the Canine distemper virus and Rabies virus, two topmost canine pathogens belong to this order. The L protein in the viruses of Morbillivirus genus harbours the viral RNA-dependent RNA polymerase that replicates and transcribes the viral genome and also all the mRNA capping enzymes, viz. RNA 5’ triphosphatase, guanylyltransferase, RNA (guanine-7-)methyltransferase and RNA 5’ cap-dependent (2’-oxo-)methyltransferase. Moreover this protein can act as a protein kinase that can regulate the function of P protein which serves as a switch between transcription and replication. mRNA capping is necessary for the virus for the purpose of exploiting host cellular machinery towards viral protein synthesis. The Rinderpest virus L protein serves as a model to study the capping enzymes of Morbillivirus. RNA triphosphatase (RTPase), the first enzyme of the capping cascade had earlier been located on the L protein. The RTPase minimal domain on the L protein was identified earlier by sequence homology studies done with RTPase proteins of Baculovirus and Vaccinia virus and cloned. The bacterially expressed recombinant domain was shown to possess RTPase activity. The enzymatic activity was characterized and the RTPase was found to be a metal-dependent enzyme which is highly specific to capping viral mRNA. Further characterization of the domain revealed that the domain also possesses nucleotide triphosphatase (NTPase), tripolyphosphatase and pyrophosphatase activities. Two site-directed mutants in motif-A of the domain: E1645A and E1647A were also tested and were found to be essential for the RTPase and NTPase activity. It was also recognized through these mutant studies that the active sites of RTPase and NTPase activities are partially overlapping. Earlier work done with Vesicular stomatitis virus capping enzymes showed that the Rhabdoviridae family of viruses follow unconventional capping pathway utilizing an enzyme polyribonucleotidyltransferase (PRNTase) which transfers GDP to 5’-monophosphated RNA. Characterization of the RTPase activity which converts 5’-triphosphated RNA into 5’-diphosphated RNA is an evidence for the morbilliviruses utilizing the conventional eukaryotic capping cascade. The results show that Paramyxoviridae do not follow unconventional capping pathway for the mRNA capping as has been the paradigm in the past decade.
129

Relative Symplectic Caps, Fibered Knots And 4-Genus

Kulkarni, Dheeraj 07 1900 (has links) (PDF)
The 4-genus of a knot in S3 is an important measure of complexity, related to the unknotting number. A fundamental result used to study the 4-genus and related invariants of homology classes is the Thom conjecture, proved by Kronheimer-Mrowka, and its symplectic extension due to Ozsv´ath-Szab´o, which say that closed symplectic surfaces minimize genus. In this thesis, we prove a relative version of the symplectic capping theorem. More precisely, suppose (X, ω) is a symplectic 4-manifold with contact type bounday ∂X and Σ is a symplectic surface in X such that ∂Σ is a transverse knot in ∂X. We show that there is a closed symplectic 4-manifold Y with a closed symplectic submanifold S such that the pair (X, Σ) embeds symplectically into (Y, S). This gives a proof of the relative version of Symplectic Thom Conjecture. We use this to study 4-genus of fibered knots in S3 . We also prove a relative version of the sufficiency part of Giroux’s criterion for Stein fillability, namely, we show that a fibered knot whose mondoromy is a product of positive Dehn twists bounds a symplectic surface in a Stein filling. We use this to study 4-genus of fibered knots in S3 . Using this result, we give a criterion for quasipostive fibered knots to be strongly quasipositive. Symplectic convexity disc bundles is a useful tool in constructing symplectic fillings of contact manifolds. We show the symplectic convexity of the unit disc bundle in a Hermitian holomorphic line bundle over a Riemann surface.
130

Syntéza a studium nano-strukturovaných perovskitů pro aplikace v organické elektronice / Synthesis and Study of Nano-Structured Perovskites for Applications in Organic Electronics

Jančík Procházková, Anna January 2020 (has links)
Nanočástice perovskitů halogenidů kovů vykazují unikátní vlastnosti, především výjimečně vysoké hodnoty kvantových výtěžků fluorescence, které předurčují tyto materiály pro aplikace v optoelektronických a fotonických zařízeních. Tato práce popisuje přípravu nanočástic perovskitů halogenidů kovů pomocí stabilizačních činidel inspirovaných přírodou. Stabilizační činidla zde slouží nejen ke stabilizaci, ale i k modifikaci povrchu nanočástic za účelem zvýšení funkčnosti výsledných nanostruktur. Úvod práce popisuje optimalizaci přípravy nanočástic precipitační technikou za použití stabilizačních činidel; jako stabilizační činidlo byl zvolen adamantan-1-amin spolu s hexanovou kyselinou. Bylo prokázáno, že klíčový vliv na optické vlastnosti výsledných koloidních roztoků má volba rozpouštědel a teploty při precipitaci. Mimo jiné byl zkoumán vliv koncentrace prekurzorů na výslednou morfologii a optické vlastnosti nanočástic a jejich koloidních roztoků. V neposlední řadě byly nanočástice stabilizovány adamantan-1-aminem spolu s různými karboxylovými kyselinami a byly studovány optické vlastnosti a koloidní stabilita výsledných koloidních roztoků. V dalším kroku byly nanočástice perovskitů stabilizovány pomocí proetogenních aminokyselin L-lysinu and L-argininu. Takto stabilizované nanočástice vykazovaly úzká emisní spektra ve viditelné oblasti a kvantové výtěžky fluorescence dosahující hodnot téměř 100 %. Stabilizace nanočástic prostřednictvím postranních skupin aminokyselin byla prokázána navázáním chránící terc-butoxykarbonylové skupiny na -amino skupinu. Nanočástice stabilizované modifikovaným lysinem v průběhu jejich přípravy vykazovaly závislost optických vlastností na přítomnosti vody. Předpokládá se, že molekuly vody jsou schopné kontrolovat růst krystalové mřížky po navázání na prekurzory perovskitů a ovlivňovat tak výslednou velikost nanočástic, což vede k projevení kvantových jevů. Spojení nanočástic perovskitů s peptidy představuje nový typ materiálů kombinujících výjimečné optické vlastnosti se samoorganizačními a senzorickými vlastnostmi. Tento koncept byl představen přípravou nanočástic perovskitů stabilizovaných cyklo(RGDFK) pentapeptidem. Vzhledem k citlivosti peptidů na jejich byly nanočástice stabilizovány peptidovými nukleovými kyselinami, robustními analogy nukleových kyselin. Ke stabilizaci nanočástic byl připraven monomer a trimer peptidové nukleové kyseliny obsahující thymin jako dusíkatou bázi. Thymin byl na povrchu nanočástic dostupný k interakci s adeninem přes vodíkové můstky umožňující přenos náboje. Kombinace peptidových nukleových kyselin a perovskitů s unikátními optickými vlastnostmi otevírá aplikační možnosti zejména v oblasti optických senzorů.

Page generated in 0.0542 seconds