Spelling suggestions: "subject:"carbide"" "subject:"carbides""
1 |
Direct synthesis of carbide-derived carbon monoliths with hierarchical pore design by hard-templatingNickel, Winfried, Oschatz, Martin, von der Lehr, Martin, Leistner, Matthias, Hao, Guang-Ping, Adelhelm, Philipp, Müller, Philipp, Smarsly, Bernd M., Kaskel, Stefan 01 September 2014 (has links) (PDF)
Carbide-derived carbon Monoliths (CDC-Ms) containing a multimodal arrangement with high volumes of micro- meso- and macropores are prepared by direct nanocasting of silica monoliths with polycarbosilane precursors. CDC-Ms show well-defined pore structures along with specific surface areas of more than 2600 m2 g−1 and overall pore volumes as high as 3.14 cm3 g−1. They exhibit advanced gas filtration properties compared to purely microporous materials due to enhanced storage capacities and kinetics as demonstrated by thermal response measurements based on InfraSORP technology.
|
2 |
Vliv plastifikátoru na technologii zpracování a vlastnosti slinovaného keramického mateiálu na bázi SiC / On the influence of plasticizer at the technology of processing and properties of the sintered SiC ceramicsSkokan, Jan January 2015 (has links)
This master’s thesis deals with an influence of physical properties and machining technology at adjustment to the basic composition granules and production of technical ceramics. Selected series of experiments have been applied to the different phases of production. Composition of the granules vary according to the used plasticizer and ranks to RTP (ready-to-press) materials. The goal of this thesis is recomendation to the production of RTP granules and next experiments.
|
3 |
Direct synthesis of carbide-derived carbon monoliths with hierarchical pore design by hard-templatingNickel, Winfried, Oschatz, Martin, von der Lehr, Martin, Leistner, Matthias, Hao, Guang-Ping, Adelhelm, Philipp, Müller, Philipp, Smarsly, Bernd M., Kaskel, Stefan 01 September 2014 (has links)
Carbide-derived carbon Monoliths (CDC-Ms) containing a multimodal arrangement with high volumes of micro- meso- and macropores are prepared by direct nanocasting of silica monoliths with polycarbosilane precursors. CDC-Ms show well-defined pore structures along with specific surface areas of more than 2600 m2 g−1 and overall pore volumes as high as 3.14 cm3 g−1. They exhibit advanced gas filtration properties compared to purely microporous materials due to enhanced storage capacities and kinetics as demonstrated by thermal response measurements based on InfraSORP technology.
|
4 |
Laser-Carburisierung von Eisen und Edelstahl / Laser-Carburizing of Iron and Stainless SteelKahle, Michael 11 January 2006 (has links)
No description available.
|
5 |
Evolution of porosity in carbide-derived carbon aerogelsOschatz, M., Nickel, W., Thommes, M., Cychosz, K. A., Leistner, M., Adam, M., Mondin, G., Strubel, P., Borchardt, L., Kaskel, S. 19 December 2019 (has links)
Carbide-derived carbon (CDC) aerogel monoliths with very high porosity are synthesized starting from polymeric precursors. Cross-linking by platinum-catalyzed hydrosilylation of polycarbosilanes followed by supercritical drying yields preceramic aerogels. After ceramic conversion and silicon extraction in hot chlorine gas, hierarchically porous carbon materials with specific surface areas as high as 2122 m² g⁻¹ and outstanding total pore volumes close to 9 cm³ g⁻¹ are obtained. Their pore structure is controllable by the applied synthesis temperature as shown by combined nitrogen (-196 °C) and carbon dioxide (0 °C) measurements coupled with electron microscopic methods. The combination of large micropore volumes and the aerogel-type pore system leads to advanced adsorption properties due to a combination of large storage capacities and effective materials transport in comparison with purely microporous reference materials as shown by thermal response measurements.
|
Page generated in 0.0299 seconds