• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum theory of conditional phonon states in a dual-pumped Raman optical frequency comb

Mondloch, Erin 27 September 2017 (has links)
In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrödinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrödinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.
2

Quantum sensing with Rydberg Schrödinger cat states / Sensibilité quantique avec des états chats de Rydberg Schrödinger

Dietsche, Eva-Katharina 14 September 2017 (has links)
Les atomes de Rydberg sont des états très excités, dans lesquels un électron est placé sur une orbite éloignée du noyau. Leur grand dipôle électrique les rend très sensibles à leur environnement électromagnétique. En utilisant des champs microondes et radiofréquences, nous préparons des états quantiques non-classiques spécialement conçus pour exploiter au mieux cette sensibilité et mesurer des champs électriques et magnétiques avec une grande précision. Dans la première partie, nous préparons des états chats de Schrödinger, superpositions d'orbitales de polarisabilités très différentes, qui nous permettent de mesurer de petites variations du champ électrique statique avec une sensibilité bien supérieure à la limite quantique standard et proche de la limite Heisenberg fondamentale. Nous atteignons une sensibilité par atome de 30mV/m pour un temps d'interrogation de 200ns, faisant de notre système l'un des électromètres les plus sensibles à ce jour. Nous implémentons ensuite des manipulations plus complexes de l'atome. Grâce à une technique d'écho de spin qui exploite la richesse de la multiplicité Rydberg, nous mesurons les corrélations temporelles du champ électrique avec une bande passante de l'ordre du MHz. Dans la partie finale, nous préparons une superposition quantique de deux états circulaires de nombres quantiques magnétiques opposés. Cet état très non-classique correspond à un électron tournant à la fois dans des directions opposées sur la même orbite. La grande différence de moment magnétique entre les deux composantes de la superposition, de l'ordre de 100muB, ouvre la voie à la mesure de petites variations du champ magnétique avec une grande bande passante. / Rydberg atoms are highly excited states, in which the electron is orbiting far from the nucleus. Their large electric dipole makes them very sensitive to their electromagnetic environment. Using a combination of microwave and radio-frequency fields, we engineer non-classical quantum states specifically designed to exploit at best this sensitivity for electric and magnetic field metrology. In the first part, we prepare non-classical states, similar to Schrödinger cat states, superpositions of two orbitals with very different polarizabilities, that allow us to measure small variations of the static electric field with a sensitivity well beyond the standard quantum limit and close to the fundamental Heisenberg limit. We reach a single atom sensitivity of 30mV/m for a 200ns interrogation time. It makes our system one of the most sensitive electrometers to date. We then implement more complex manipulations of the atom. Using a spin-echo technique taking advantage of the full extent of the Rydberg manifold, we perform a correlation function measurement of the electric field with a MHz bandwidth.In the final part, we prepare a quantum superposition of two circular states with opposite magnetic quantum numbers. It corresponds to an electron rotating at the same time in opposite directions on the same orbit, a rather non-classical situation. The huge difference of magnetic moment between the two components of the superposition, in the order of 100muB, opens the way to the measurement of small variations of the magnetic field with a high bandwidth.
3

Préparation et stabilisation de systèmes quantiques / Quantum state engineering and stabilization

Leghtas, Zaki 27 September 2012 (has links)
Cette thèse s'intéresse au problème de préparation et de stabilisation de systèmes quantiques. Nous considérons des modèles correspondant à des expériences actuelles en électrodynamique quantique en cavité, circuits Josephson, et de contrôle quantique cohérent par laser femtoseconde. Nous posons les problèmes dans le contexte de la théorie du contrôle et nous proposons des lois de commande qui préparent ou stabilisent des états cibles. En particulier, nous nous intéressons à des états cibles qui n'ont pas d'analogue classique: des états superpositions et intriqués. De plus, nous proposons une commande pour la stabilisation d'un sous-espace de l'espace des états, contribuant ainsi au domaine de la correction d'erreur quantique. Ces résultats ont été obtenu en étroite collaboration avec des expérimentateurs. Des mesures expérimentales préliminaires sont en bon accord avec certaines prédictions théoriques de cette thèse. / This thesis tackles the problem of preparing and stabilizing highly non classical states of quantum systems. We consider specific models based on current experiments in cavity quantum electrodynamics, Josephson circuits and ultra-fast coherent quantum control. The problem is posed in the framework of control theory where we search for a control law which prepares or stabilizes a desired target state.Of particular interest to us are target states with no classical analog: superposition and entangled states. More generally, we propose a scheme for the stabilization of a manifold of quantum states, thus introducing some new ideas for autonomous quantum error correction in a cavity. Close collaborations with experimentalists helped us in the design of control protocols which are readily employable in the laboratory. Experimental demonstrations are currently being implemented and preliminary measurements are in good agreement with the theory introduced in this thesis.
4

Développement de cavités synchrones et d'une mémoire quantique : des outils pour l'ingénierie quantique hybride. / Implementation of optical synchronous cavities and a quantum memory : tools for hybrid quantum state engineering

Bouillard, Martin 15 December 2017 (has links)
Ce travail porte sur le développement d'outils pour l'ingénierie quantique d'états non-classiques de la lumière. Trois axes différents sont étudiés qui, combinés ensembles, permettent d'obtenir un protocole efficace et polyvalent pour la génération d'états quantiques Ces états sont générés en tirant profit des avantages distincts des deux descriptions possibles de la lumière grâce à l'utilisation conjointe des variables discrètes et continues.Le premier axe repose sur la réalisation de superpositions arbitraires d’états de Fock à zéro et deux photons à partir de deux états à un photon indiscernables. Cette expérience permet, entre autre, de créer des superpositions d'états cohérents appelés états chats de Schrödinger optiques. Afin d'augmenter l'amplitude des états produits, une itération du procédé est possible.Pour pouvoir rendre possible cette itération, nous augmentons dans un premier temps le taux de production de notre ressource de base: le photon unique. Pour cela, nous installons deux cavités optiques synchrones qui permettent d'accroître la puissance crête des impulsions du laser, exaltant ainsi les effets non-linéaires à l'origine de la production des photons.Le dernier axe, consiste à réduire les problèmes liés à la création probabiliste des photons. Pour cela, une mémoire quantique a été implémentée, permettant de stocker puis d'extraire un photon sur demande. Le stockage d’états contenant un et deux photons a été réalisé. Ce dispositif permettra à terme, en synchronisant l'état stocké avec l'arrivée d'un autre photon, de créer des états chats à l'intérieur même de la cavité. / This work is focused on the development of tools for quantum state engineering of non-classical state of light. Three different directions are studied, which when combined, lead to efficient and versatile protocols towards the generation of quantum states. Those states are produced by taking advantage of both descriptions of the light: the discrete and continuous variables of the light.The first direction consists in the réalisation of arbitrary superpositions of zero and two-photon Fock states with two indistinguishable single-photon states. This protocol permits, among others, to create superpositions of coherent states called Schrödinger cat states. An iteration of the protocol could allow the growth of the amplitude of the state.To realize such iteration, we increase the production rate of our basic resource, namely, the single photon.To do so, we implement two synchronous cavities allowing the increase of the peak power of the laser pulses, which ultimately enhanced the non-linear effect at the origin of the photon creation.The last direction aims to solve the problems related to the probabilistic nature of the photon creation. In order to store and extract the single photons on demand, a quantum memory is implemented. The storage of single and two-photon states has been experimentally realized. This setup could allow in the near future, by synchronizing the state stored in the cavity with the income of another photon, to create a cat state inside the cavity itself.
5

Architectures hybrides pour le traitement quantique de l'information / Optical hybrid architectures for quantum information processing

Huang, Kun 23 May 2015 (has links)
Cette thèse s’intéresse à une approche dite hybride de l’information quantique. Deux approches traditionnellement séparées, variables discrètes et variables continues, sont combinées dans une même expérience nécessitant à la fois comptage de photons (nombre de photons) et détection homodyne (quadratures). Cette architecture hybride a d’abord été utilisée pour générer des états non-gaussiens de la lumière de grande fidélité, par exemple état de Fock et chat de Schrödinger optique,qui correspondent à deux types d’encodages utilisés en information quantique. L’utilisation de détecteurs supraconducteurs à forte efficacité a permis d’obtenir un taux de préparation sans précédent, ce qui facilite l’utilisation ultérieure de ces états. Ces deux types d’état sont ensuite été combinés pour réaliser pour la première fois une intrication hybride entre qubits optiques de nature différente. Son extension à des qutrits a également été obtenue.Ces nouvelles ressources ouvrent la voie à la mise en oeuvre de réseau quantique hétérogène où les opérations et les techniques propres aux variables discrètes et continues peuvent être efficacement combinées.Ce travail de thèse a également été consacré à la mise en oeuvre d’un système de conversion de fréquence à haute efficacité et faible bruit, basé sur deux lasers à fibres synchronisés.Ce convertisseur de fréquence quantique permet non seulement d’étendre les états quantiques à des longueurs d’onde difficilement accessibles avec la technologie actuelle, mais constitue également un détecteur de photons à haute performance, surtout dans le régime infrarouge.Basé sur ce système, plusieurs applications ont ensuite été démontrées, comme la détection infrarouge résolue en nombre de photons et l’imagerie infrarouge ultra-sensible. / The thesis focuses on the experimental investigation of the optical hybrid approach forquantum information processing. Specifically, two traditionally separated approaches, i.e.the discrete and the continuous-variable ones, are combined in the same experiment with twodistinct quantum measurements based on photon counting (photon number) and homodynedetection (quadrature components).The optical hybrid approach is first applied to generate high-fidelity non-Gaussian states,e.g. Fock states and Schrödinger cat states, which correspond to two types of qubit encodingsused in optical quantum information. The use of high-efficiency superconducting nanowiresingle-photon detectors leads to an unprecedented preparation rate, which facilitates thesubsequent use of these states. For instance, the two types of states are combined to generatefor the first time a hybrid entanglement between particle-like and wave-like optical qubits, aswell as the extension to hybrid qutrit entanglement. These novel resources may pave the wayto implement heterogeneous networks where discrete and continuous-variable operations andtechniques can be efficiently combined. Additionally, we also experimentally demonstratefor the first time the so-called squeezing-induced micro-macro entangled states.During this PhD, efforts have also been dedicated to implement a high-efficiency andlow-noise frequency up-conversion system based on two synchronized fiber lasers. Suchquantum frequency converter not only permits to extend the spectra of quantum statesto difficultly accessible wavelengths with current technology, but also constitutes a highperformancephoton detector especially in the infrared regime. Based on the conversionsystem, several applications are demonstrated, such as infrared photon-number-resolvingdetection, and few-photon-level infrared imaging.

Page generated in 0.0619 seconds