• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 20
  • 20
  • 20
  • 20
  • 11
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Enzyme Encapsulation, Biosensing Endocrine Disrupting Chemicals, and Bio-therapeutic Expression Platforms Using Cell-Free Protein Synthesis

Yang, Seung Ook 01 June 2017 (has links)
Cell-free protein synthesis (CFPS) is a powerful protein expression platform where protein synthesis machinery is borrowed from living organisms. Target proteins are synthesized in a reaction tube together with cell extract, amino acids, energy source, and DNA. This reaction is versatile, and dynamic optimizations of the reaction conditions can be performed. The "œopen" nature of CFPS makes it a compelling candidate for many technologies and applications. This dissertation reports new and innovative applications of CFPS including 1) enzyme encapsulation in a virus-like particle, 2) detection of endocrine disrupting chemicals in the presence of blood and urine, and 3) expression of a multi-disulfide bond therapeutic protein. Two major limitations of enzymes are their instability and recycling difficulty. To overcome these limitations, we report the first enzyme encapsulation in the CFPS by immobilizing in a virus-like particle using an RNA aptamer. This technique allows simple and fast enzyme production and encapsulation We demonstrate, for the first time, the Rapid Adaptable Portable In vitro Detection biosensor platform (RAPID) for detecting endocrine disrupting chemicals (EDCs) in human blood and urine samples. Current living cell-based assays can take a week to detect EDCs, but RAPID requires only 2 hours. It utilizes the versatile nature of CFPS for biosensor protein complex production and EDC detection. Biotherapeutic protein expression in E. coli suffers from inclusion body formation, insolubility, and mis-folding. Since CFPS is not restricted by a cell wall, dynamic optimization can take place during the protein synthesis process. We report the first expression of full-length tissue plasminogen activator (tPA) using CFPS. These research works demonstrate the powerful and versatile nature of the CFPS.
12

Engineering Cell-free Protein Synthesis Technology for Codon Reassignment, Biotherapeutics Production using Just-add-Water System, and Biosensing Endocrine Disrupting Compounds

Salehi, Sayed Mohammad 01 March 2017 (has links)
Cell-free protein synthesis is an emerging technology that has many applications. The open nature of this system makes it a compelling technology that can be manipulated to answer many needs that are unavailable in other systems. This dissertation reports on engineering this technology for: 1) sense codon emancipation for incorporation of multiple unnatural amino acids; 2) expressing a hard-to-express anticancer biotherapeutic and introducing a just-add-water system; 3) a biosensing ligand that interacts with nuclear hormone receptors. Emancipating sense codons toward a minimized genetic code is of significant interest to science and engineering. A promising approach to sense codon emancipation is the targeted in vitro removal of native tRNA. Here we introduce a new in-vitro or "cell-free" approach to emancipate sense codons via efficient and affordable degradation of endogenous tRNA using RNase-coated superparamagnetic beads. The presented method removes greater than 99% of tRNA in cell lysates, while preserving cell-free protein synthesis activity. The resulting tRNA-depleted lysate is compatible with in vitro-transcribed synthetic tRNA for the production of peptides and proteins. Biotherapeutics have many promising applications, such as anti-cancer treatments, immune suppression, and vaccines. However, due to their biological nature, some biotherapeutics can be challenging to rapidly express and screen for activity through traditional recombinant methods. In this work, we demonstrate the use of cell-free systems for the expression and direct screening of the difficult-to-express cytotoxic protein onconase. Using cell-free systems, onconase can be rapidly expressed in soluble, active form. Furthermore, the open nature of the reaction environment allows for direct and immediate downstream characterization without the need of purification. Also, we report the ability of a "just-add-water" lyophilized cell-fee system to produce onconase. Here we introduce a Rapid Adaptable Portable In-vitro Detection biosensor platform (RAPID) for detecting ligands that interact with nuclear hormone receptors (NHRs). The biosensor is based on an engineered, allosterically-activated fusion protein, which contains the ligand binding domain from a target NHR. The presented RAPID biosensor platform is significantly faster and less labor intensive than commonly available technologies, making it a promising tool for detecting environmental EDC contamination and screening potential NHR-targeted pharmaceuticals.
13

Aminoacyl-tRNA Synthetase Production for Unnatural Amino Acid Incorporation and Preservation of Linear Expression Templates in Cell-Free Protein Synthesis Reactions

Broadbent, Andrew 01 March 2016 (has links) (PDF)
Proteins—polymers of amino acids—are a major class of biomolecules whose myriad functions facilitate many crucial biological processes. Accordingly, human control over these biological processes depends upon the ability to study, produce, and modify proteins. One innovative tool for accomplishing these aims is cell-free protein synthesis (CFPS). This technique, rather than using living cells to make protein, simply extracts the cells' natural protein-making machinery and then uses it to produce protein in vitro. Because living cells are no longer involved, scientists can freely adapt the protein production environment in ways not otherwise possible. However, improved versatility and yield of CFPS protein production is still the subject of considerable research. This work focuses on two ideas for furthering that research.The first idea is the adaptation of CFPS to make proteins containing unnatural amino acids. Unnatural amino acids are not found in natural biological proteins; they are synthesized artificially to possess useful properties which are then conferred upon any protein made with them. However, current methods for incorporating unnatural amino acids do not allow incorporation of more than one type of unnatural amino acid into a single protein. This work helps lay the groundwork for the incorporation of different unnatural amino acid types into proteins. It does this by using modified aminoacyl-tRNA synthetases (aaRSs), which are key components in CFPS, to be compatible with unnatural amino acids. The second idea is the preservation of DNA templates from enzyme degradation in CFPS. Among the advantages of CFPS is the option of using linear expression templates (LETs) in place of plasmids as the DNA template for protein production. Because LETs can be produced more quickly than plasmids can, using LETs greatly reduces the time required to obtain a DNA template for protein production. This renders CFPS a better candidate for high-throughput testing of proteins. However, LETs are more susceptible to enzyme-mediated degradation than plasmids are, which means that LET-based CFPS protein yields are lower than plasmid-based CFPS yields. This work explores the possibility of increasing the protein yield of LET-based CFPS by addition of sacrificial DNA, DNA which is not used as a protein-making template but which is degraded by the enzymes in place of the LETs.
14

Creating an Efficient Biopharmaceutical Factory: Protein Expression and Purification Using a Self-Cleaving Split Intein

Cooper, Merideth A. 07 September 2018 (has links)
No description available.
15

Computational Modeling of Planktonic and Biofilm Metabolism

Guo, Weihua 16 October 2017 (has links)
Most of microorganisms are ubiquitously able to live in both planktonic and biofilm states, which can be applied to dissolve the energy and environmental issues (e.g., producing biofuels and purifying waste water), but can also lead to serious public health problems. To better harness microorganisms, plenty of studies have been implemented to investigate the metabolism of planktonic and/or biofilm cells via multi-omics approaches (e.g., transcriptomics and proteomics analysis). However, these approaches are limited to provide the direct description of intracellular metabolism (e.g., metabolic fluxes) of microorganisms. Therefore, in this study, I have applied computational modeling approaches (i.e., 13C assisted pathway and flux analysis, flux balance analysis, and machine learning) to both planktonic and biofilm cells for better understanding intracellular metabolisms and providing valuable biological insights. First, I have summarized recent advances in synergizing 13C assisted pathway and flux analysis and metabolic engineering. Second, I have applied 13C assisted pathway and flux analysis to investigate the intracellular metabolisms of planktonic and biofilm cells. Various biological insights have been elucidated, including the metabolic responses under mixed stresses in the planktonic states, the metabolic rewiring in homogenous and heterologous chemical biosynthesis, key pathways of biofilm cells for electricity generation, and mechanisms behind the electricity generation. Third, I have developed a novel platform (i.e., omFBA) to integrate multi-omics data with flux balance analysis for accurate prediction of biological insights (e.g., key flux ratios) of both planktonic and biofilm cells. Fourth, I have designed a computational tool (i.e., CRISTINES) for the advanced genome editing tool (i.e., CRISPR-dCas9 system) to facilitate the sequence designs of guide RNA for programmable control of metabolic fluxes. Lastly, I have also accomplished several outreaches in metabolic engineering. In summary, during my Ph.D. training, I have systematically applied computational modeling approaches to investigate the microbial metabolisms in both planktonic and biofilm states. The biological findings and computational tools can be utilized to guide the scientists and engineers to derive more productive microorganisms via metabolic engineering and synthetic biology. In the future, I will apply 13C assisted pathway analysis to investigate the metabolism of pathogenic biofilm cells for reducing their antibiotic resistance. / Ph. D.
16

Streamlined Extract Preparation for E. coli-Based Cell-Free Protein Synthesis and Rapid Site-Specific Incorporation of Unnatural Amino Acids in Proteins

Shrestha, Prashanta 07 December 2012 (has links)
This thesis reports the viability of E. coli cell extracts prepared using equipment that is both common to biotechnology laboratories and able to process small volume samples and expression of proteins containing unnatural amino acids (UAAs) at higher level using PCR amplified linear DNA templates (LETs) in cell-free protein synthesis (CFPS) system. E. coli-based cell extracts are a vital component of inexpensive and high-yielding CFPS reactions. However, effective preparation of E. coli cell extract is limited to high-pressure homogenizers (French press style or impinge-style) or bead mill homogenizers, which all require a significant capital investment. This work specifically assessed the following capital cost lysis techniques: (1) sonication, (2) bead vortex mixing, (3) freeze-thaw cycling, and (4) lysozyme incubation to prepare E. coli cell extract for CFPS. In this work, simple shake flask fermentation with a commercially available E. coli strain was used. Additionally, the RNA polymerase was over expressed in the E. coli cells prior to lysis which eliminated the need to add independently purified RNA polymerase to the CFPS reaction. As a result, high yielding E. coli-based cell extract was prepared using equipment requiring reduced capital investment and common to biotechnology laboratories. To our knowledge, this is the first successful prokaryote-based CFPS reaction to be carried out with extract prepared by sonication or bead vortex mixing. LETs are an attractive alternative to plasmids for site-specific incorporation of unnatural amino acids in proteins in the CFPS system because of their short preparation time and ease of production. However, major limitations associated with LETs are: (1) their degradation by RecBCD enzyme present in the cell-extract used for CFPS and (2) high CFPS energy costs. In this work, we report the optimization of LET-based CFPS for improved protein yield by inhibiting the RecBCD enzyme with small inhibitor molecules resulting in three fold increment in yield of protein containing UAA. We also assessed alternative energy sources such as glucose, fructose-1,6-bisphospate, creatine phosphate/creatine kinase, and high glutamate salt for cost reduction. This work could be important for high-throughput applications based on linear expression templates. This work demonstrates simple E. coli extract preparation and improved yield with linear expression templates for further advancements of cell-free protein synthesis system.
17

Cell-Free Synthesis of Proteins with Unnatural Amino Acids: Exploring Fitness Landscapes, Engineering Membrane Proteins and Expanding the Genetic Code

Schinn, Song Min 01 August 2017 (has links)
Unnatural amino acids (uAA) expand the structural and functional possibilities of proteins. Numerous previous studies have demonstrated uAA as a powerful tool for protein engineering, but challenges also remain. Three notable such challenges include: (1) the fitness of uAA-incorporated proteins are difficult to predict and time-consuming to screen with conventional methods, (2) uAA incorporation in difficult-to-express proteins (e.g. membrane proteins such as G-protein coupled receptors) remain challenging, and (3) the incorporation of multiple types of uAA are still limited. In response, we pose cell-free protein synthesis (CFPS), a rapid and versatile in vitro expression system, as a platform to explore solutions to these challenges. The "cell-free" nature of CFPS enables it to accelerate protein expression and tolerate extensive modifications to its translational environment. In this work, these advantages were utilized to address the aforementioned challenges by: (1) rapidly expressing and screening uAA-containing proteins, (2) incorporating uAA in functional G-protein coupled receptor in the presence of membrane-mimicking lipid additives, and (3) engineer the translational environment extensively towards multiple uAA incorporation.
18

Advancing Cell-Free Protein Synthesis Systems for On-Demand Next-Generation Protein Therapeutics and Clinical Diagnostics

Zhao, Emily Ann Long 16 December 2021 (has links)
Recombinant proteins have many medical and industrial applications, but their use is complicated by commercial production and stability constraints. These issues are particularly challenging for recombinant proteins used in pharmaceutical therapeutics and clinical diagnostics. Expensive production and distribution limit the accessibility of therapeutics and diagnostics especially in the developing world. Additionally, clinical use of recombinant proteins face further challenges within biological systems including biological degradation and immunogenicity. To increase the accessibility of recombinant proteins, the cost and inefficiencies of protein manufacturing and distribution need to be significantly reduced. A powerful tool to aid in this endeavor is cell-free protein synthesis (CFPS) technology. CFPS is a versatile platform for recombinant protein production due to its open reaction environment, flexible reaction conditions, and rapid protein expression capabilities. These avoid the disadvantages of conventional manufacturing and present the capability of on-demand protein therapeutic production outside of centralized facilities. To improve the efficacy of recombinant proteins for medicinal use, protein engineering techniques such as PEGylation, or the conjugation of PEG polymers to protein surfaces, can be employed. PEGylation is widely used to enhance the pharmacokinetic properties of protein therapeutics. Deciphering optimal PEG conjugation sites is a continuing area of research that can be facilitated by CFPS systems that enable high-throughput, site-specific PEGylation. This dissertation presents advances in CFPS technology to promote increased accessibility and stability of life-saving therapeutics and diagnostics. The work presented here (1) improves on-demand therapeutic production capabilities by creating shelf-stable, endotoxin-free CFPS systems, (2) aids the rational design of next-generation PEGylated protein therapeutics through an in silico-in vitro CFPS screening platform, and (3) advances the development of portable clinical diagnostics for rapid and sustainable deployment at point-of-care through CFPS biosensor technology. The innovations of this dissertation are described in four publications. Specifically, an endotoxin-free CFPS system lyophilized with lyoprotectants is demonstrated that shows improved shelf-stability over standard lyophilized systems. A streamlined procedure for preparing endotoxin-free extract using auto-induction media is presented that significantly reduces CFPS preparation labor and time. A combinatorial screening approach is demonstrated in which coarse-grain molecular simulation informs PEGylation site selection as verified by CFPS experimental results. An inexpensive paper-based, saliva-activated CFPS biosensor platform is developed for the detection of SARS-CoV-2 sequences.
19

Investigating Escherichia coli-based Cell Free Protein Expression Systems

Gutu, Nicoleta 10 1900 (has links)
Synthesizing proteins for use in therapeutics is restrained by, in part, contaminants in in vivo expression systems and limited production capacity of in vitro systems. Cell free expression (CFE) systems have emerged as a potential alternative for protein expression because of the inherently lower contents of contaminants, and their flexible modular design that allows the addition of factors that aid in synthesis of complex products. Here, we investigate and establish an in-house Escherichia coli-based cell free protein synthesis (CFPS) system, explore different CFPS commercial kits, develop assays to test performance of these systems and identify potential rules that dictate expression levels. Using CFE, we were able to test different vectors and conditions of system, as well as scale-up protein synthesis reactions. In conclusion, this work shows that CFPS is a functional and easy-to-use platform and can potentially meet the requirements for the synthesis of therapeutics.
20

Designing Cell-Free Protein Synthesis Systems for Improved Biocatalysis and On-Demand, Cost-Effective Biosensors

Soltani Najafabadi, Mehran 06 August 2021 (has links)
The open nature of Cell-Free Protein Synthesis (CFPS) systems has enabled flexible design, easy manipulation, and novel applications of protein engineering in therapeutic production, biocatalysis, and biosensors. This dissertation reports on three advances in the application of CFPS systems for 1) improving biocatalysis performance in industrial applications by site-specific covalent enzyme immobilization, 2) expressing and optimizing a difficult to express a mammalian protein in bacterial-based CFPS systems and its application for cost-effective, on-demand biosensors compatible with human body fluids, and 3) streamlining the procedure of an E. coli extract with built-in compatibility with human body fluid biosensors. Site-specific covalent immobilization stabilizes enzymes and facilitates recovery and reuse of enzymes which improves the net profit margin of industrial enzymes. Yet, the suitability of a given site on the enzyme for immobilization remains a trial-and-error procedure. This dissertation reports the reliability of several design heuristics and a coarse-grain molecular simulation in predicting the optimum sites for covalent immobilization of a target enzyme, TEM-1 ?-lactamase. This work demonstrates that the design heuristics can successfully identify a subset of favorable locations for experimental validation. This approach highlights the advantages of combining coarse-grain simulation and high-throughput experimentation using CFPS to efficiently identify optimal enzyme immobilization sites. Additionally, this dissertation reports high-yield soluble expression of a difficult-to-express protein (murine RNase Inhibitor or m-RI) in E. coli-lysate-based CFPS. Several factors including reaction temperature, reaction time, redox potential, and presence of folding chaperones in CFPS reactions were altered to find suitable conditions for m-RI expression. m-RI with the highest activity and stability was used to develop a lyophilized CFPS biosensor in human body fluids which reduced the cost of biosensor test by ~90%. Moreover, an E. coli extract with RNase inhibition activity was developed and tested which further streamlines the production of CFPS biosensors compatible with human body fluids.

Page generated in 0.0964 seconds