• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 62
  • 33
  • 27
  • 14
  • 6
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 328
  • 80
  • 74
  • 55
  • 52
  • 51
  • 44
  • 40
  • 37
  • 34
  • 30
  • 30
  • 29
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Analysis and Prevention of Usable Fiber Loss from a Fine Paper Mill

Barber, Steven Donald 08 October 1998 (has links)
Reducing losses of usable waste fiber from paper mills conserves valuable resources and has the capacity to produce considerable economic returns to the manufacturer. The purpose of this research effort was to evaluate the potential for the prevention of loss and/or recovery of usable waste fiber from paper machines within a fine paper mill. Further, a preliminary evaluation of fiber loss prevention strategies and fiber recovery technologies was conducted. The paper mill in question experienced losses of usable waste fiber to the sewer in amounts approaching, and sometimes exceeding 40 tons/day. An existing database of usable fiber test results was analyzed to determine patterns of fiber loss. Further testing showed that the most significant fiber losses resulted from centrifugal cleaner cones. These cones, designed to remove foreign material from stock, are one step in a series of mechanical cleaning devices in the stock preparation area of the paper mill. Cleaner cone systems on two of the paper machines were found to contribute most significantly to total fiber loss. Contrary to cleaner cone design, the dirt content of fiber rejects from cones experiencing excessive loss was very low. Cleaner cones on other machines operated normally. These rejects were extremely dirty and quantities of fiber were low. These results indicate poor operating efficiency of two of the cleaner cone systems in question. By adding cones where space is available, system capacity and efficiency will increase, fiber losses will decrease, and the dirt content of rejects will increase. This will result in substantial resource and financial savings to the paper mill. Technologies have been developed to recover usable fiber from paper mill sludge. However, prior to further investigation of the use of such innovations at this paper mill, efforts should focus on the reduction of fiber loss from point sources. / Master of Science
162

Prediction of surge in centrifugal compressors using steady-state CFD

Malmsten, Jakob January 2024 (has links)
The centrifugal compressor is a central part of the turbocharger on a truck. It compresses the air which allows for a larger intake of gas into the cylinders. This raises the amount of oxygen available for combustion which increases the efficiency of the engine. However, the operating range of a compressor is limited. If the mass flow through the compressor gets too low, it can start to surge. The surging phenomenon for centrifugal compressors is characterized by axial oscillations in the mass flow which can cause a backflow of air through the compressor. This can result in structural damage on the compressor. It is therefore important to understand under which conditions surge occurs. When it comes to the development and design of compressors, Computational Fluid Dynamics (CFD) is a valuable tool. It enables us to simulate the performance of compressors without the costly process of building a prototype and testing it. Even simpler steady-state simulations can give valuable insight on the performance. However, since surge is a dynamic phenomenon, it is not readily accessible through one of these steady-state simulations, where the sought solution is a flow field constant in time. The aim of this thesis is to capture the surge phenomenon in a steady-state simulation and develop a method for predicting when the compressor surges. This is done by looking at oscillations in the solver for the total pressure at a cross-sectional plane upstream of the compressor wheel. We find that the amplitude of these oscillations increases when the compressor is approaching surge. From this we define a surge criterion and fit the model parameters to an experimentally determined surge line. We then predict the location of the surge line for the same compressor, now equipped with a ported shroud (a geometry feature with the intention of mitigating surge). With this ported shroud, we expect the compressor’s operating range to be widened, which is also what the model predicts. However, this prediction needs to be compared with real data in order to see if the method accurately captures the location of the surge line.
163

Holistic Performance Evaluation of the Built Environment: The Olin Building Past, Present & Future

Laseter, Joel Tyler, III 29 January 2019 (has links)
No description available.
164

Utvärdering av luftrenare som använder sig av centrifugalteknologi : På uppdrag av Airission i samarbete med Karolinska Universitetssjukhuset i Huddinge / Assessment of the Efficiency of an Air Purification System Utilizing Centrifugal Technology : On Behalf of Airission, and in Collaboration with Karolinska University Hospital in Huddinge

Barsoumi, Rabi, Odowa, Mohammed January 2023 (has links)
Denna rapport presenterar en utvärdering av en centrifugal luftrenare från företaget Airission som användes i en infektionsavdelning på Karolinska Universitetssjukhuset. Airissions luftrenare rensar bort partiklar och aerosoler, genom så kallad centrifugalteknologi, en relativt oprövad teknologi för luftrening. Målet var att undersöka och försöka verifiera luftrenarens funktion och prestanda samt jämföra den med en konventionell luftrenare som använder traditionella tvåstegsfilter för att rena luft.För att utföra studien användes ett bioaerosolmätinstrument som i realtid mäter partikelnivåerna i rummet. Testerna utfördes under olika driftförhållanden och tidsintervall med luftrenare påslagen respektive avstängd. Datainsamlingen och analysen inkluderade beräkningen av medelvärdet, jämförelse av partikelnivåerna mellan de olika testfallen och beräkning av standardavvikelsen.Resultaten visade att Airissions centrifugala luftrenare fungerar väl för rening av luft från partiklar och aerosoler. Reningseffektiviteten var jämförbar med en konventionell luftrenare. Den var mer effektiv än en konventionell luftrenare utan användning av högeffektiva luftfilter, mer allmänt känt som HEPA-filter. En signifikant minskning av antalet partiklar i luften observerades medan luftrenaren var i drift. Det uppstod dock en del komplikationer vid appliceringen av HEPA-filtret, vilka kunde ha haft en negativ påverkan på båda luftrenarna. Sammanfattningsvis visar analysen att den tillämpade centrifugalteknologin hos Airissions luftrenare fungerar väl. Jämförelsen av den konventionella luftrenaren visar vissa fördelar med en luftrenare som använder centrifugal teknologi - både gällande effektivitet och kvalitet.Denna rapport bidrar till kunskapen om luftreningslösningar för att förbättra luftkvaliteten och minska spridningen av luftburna sjukdomar, framför allt i sjukhusmiljöer. Resultaten kan vara till nytta för fortsatt forskning och utveckling av mer effektiva luftrenare som i sin tur ger ett bättre skydd för patienter och sjukhuspersonal som exponeras för luftburna smittämnen. / This report presents an evaluation of a centrifugal air purifier from the company Airission used in an infectious ward at Karolinska University Hospital. Airission's air purifier removes particles and aerosols using centrifugal technology, a relatively untested technology for air purification. The goal was to investigate and attempt to verify the functionality and performance of the air purifier and compare it to a conventional air purifier that uses traditional two-stage filters for air purification.To conduct the study, a bioaerosol measuring instrument was used to measure real-time particle levels in the room. The tests were performed under different operating conditions and time intervals with the air purifier turned on and off. Data collection and analysis included calculating the mean values, comparing the particle levels between different test cases, and calculating the standard deviation.The results showed that Airission's centrifugal air purifier effectively purifies air from particles and aerosols. The purification efficiency was comparable to a conventional air purifier. It was more effective than a conventional air purifier without the use of highefficiency air filters, commonly known as HEPA filters. A significant reduction in the number of particles in the air was observed while the air purifier was in operation. However, some complications arose during the application of the HEPA filter, which could have had a negative impact on both air purifiers.In summary, the analysis demonstrates that the applied centrifugal technology in Airission's air purifier works well. The comparison with the conventional air purifier shows certain advantages of an air purifier that uses centrifugal technology - in terms of both efficiency and quality.This report contributes to the knowledge of air purification solutions to improve air quality and reduce the spread of airborne diseases, especially in hospital environments. The results can be useful for further research and development of more effective air purifiers, which in turn provide better protection for patients and hospital staff exposed to airborne pathogens.
165

The development and verification of a centrifugal compressor test bench

Struwig, Daniel Johannes 04 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Turbomachinery plays an important role in the efficiency of power generation and combustion processes used in the automotive and aerospace industries. The potential for fulfilling future energy needs has been identified in both civilian and military applications, for example micro gas turbines (MGTs) used in unmanned aireial vehicles (UAVs). The goal of this thesis was to build a performance testing facility for small-scale centrifugal compressors, for use in MGTs. The objectives of this study were mainly achieved through experimental work. In addition to the experimental work, numerical simulations using computational fluid dynamics (CFD) software were performed to substantiate the experimental results. The project methodology followed the process whereby a compressor performance map is constructed from experimental data and compared to map obtained from theoretical data. The test facility consists of a turbocharger fitted with an experimental compressor section. The turbocharger turbine is driven by unheated compressed air. Sensors, data acquisition and ancillary equipment required to perform performance test measurements, were obtained and installed on the test facility. Performance curves at three different rotational speeds were successfully obtained for the experimental compressor. When compared to the CFD results there was good qualitative agreement, although deviations in the results increased with rotational speed. In addition a second impeller design was tested which correlated well with the theoretical data. / AFRIKAANSE OPSOMMING: Turbomasjinerie speel 'n belangrike rol in die doeltre endheid van kragop- wekking en verbrandingsprosesse wat in die motor- en lugvaartbedryf gebruik word. Die potensiaal om in toekomstige energiebehoeftes te voorsien is in beide burgerlike en militêre toepassings uitgewys, byvoorbeeld mikrogastur- bines (MGT's) wat in onbemande vliegtuie (OLV's) gebruik word. Die doel met hierdie tesis was om 'n prestasietoetsfasiliteit vir kleinskaalse sentrifu- gale kompressors te bou wat in MGT's gebruik kan word. Die doelstellings van hierdie studie is hoofsaaklik deur eksperimentele werk behaal. Daarbe- newens is numeriese simulasies met gebruikmaking van sagteware vir bereke- ningsvloeidinamika (BVD) gedoen om die eksperimentele resultate te staaf. Die projekmetodologie volg die proses om 'n kompressorprestasiekaart uit eks- perimentele data op te stel en dit te vergelyk met 'n kaart wat uit teoretiese data bekom is. Die toetsfasiliteit bestaan uit 'n turboaanjaer wat met 'n eksperimentele kompressordeel toegerus is. Die turboaanjaer se turbine word deur onverhitte druklug aangedryf. Sensors, dataverwerwing en bykomstige toerusting, wat benodig is om prestasietoetsmetings mee te doen, is bekom en op die toetsfasiliteit geïnstalleer. Prestasiekrommes is vervolgens by drie verskillende omwentelingsnelhede suksesvol met die eksperimentele kompres- sor bekom. In vergelyking met die BVD-resultate was daar goeie kwalitatiewe ooreenstemming, ofskoon afwykings in die resultate vergroot het namate die omwentelingspoed toegeneem het. Daarby is 'n tweede stuwerontwerp getoets wat goed met die teoretiese resultate korreleer.
166

The influence of particle type and process conditions on electrodeposited composite coatings

Morana, Roberto January 2006 (has links)
Composite materials are usually multi-phase materials, made up from two or more phases, which are combined to provide properties that the individual constituents cannot. This technology represents an economical way to improve product performances avoiding the use of expensive materials. Composite materials can be obtained as films by means of the electrolysis of electroplating solutions in which micrometre- or submicrometre-size particles are suspended: variable amounts of these particles become incorporated in the electrochemically produced solid phase, to which they impart enhanced properties. The main aims of the present work contributing to this thesis are the study of different parameters influencing the electroco-deposition process in order to promote and improve the applicability of such a technology in the high speed electroplating industry. Following a comprehensive review on the electroco-deposition of composite coatings, the phenomena have been analysed moving from a microscopic point of view i. e. the role of the metal ions present in the electrolyte and adsorption on the inert particles and their interactions with the growing metal layer, to a macroscopic point of view i. e. the electrolyte agitation, its influence on particle motion and all the issues related to the presence of particles in an electrolyte during electroplating. In particular the inert particle influence in terms of geometry, dimension and chemical nature (spherical polystyrene particles vs. irregular alumina particles with different dimensions), the metal matrix influence (nickel, copper and zinc), the influence of electrolyte agitation (using a Rotating Cylinder Electrode cell system) and the influence of the coating thickness on particle content in the final coating, using different deposition times, have been examined. The importance of the particle shape has been highlighted showing how incorporating irregular geometries gave higher particle incorporation densities than regular geometries. The influence of the substrate finishing in terms of imperfections has been related to the particle incorporation rate showing how small surface imperfections enhanced the incorporation of particles. Different hydrodynamic regimes have been analysed resulting three different regimes being discerned: laminar, transitional and turbulent. The consequence, in terms of particle incorporation levels, has been found showing how the amount of particles in the coating changed from one regime to another. Different rate-determining steps were related to the hydrodynamics: when the regime is laminar, particles were incorporated as agglomerates and the process was under particle transfer control, whilst in the turbulent zone, the rate determining step was the velocity of reduction of the ions adsorbed on the particle surface.
167

Genetic optimization of turbomachinery components using the volute of a transonic centrifugal compressor as a case study / Genetische Optimierung von Strömungsmaschinen am Beispiel des Spiralgehäuses eines transsonischen Radialverdichters

Heinrich, Martin 20 December 2016 (has links) (PDF)
One elementary part of a centrifugal compressor is the volute, which is located downstream the impeller. Its purpose is to collect the flow and increase the static pressure by converting kinetic energy into potential energy. Despite its significant effect onto the design point and operating range of the compressor, the number of publications regarding this component is quite small. Therefore, a numerical optimization of the volute housing is performed in order to identify important geometric parameters and find an optimal volute geometry. For this purpose, a new density-based CFD solver for all Mach numbers is developed as well as an automated geometry generation tool for the volute housing. The results show, that a volute with an inlet eccentricity of 0.9 and a slightly lower radial volute channel offers the best compressor efficiency. Moreover, the actual cross-sectional shape of the volute has only a minor influence onto the performance. As a result, the isentropic efficiency could be improved by up to 2 % compared to the reference compressor model, in particular at high off-design flow rates. These results are a novelty in the scientific community and help to design more efficient compressors. / Das Spiralgehäuse eines Radialverdichters wird im Gegensatz zum Laufrad kaum in wissenschaftlichen Arbeiten untersucht. Um wichtige Geometrieparameter und Einflussfaktoren dieses Bauteils zu identifizieren, wird daher eine Optimierung mittels genetischer Algorithmen durchgeführt. Dazu wird zunächst ein dichte-basierter CFD-Löser entwickelt und validiert, um die komplexe Strömung in einem Radialverdichter mit hoher Genauigkeit simulieren zu können. Darauf aufbauend wird das Spiralgehäuse parametrisiert und ein Programm entwickelt, welches die komplexe Geometrie automatisiert erstellt. Durch die neuartige Kombination von numerischer Optimierung, automatisierter Geometrieerstellung und CFD-Simulation des Spiralgehäuses können erstmals Aussagen zur optimalen Geometrie sowie über Verlusteffekte für eine Vielzahl an Geomtrievarianten getroffen werden. Mit Hilfe dieses Wissens können sparsamere und effizientere Radialkompressoren für viele Bereiche des Maschinenbaus entwickelt werden.
168

Efficiency Evaluation of a Magnetically Driven Multiple Disk Centrifugal Blood Pump

Moody, Kayla H 01 January 2016 (has links)
Heart failure is expected to ail over 8 million people in America by 2030 leaving many in need of cardiac replacement. To accommodate this large volume of people, ventricular assist devices (VADs) are necessary to provide mechanical circulatory support. Current VADs exhibit issues such as thrombosis and hemolysis caused by large local pressure drops and turbulent flow within the pump. Multiple disk centrifugal pumps (MDCPs) use shearing and centrifugal forces to produce laminar flow patterns and eliminate large pressure drops within the pump which greatly reduce risks that are in current VADs. The MDCP has a shaft drive system (SDS) that causes leakage between the motor and housing that when implanted can cause blood loss, infection, thrombosis and hemolysis. To eliminate these adverse effects, a magnetic external motor-driven system (MEMDS) was implemented. An efficiency study was performed to examine the efficacy of the MEMDS by comparing the hydraulic work of the MDCP to the power required to run the pump. This was done by measuring inlet and outlet pressures, outlet flow rate and input current at various input voltages and resistances. The results showed the MDCP could produce physiologic flow characteristics with a flow rate of 4.90 L/min and outlet pressure of 61.33 mmHg at an impeller speed of 989.79 rpm. Other VADs generate flow rates around 5 L/min at rotational speeds of 2400 rpm for centrifugal pumps and 12000 rpm for axial pumps. When compared to the SDS, the MEMDS exhibited similar efficiencies of 3.89% and 3.50% respectively. This study shows promise in the advancement of MDCP.
169

Zvýšení stability chodu odstředivého kompresoru / Extension of Centrifugal Compressor Operational Stability

Růžička, Miroslav Unknown Date (has links)
Centrifugal compressors with high pressure ratio are widely used in small aircraft turbine engines and turbocharges. At high rotational speeds they have narrow stable operating region and commonly used impellers with back swept blades are not able to ensure requested stability. In order to achieve wider stable operating region, some other anti-surge measures can be used, such as an Internal Recirculation Channel (IRC) located in compressor impeller inlet. This thesis deals with an investigation of IRC influence on centrifugal compressor operational parameters. As a first, the various recirculation channel geometry was studied by using of CFD analysis on simplified computational models. Those geometry, which indicated best results in terms of mass flow and looses in channel were used for testing on a model test device. Subsequently the same geometry was tested on real centrifugal compressor in experimental turbine engine to verify influence of IRC on compressor performance map – pressure ratio and efficiency. Simultaneously the CFD analyses of IRC with a 3D model of compressor impeller were performed and results compared with those, gained from measurement on model and compressor. In addition the measurement of flow field downstream the recirculation channel outlet slot with using of 3-hole pressure probe was performed and compared with flow velocity profiles evaluated from numerical simulations.
170

Efeitos do cobre e do magnésio na microestrutura da liga Al-19%Si fundida por centrifugação / Effects of copper and magnesium on the microstructure of alloy Al-19% Si fused by centrifugation

Contatori, Chester 11 December 2017 (has links)
As ligas de alumínio hipereutéticas fundidas por centrifugação apresentam a possibilidade de obtenção de um gradiente funcional de propriedades no material (Functionally Graded Material - FGM). Na fundição por centrifugação, os compostos menos densos tenderão a se concentrar no diâmetro interno de um tubo centrifugado. Como a massa específica do silício e do Mg2Si são menores do que a do alumínio, as partículas dessas fases tendem a concentrar-se na parede interna de tubos centrifugados. Em função disto, este estudo tem como objetivo dar uma contribuição ao entendimento dos mecanismos de migração das partículas de silício e de Mg2Si numa liga de alumínio hipereutética com 19% de silício e com adições de cobre e magnésio fundidas por centrifugação. Diante disto, foram obtidos tubos da liga Al-19%Si com adições de até 5% de cobre e 5% de magnésio por meio da fundição centrífuga numa rotação de 1700 rpm. A caracterização microestrutural em diversas regiões dos tubos centrifugados foi feita utilizando-se a microscopia óptica e eletrônica de varredura com sistema de análise de imagens. A fração das fases presentes e a dureza Vickers foram determinadas ao longo da parede do tubo em diversas posições de vazamento. A fundição centrífuga promove a segregação de partículas de silício primário e de Mg2Si, com massas específicas menores para a parede interna do tubo. Esta segregação é mais acentuada na região final de vazamento devido ao maior tempo de centrifugação até a solidificação. Uma retenção de partículas junto à parede externa do tubo ocorre em decorrência da mais elevada taxa de resfriamento da liga fundida em contato com a parede do molde mais frio. Esta retenção também foi maior na região do tubo de início de vazamento em relação à de final de vazamento. A adição de cobre intensificou a migração das partículas devido ao aumento da densidade do líquido. O aumento do teor de cobre na liga também inibiu a presença de dendritas de alumínio primário que ocorrem em grandes quantidades nas regiões centrais das paredes dos tubos centrifugados. O perfil de dureza ao longo da parede do tubo indicou um aumento de dureza relacionado diretamente à quantidade de partículas de silício (β) e Mg2Si. / A functionally gradient material, in terms of its properties, can be obtained with centrifugally cast hypereutectic aluminum alloys. In centrifugal casting, the less dense compounds tend to concentrate close to the inner wall of a centrifugally cast tube. Since the specific mass of silicon and Mg2Si are less than that of aluminum, particles of these phases tend to concentrate at the inner walls of centrifugally cast tubes. On the basis of this, the aim of this study was to contribute towards increased understanding of the mechanism of segregation of silicon and Mg2Si particles in a centrifugally cast hypereutectic aluminum - 19% silicon alloy to which copper and magnesium were added. Hence, tubes of Al-19%Si alloy with up to 5% copper and up to 5% magnesium were centrifugally cast at rotational speed of 1700 rpm. Microstructural examination of various regions of the centrifugally cast tubes was carried out using an optical microscope and a scanning electron microscope coupled to an image analyzer. The amount of phases that formed and the Vickers hardness were determined across the thickness of the tube at different positions. Centrifugal casting promotes segregation of primary silicon and Mg2Si particles, (with lower specific weights) towards the inner walls of the tube. This segregation was higher at regions that were last to be cast, and due to longer centrifugation until solidification. Retention of particles close to the outer wall of the tube took place due to higher cooling rate of the cast alloy in contact with the cold walls of the mold. This retention was also higher at regions of the tube that were cast first compared with those that were cast last. The addition of copper increased particle migration due to increase in density of the liquid. Increase in the amount of copper in the alloy also inhibited the presence of primary aluminum dendrites that form in large quantities at the central regions of centrifugally cast tube walls. The hardness profile along the tube wall indicated an increase in hardness and this is directly related to the quantity of (β) silicon and Mg2Si particles.

Page generated in 0.1179 seconds