• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 11
  • 8
  • 5
  • 2
  • 1
  • Tagged with
  • 122
  • 122
  • 48
  • 38
  • 25
  • 24
  • 22
  • 18
  • 17
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Hydraulic Characteristics Of Tyrolean Weirs Having Steel Racks And Circular-perforated Entry

Sahiner, Halit 01 March 2012 (has links) (PDF)
Tyrolean type water-intake structures are commonly used on mountain rivers to supply water to hydropower stations. The amount of water to be diverted from the main channel is the major concern in these kind of structures and should not be less than the design discharge. In this study a physical model of a Tyrolean type water-intake structure was built at the laboratory and the diverted flow from the main channel through the intake structure having steel racks and perforated plates of different types were measured. The experiments were conducted in two stages. In the first stage the tests were carried out with only steel racks having three different bar openings and slopes, and in the second stage, perforated screens of three different circular openings and screen slopes were used. Applying dimensional analysis to the related parameters of the system the dimensionless terms were defined for the water capture efficiency and discharge coefficient of the system, and their variations with the relevant parameters were plotted. Using these diagrams one can determine the amount of water to be diverted by a Tyrolean weir of known geometry and main channel discharge.
62

Experimental Investigation On Sharp Crested Rectangular Weirs

Gharahjeh, Siamak 01 June 2012 (has links) (PDF)
This study is an experimental research to formulate the discharge over sharp-crested rectangular weirs. Firstly, a series of measurements on different weir heights were conducted to find the minimum weir height for which channel bed friction has no effect on discharge capacity. After determining the appropriate weir height, weir width was reduced to collect data on discharge-water head over weir relationship for a variety of different weir openings. Then, the data was analyzed through regression analysis along with utilization of global optimization technique to reach the desired formulation for the discharge. By taking advantage of a newly-introduced &ldquo / weir velocity&rdquo / concept, a simple function was eventually detected for the discharge where no discharge coefficient was involved. The behavior of the weir velocity function obtained in the present study illustrates the transition between the fully contracted and partially contracted weirs. In addition, the proposed weir velocity formulation is simple and robust to calculate the discharge for full range of weir widths.
63

Generalized non-dimensional depth-discharge rating curves tested on Florida streamflow

Mueses-Pérez, Auristela 01 June 2006 (has links)
A generalized non-dimensional mathematical expression has been developed to describe the rating relation of depth and discharge for intermediate and high streamflow of natural and controlled streams. The expressions have been tested against observations from forty-three stations in West-Central Florida. The intermediate-flow region model has also been validated using data from thirty additional stations in the study area. The proposed model for the intermediate flow is a log-linear equation with zero intercept and the proposed model for the high-flow region is a log-linear equation with a variable intercept. The models are normalized by the depth and discharge values at 10 percent exceedance using data published by the U.S. Geological Survey. For un-gauged applications, Q10 and d10 were derived from a relationship shown to be reasonably well correlated to the watershed drainage area with a correlation coefficient of 0.94 for Q10 and 0.86 for d10. The average relative error for this parameter set shows that, for the intermediate-flow range, better than 50% agreement with the USGS rating data can be expected for about 86% of the stations and for the high-flow range, better than 50% for 44% of the stations. Testing the model outside West Central Florida, in some stations at North Florida, and South Alabama and Georgia, show some reasonable relative errors but not as good as the results obtained for West Central Florida. Using a model with a different slope, developed specific for those particular stations improved the results significantly.
64

Μελέτη κίνησης βιομαγνητικών ρευστών υπό την επίδραση μαγνητικού πεδίου

Τζιρτζιλάκης, Ευστράτιος 24 June 2007 (has links)
Στην παρούσα διατριβή μελετάται η ροή βιομαγνητικών ρευστών υπό την επίδραση μαγνητικού πεδίου. Ως βιομαγνητικό ορίζεται ένα ρευστό το οποίο υπάρχει σε έναν έμβιο οργανισμό και η ροή του επηρεάζεται πάντοτε από την παρουσία μαγνητικού πεδίου. Χαρακτηριστικό βιομαγνητικό ρευστό θεωρείται το αίμα και αυτό χρησιμοποιείται για να δωθούν τιμές στις παραμέτρους που εμφανίζονται στα προβλήματα που μελετώνται.... / - / The flow of biomagnetic fluids in the presence of an applied magnetic field is studied in the present thesis. As biomagnetic is defined a fluid that exists in a living creature (biofluid) and its flow is affected by the presence of a magnetic field. The most characteristic biofluid is the blood. The Newtonian viscous laminar incompressible blood flow is considered in the present thesis for the estimation of the parameters appearing in the problems under consideration. An introduction is made at the first chapter of the thesis concerning fundamental concepts of the magnetic fluids such as the magnetization and equilibrium flow. Experimental applications in the biomedicine are also given as well as the mathematical model describing the flow of biological fluids under the influence of an applied magnetic field. In order to investigate the effect of the magnetic field in the next three chapters basic flow problems of biomagnetic fluid (blood) are studied. In the second chapter the flow over a stretching sheet under the influence of an applied magnetic field is studied. The physical problem is described by a coupled system of non linear partial differential equations (pdes) with their appropriate boundary conditions. For the variation of the magnetization with the temperature and/or the magnetic field intensity two cases are considered (I and II). The arising system describing the physical problem is transformed into corresponding coupled systems of non linear ordinary differential equations (ods) after the introduction of proper non dimensional variables. For the numerical solution, finite differences are used for the case I, whereas a spectral method with Chebyshev polynomials is also used for the case II. It is apparent that the application of the magnetic field increases the skin friction and the pressure on the surface, whereas the heat transfer is reducing. A comparison is also made between the two numerical methods used in the case II. The efficiency and the accuracy of the spectral method over against the finite differences method are demonstrated. The superiority of the spectral method is apparent especially when high accuracy solution is desired. In the third chapter the fundamental problem of the biomagnetic fluid flow taking place in a rectangular duct under the influence of an applied magnetic field is studied. For the numerical solution of the problem, which is described by a coupled and non linear system of PDEs, with their appropriate boundary conditions, the stream function-vorticity formulation is adopted and the solution is obtained developing an efficient numerical technique based on the upwind finite differences joint with a line by line implicit method. Results concerning the velocity and temperature field, skin friction and rate of heat transfer indicate that the presence of magnetic field appreciable influence the flow field. The three dimensional, fully developed flow of a biomagnetic fluid in an impermeable rectangular duct under the influence of an applied magnetic field is numerically studied in the fourth chapter. The system of the partial differential equations, resulting after the introduction of appropriate non-dimensional variables, is solved applying an efficient numerical technique based on a pressure-linked pseudotransient method on a collocated grid. Results concerning the existence and the uniqueness of the solution are also given. The obtained results, for different values for the parameters entering into the problem under consideration, show that the flow is appreciably influenced by the presence of the magnetic field in the sense of reduction of the axial velocity and the formation of two vortices at the transverse plane. These first results indicate that the magnetic field significantly influences the blood flow and encourage further study in more complex geometries, oscillatory flow or including the non-Newtonian behaviour of blood in order to demonstrate applications in biomechanics and biomedicine.
65

Orientation of elongated, macro and nano-sized particles in macroscopic flows

Håkansson, Karl January 2014 (has links)
Non-spherical particles are present all around us, in biological, industrial and environmental processes. Making predictions of their impact on us and systems in our vicinity can make life better for everyone here on earth. For example, the ash particles from a volcano eruption are non-spherical and their spreading in the atmosphere can hugely impact the air traffic, as was also proven in 2010. Furthermore, the orientation of the wood fibres in a paper sheet influences the final properties of the paper, and the cause of a specific fibre orientation can be traced back to the fluid flows during the manufacturing process of the paper. In this thesis, experimental and numerical work is presented with the goal to understand and utilize the behavior of elongated particles in fluid flows. Two different experimental setups are used. The first one, a turbulent half channel flow, aims at increasing the understanding of how particles with non-zero inertia behave in turbulence. The second setup is an attempt to design a flow field with the purpose to align nanofibrils and create high performance cellulose filaments. Experiments were performed in a turbulent half channel flow at different flow set- tings with dilute suspensions of cellulose acetate fibres having three different aspect ratios (length to width ratio). The two main results were firstly that the fibres agglom- erated in streamwise streaks, believed to be due to the turbulent velocity structures in the flow. Secondly, the orientation of the fibres was observed to be determined by the aspect ratio and the mean shear, not the turbulence. Short fibres were oriented in the spanwise direction while long fibres were oriented in the streamwise direction. In order to utilize the impressive properties (stiffness comparable to Kevlar) of the cellulose nanofibril in a macroscopic material, the alignment of the fibrils must be controlled. Here, a flow focusing device (resulting in an extensional flow), designed to align the fibrils, is used to create a cellulose filament with aligned fibrils. The principle is based on a separation of the alignment and the assembly of the fibrils, i.e. first align the fibrils and then lock the aligned structure. With this process, continuous filaments were created, with properties similar to that of the wood fibre at the same fibril alignment. However, the highest alignment (lowest angle) of the fibrils in a filament created was only 31o from the filament axis, and the next step is to increase the alignment. This thesis includes modeling of the alignment process with the Smoluchowski equation and a rotary diffusion. Finding a model that correctly describes the alignment process should in the end make it possible to create a filament with fully aligned fibrils. / <p>QC 20140908</p>
66

Dynamics of Vortices in Numerically Simulated Turbulent Channel Flow

January 2011 (has links)
abstract: The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which single hairpins autogenerate hairpin packets. The hairpin vortices are believed to provide a unified picture of wall turbulence and play an important role in the production of Reynolds shear stress which is directly related to turbulent drag. The structures of the initial three-dimensional vortices are extracted from the two-point spatial correlation of the fully turbulent direct numerical simulation of the velocity field by linear stochastic estimation and embedded in a mean flow having the profile of the fully turbulent flow. The Reynolds number of the present simulation is more than twice that of the Re-tau=180 flow from earlier literature and the conditional events used to define the stochastically estimated single vortex initial conditions include a number of new types of events such as quasi-streamwise vorticity and Q4 events. The effects of parameters like strength, asymmetry and position are evaluated and compared with existing results in the literature. This study then attempts to answer questions concerning how vortex mergers produce larger scale structures, a process that may contribute to the growth of length scale with increasing distance from the wall in turbulent wall flows. Multiple vortex interactions are studied in detail. / Dissertation/Thesis / M.S. Mechanical Engineering 2011
67

Control of plane poiseuille flow : a theoretical and computational investigation

McKernan, John January 2006 (has links)
Control of the transition of laminar flow to turbulence would result in lower drag and reduced energy consumption in many engineering applications. A spectral state-space model of linearised plane Poiseuille flow with wall transpiration ac¬tuation and wall shear measurements is developed from the Navier-Stokes and continuity equations, and optimal controllers are synthesized and assessed in sim¬ulations of the flow. The polynomial-form collocation model with control by rate of change of wall-normal velocity is shown to be consistent with previous interpo¬lating models with control by wall-normal velocity. Previous methods of applying the Dirichlet and Neumann boundary conditions to Chebyshev series are shown to be not strictly valid. A partly novel method provides the best numerical behaviour after preconditioning. Two test cases representing the earliest stages of the transition are consid¬ered, and linear quadratic regulators (LQR) and estimators (LQE) are synthesized. Finer discretisation is required for convergence of estimators. A novel estimator covariance weighting improves estimator transient convergence. Initial conditions which generate the highest subsequent transient energy are calculated. Non-linear open- and closed-loop simulations, using an independently derived finite-volume Navier-Stokes solver modified to work in terms of perturbations, agree with linear simulations for small perturbations. Although the transpiration considered is zero net mass flow, large amounts of fluid are required locally. At larger perturbations the flow saturates. State feedback controllers continue to stabilise the flow, but estimators may overshoot and occasionally output feedback destabilises the flow. Actuation by simultaneous wall-normal and tangential transpiration is derived. There are indications that control via tangential actuation produces lower highest transient energy, although requiring larger control effort. State feedback controllers are also synthesized which minimise upper bounds on the highest transient energy and control effort. The performance of these controllers is similar to that of the optimal controllers.
68

On unsteady open-channel flows: a contribution to non-stationary sediment transport in runoff flows and to unstable non-Newtonian mudflow studies / Des écoulements instationnaires à surface libre: contribution aux études du transport instationnaire de sédiments en écoulement ruisselant et des instabilités de coulées de boue non-newtonienne / Escoamentos não-permanentes de superficie livre: uma contribuição para o estudo do transporte não estacionario de sedimentos em escoamentos superficiais e para instabilidades em corridas de lamas

Fiorot, Guilherme Henrique [UNESP] 01 July 2016 (has links)
Submitted by GUILHERME HENRIQUE FIOROT null (ghfiorot@aluno.feis.unesp.br) on 2016-08-31T16:48:18Z No. of bitstreams: 1 GHFiorot-tese-unesp.pdf: 21279930 bytes, checksum: f08d052fded3d144bcad4b9a9f1c007f (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-09-01T17:08:21Z (GMT) No. of bitstreams: 1 fiorot_gh_dr_ilha.pdf: 21279930 bytes, checksum: f08d052fded3d144bcad4b9a9f1c007f (MD5) / Made available in DSpace on 2016-09-01T17:08:21Z (GMT). No. of bitstreams: 1 fiorot_gh_dr_ilha.pdf: 21279930 bytes, checksum: f08d052fded3d144bcad4b9a9f1c007f (MD5) Previous issue date: 2016-07-01 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Dentro da temática de riscos naturais, mais precisamente no contexto das corridas de lama, esta tese surge da necessidade que existe na literatura em melhor se conhecer as características temporais destes eventos. A chuva, fonte da vazão liquida, conduz aos escoamentos superficiais, responsáveis pela redução da coesão do material sedimentar do solo (areia e argila) e seu consequente transporte. Em locais de topografia íngreme, de montante a jusante, a vazão sólida do escoamento principal pode, eventualmente, evoluir devido às contribuições laterais de pequenos escoamentos, alterando não só as propriedades reológicas do fluido e dinâmicas do escoamento, como se manter até que o transporte sólido atinja elevada concentração na composição do fluido. Na primeira parte desta tese, um experimento de superfície livre foi projetado para reproduzir escoamentos superficiais sobre um fundo móvel, com o objetivo de estudar propriedades não-permanentes do transporte de sedimentos. Um sistema de medição foi projetado e construído com o intuito de medir quase instantaneamente a vazão sólida e suas correlações com as propriedades hidráulicas do escoamento. Este aparato é também utilizado para observar a influência de instabilidades de superfície livre sobre o transporte. Um conjunto de resultados é apresentado e analisado e mostra que a presença de ondas pode, em média, reduzir a quantidade total de sedimentos transportada. Na segunda parte desta tese, a dinâmica de escoamentos com elevada concentração de sedimentos é estudada. Neste trabalho, executa-se a aplicação de um modelo de primeira ordem de roll waves para fluidos de reologia Herschel-Bulkley para simular um evento natural registrado na literatura. Os resultados apresentados mostram que roll waves poderiam, de fato, ser identificadas no evento e que a amplitude média observada poderia ter sido estimada com 8% de incerteza. Assim, um modelo mais complexo para a solução do perfil de velocidade é proposto, adicionando a porosidade do solo ao problema. Resultados do modelo são comparados com simulações numéricas. Uma análise paramétrica é efetuada e o caso de estudo é novamente avaliado. Como conclusão geral do trabalho, a presença de fenômenos não-estacionários durante a evolução escoamento superficial - corrida de lama afeta a dinâmica global do sistema acoplado hidráulica-transporte de sedimentos, quando comparado ao caso permanente e uniforme. Assim, a verificação de que tais fenômenos podem aparecer deve constituir parte de projetos engenharia, especialmente quando estes, em situações de catástrofes, envolvem danos a infraestruturas civis e quase sempre perdas de vidas, como é o caso das corridas de lama. / This thesis was motivated by the need to better understand time-dependent features related to mudflow evolution on natural sloped channels. Basically, the research is focused on events that are confined in channels formed due to the topography. The rain, source of the liquid discharge, generates the runoff flow which is responsible for wetting the soil surface, promoting reduction of soil cohesiveness and erosion of small particles such as clay and sand. From this point, the sediment transport can increase as small water flows merge and form greater streams. The scenario keeps its evolution until it reaches high concentration of particles in the fluid mixture. In the first part, to study the non-permanent feature of sediment transport, an open-channel experiment was designed for simulating runoff flow over a mobile bed. A measurement system was designed and constructed to instantaneously inspect the solid discharge of particles and the flow friction at the bed. This apparatus is further used to explore the influence of free-surface waves on the sediment transport. Hydraulic properties of flows are qualitatively and quantitatively studied and data are used to correlate characteristics of flow and sediment transport. A set of experimental runs is presented and explored. Analysis of results shows that for fixed flow conditions, waves induce an overall smaller quantity of transported sediment. In a second part, the dynamics of high concentrated flows is addressed and this thesis attempts to apply a first-order roll-wave model for Herschel-Bulkley laminar fluid flow to a registered natural event. Results presented point out that roll waves could have occurred during this already published case-study event. Simulations could predict wave heights within 8% on uncertainty with respect to the mean amplitude of measured waves. Finally a new theoretical solution for the velocity profile is proposed taking into account the porosity of the bed. Results are then compared with numerical simulation performed in FLUENT. A parametric analysis is employed and the case-study is once again evaluated. As general conclusion, the non-permanent phenomena that can appear during the evolution of a mudflow event affect the overall dynamics of the coupled system (hydraulic-sediment transport) in comparison to the steady and uniform case. Verifying that such phenomena could appear should indeed be an important part in hydraulic engineering projects, especially when dealing with lives, which is the case of mudflows. / CNPq: 201557/2012-6
69

Computational study in fluid mechanics of bio-inspired geometries: constricted channel and paediatric ventricular assist device. / Estudo computacional em mecânica de fluidos de geometrias bio-inspiradas: canal constrito e dispositivo de assistência ventricular pediátrico.

João Anderson Isler 17 April 2018 (has links)
Numerical modelling and simulation are powerful tools for analysis and design, and with the improvement of computational power and numerical methods they are being applied on complex phenomena and systems. This work shows examples of the application of a very sophisticated numerical method, namely the Spectral/hp element method, in the study of the flow inside bioinspired complex geometries. The two topics investigated are fluid dynamic instabilities in a constricted channel and flow inside a paediatric ventricular assist device were studied by means of computational fluid mechanics. The constricted channel is an idealized model of a nasal cavity, which is characterized by complex airway channels, and also bears some resemblance to a human artery in the presence of an atherosclerotic plaques. The paediatric ventricular assist device is an actual device, designed by the Bioengineering research group of the Heart Institute of the Medicine School of the University of São Paulo, which works as a pump that assists the left ventricle of patients waiting for transplantation. Therefore, the aim of this thesis is to contribute in the understanding of biological and bio-inspired geometries flows, using computational tools. Linear and nonlinear stability were carried out for the constricted channel. Three different flow regimes were investigated: symmetric steady flow, which is stable for low Reynolds number, asymmetric steady flow, which rises as a result of the primary bifurcation of the symmetric flow and pulsatile flow. Direct stability analysis was carried out to determine the unstable regions and the critical values for each flow regime. The physical mechanisms behind the transition processes were studied by means of direct numerical simulations to characterize the bifurcations. Since the bifurcations had subcritical behaviour, the relevance of non-normal growth in these flows was assessed. Dependence on phase, Reynolds number and spanwise wavenumber of optimal modes were extensively investigated in stable regions of the three flow regimes. Convective instabilities were also studied in order to comprehend the physical mechanisms which led the optimal modes to their maxima growth, and different convective mechanisms were found. The flow inside the paediatric ventricular assist device was analyzed by means of threedimensional numerical simulations. A computational model based on special boundaries conditions was developed to model the pulsatile flow. In this model, the opening and closure of the mitral valve and diaphragm were represented with the use of specially devised boundary conditions. The driving force and the flow direction of the diaphragm were defined by velocity distribution on the diaphragm wall, and the opening and closure of the mitral valve were performed by a velocity waveform which goes to zero in the systolic period. Flow patterns, velocity fields and time-average wall shear rate were analyzed to evaluate the performance of the device. / Modelagem e simulação numéricas são ferramentas poderosas para análise e design, e com a melhoria do poder computacional e dos métodos numéricos, eles estão sendo aplicados em fenômenos e sistemas complexos. Este trabalho mostra exemplos de aplicações de um método numérico sofisticado, o método dos elementos espectrais/hp, no estudo do escoamento dentro de geometrias complexas bio-inspiradas. Os dois tópicos investigados são: instabilidades em dinâmica de fluido em um canal constrito e o escoamento dentro de um dispositivo de assistência ventricular pediátrica. O canal constrito é um modelo idealizado de uma cavidade nasal, que é caracterizada por canais complexos da via aérea, e também tem semelhança com uma artéria humana na presença de placas ateroscleróticas. O dispositivo de assistência ventricular pediátrica é um dispositivo real, projetado pelo grupo de pesquisa de Bioengenharia do Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo, que funciona como uma bomba que auxilia o ventrículo esquerdo dos pacientes à espera de transplante. Portanto, o objetivo desta tese é contribuir na compreensão de escoamentos em geometrias biológicas e bio-inspiradas, usando ferramentas computacionais. Análises de estabilidade linear e não linear foram feitas para um canal constrito. Três diferentes regimes de escoamento foram empregados: escoamento estacionário simétrico, que é estável para baixo número de Reynolds, escoamento assimétrico, o qual é resultado da primeira bifurcação do escoamento simétrico e escoamento pulsátil. Análise de estabilidade direta foi executada para determinar as regiões instáveis em cada regime de escoamento. Os mecanismos físicos por trás do processo de transição foram estudados por meio de simulação numérica direta para caracterizar as bifurcações. Uma vez que, as bifurcações tiveram um comportamento subcrítico, a relevância do crescimento não normal nestes escoamentos foi avaliado. Assim, dependência com a fase, número de Reynolds e número de onda do modo tridimensional foram extensivamente investigados em regiões estáveis para os três regimes de escoamento. Instabilidades convectivas foram também estudadas a fim de compreender os mecanismos físicos que conduzem os modos ótimos para seus crescimentos máximos, e diferentes mecanismos convectivos foram encontrados. O escoamento dentro do dispositivo de assistência ventricular pediátrico foi analisado por meios de simulações numéricas tridimensionais. Um modelo computacional baseado em condições de contorno especiais foi desenvolvido para modelar o escoamento pulsátil. Neste modelo, a abertura e fechamento da válvula mitral e diafragma foram representados com o uso de condições de contorno especialmente elaboradas. A força motora e o direcionamento do fluxo do diafragma foram definidos por uma distribuição de velocidades na parede do diafragma, e a abertura e fechamento da válvula mitral foram executadas por uma função de onda de velocidade que vai a zero no período sistólico. Padrões do escoamento, campos de velocidade e tensão de cisalhamento no tempo foram analisadas para avaliar o desempenho do dispositivo.
70

Création de bases de données fines par simulation directe pour les effets de la turbulence sur les transferts thermiques pariétaux / Creation of a database by Direct numerical simulation dedicated to turbulence effects on near-wall conjugate heat transfer

Flageul, Cédric 29 October 2015 (has links)
Cette étude porte sur le transfert thermique pariétal dans un canal plan turbulent. L'étude est théorique et numérique. Nos simulations directes (DNS) sont effectuées avec le code de calcul Incompact3d. On a porté un intérêt particulier aux grandeurs que l'on trouve dans les bilans des flux thermiques turbulents et de la variance de la température : ces données permettent de valider les modèles de type RANS. On analyse également nos simulation à l'aune de statistiques plus fines, telles que les corrélations en 2 points. On distingue 2 traitements de la thermique dans le cas du canal plan turbulent : avec ou sans prise en compte du transfert thermique conjugué (couplage thermique fluide/solide). Pour les cas avec transfert thermique conjugué, on a mis en évidence une condition de compatibilité dans l'espace spectral entre la température et le flux de chaleur à l'interface fluide-solide. En l'absence de transfert thermique conjugué, notre étude se borne aux conditions limites qui sont une combinaison linéaire à coefficients constants de la température et du flux de chaleur à la paroi (Dirichlet, Neumann, Robin). Pour ces conditions aux limites simples, on met en évidence une condition de compatibilité entre les valeurs pariétales de la variance de la température et la partie normale de la dissipation associée. D'une part, cette relation souligne les limites des simulations avec une température ou un flux imposé à la paroi. D'autre part, elle permet de construire des conditions de type Robin sur-mesure qui donnent des résultats proches de ceux obtenus avec transfert thermique conjugué pour la configuration du canal plan turbulent. / This study focuses on the turbulent heat transfer in the turbulent channel flow configuration. Our Direct Numerical Simulations are performed using the open-source code Incompact3d. As our target is to produce data for RANS models validation, the budgets of the turbulent heat fluxes and of the temperature variance are extracted. Two-point correlations for the temperature and wall-normal heat flux are also presented to deepen our analysis. Regarding the thermal field, 2 configurations are considered: with and without conjugate heat transfer (thermal coupling between the fluid and solid domains). For conjugate heat transfer cases, a novel compatiblity condition, expressed in the spectral space, connects the temperature and wall-normal heat flux at the fluid-solid interface. For non-conjugate cases, our study is limited to boundary conditions that impose a linear combination of the temperature and wall-normal heat flux at the wall using constant coefficients (Dirichlet, Neumann, Robin). For such simple boundary conditions, a novel compatibility condition is obtained which connects the wall-value of the temperature variance and the wall-normal part of the associated dissipation rate. On one hand, this condition highlights the limitations of an imposed temperature or heat-flux at the wall. On the other, it allows us to build tailored Robin boundary conditions able to reproduce satisfactorily present conjugate heat-transfer results in the channel flow configuration.

Page generated in 0.0818 seconds