• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 1
  • Tagged with
  • 17
  • 9
  • 8
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle du chaperon d'histones Rtt106 dans les modulations de la chromatine associées à la transcription des gènes

Imbeault, David 17 April 2018 (has links)
La protéine Rttl06 (Regulator of Ty Transposition) est un chaperon d'histones découvert récemment chez la levure. Ce facteur interagit avec les histones H3 et H4 et possède la faculté de déposer des nucléosome sur des molécules d'ADN. Dans notre laboratoire, le gène RTT106 fut identifié dans un crible de gènes synthétiques létaux utilisant une mutation dans le gène SPT2. De plus, des résultats obtenus dans notre laboratoire suggèrent que Rttl 06 est impliqué, tout comme SPT2 et SPT6, dans les modulations de la chromatine associée à l'élongation de la transcription. Des défauts dans cette fonction se manifeste par plusieurs phénotypes différents incluant une initiation de la transcription à partir de TATA cryptiques. Rttl06 est un chaperon d'histones suggérée de jouer un rôle dans la répression génique (± silencing ¿) par l'hétérochromatine chez S. cerevisiae. Elle interagit physiquement et fonctionnellement avec le Chromatin Assembly Factor-1 (CAF-1) qui est associé avec la déposition d'histones couplée à la replication. Nous avons utilisé diverses approches pour étudier Rtt106 de façon détaillée et lui avons identifié une fonction auparavant inconnue. Nous avons trouvé des interactions génétiques entre rtt106[delta] et des mutations dans des gènes codants pour des facteurs d'élongations, incluant Spt6, TFIIS et des membres des complexes PAF et DSIF. De plus, des analyses par immunoprecipitation de la chromatine indiquent que Rtt106 est associé spécifiquement aux régions transcrites de gènes actifs. Nos résultats ont aussi montré que Rtt106 est requis pour la répression de la transcription à partir de promoteurs cryptiques à l'intérieur d'une région codante. Cette observation suggère fortement que Rtt106 joue un rôle dans la régulation du niveau de déposition d'histone H3 couplée à la transcription. Pour finir, des résultats préliminaires suggèrent un lien entre Rtt106 et la régulation du niveau d'acétylation de la lysine 9 de l'histone H3. En somme, nos résultats indiquent un lien direct pour Rtt106 dans l'élongation de la transcription et les dynamiques de la chromatine associée avec le passage de l'ARN polymerase II.
2

Protéines infectieuses chez la levure Saccharomyces cerevisiae : un mal pour un bien ? Modulation de la propagation de prions de levure par le protéasome et les chaperons moléculaires durant la transition duauxique et la phase stationnaire / Infectious Proteins in the Yeast Saccharomyces Cerevisiae : a Blessing in Disguise ? Modulation of Yeast Prion Propagation by the Proteasome and Molecular Chaperons During Diauxic Shift and Stationary Phase

Wang, Kai 27 September 2016 (has links)
Les prions sont des protéines qui suite à des changements de conformation acquièrent un caractère infectieux. Ils sont à l’origine de traits dominants, héritables de façon non-Mendélienne, chez les mammifères, les champignons filamenteux et les levures. Le mauvais repliement et l’agrégation des protéines sont à l’origine de plus de 40 maladies, parmi lesquelles on retrouve des maladies neurodégénératives telles que les maladies d’Alzheimer, de Parkinson et de Huntington. Il a été montré que les formes agrégées des protéines supposées responsables de ces maladies (i.e. peptide amyloïde-β, tau, α-synucléine, huntingtine) se propagent de cellule en cellule à la manière des prions. La levure Saccharomyces cerevisiae possède plusieurs prions qui sont autant d’excellents modèles biologiques pour la compréhension des mécanismes de formation et de propagation des prions.[PSI+] et [URE3], issus respectivement de la conversion sous forme prion du terminateur de la traduction Sup35p et d’un régulateur du métabolisme azoté Ure2p, sont à ce jour les deux prions les mieux documentés chez la levure. Les chaperons moléculaires et leurs co-chaperons modulent la formation, la réplication et la propagation des prions chez la levure. Cependant, l’élimination ou la dégradation de ces prions sont encore mal connus. Notre laboratoire a montré que le protéasome 26S est capable de dégrader les formes soluble et fibrillaire de Sup35p. Dans la première partie de ma thèse, nous avons étudié le rôle du protéasome 26S dans la dégradation des formes soluble et fibrillaire d’Ure2p. Nous avons montré que, comme pour Sup35p, le protéasome 26S dégrade Ure2p soluble en générant des peptides amyloïdes issus du domaine prion N-terminal ainsi qu’un fragment C-terminal résistant à la protéolyse. Nous avons montré que le domaine prion déstructuré est nécessaire pour la reconnaissance et la dégradation par le protéasome. Contrairement à ce qui avait été observé pour Sup35p, Ure2p sous sa forme fibrillaire est totalement résistante à la dégradation protéasomale. Nous suggérons que la variabilité structurale aux seins des particules de prions dans un contexte cellulaire dicte leurs interactions avec les machineries protéolytiques, et plus particulièrement avec le protéasome.Les prions de levure ont principalement été étudiés dans un contexte de cellules en division active. Cependant, dans la nature, la plupart des cellules sont retrouvées dans un état quiescent post-mitotique. Nous n’avons que très peu d’informations sur le devenir des particules de prions lorsque les cellules entrent dans un état quiescent. De même les conséquences physiologiques des prions sur la survie à long terme des levures sont très peu documentées. Dans la seconde partie de ma thèse, nous avons utilisé le prion [PSI+] comme modèle pour répondre à ces questions. Différentes conformations des agrégats de Sup35p conduisent à des souches phénotypiquement distinctes du prion [PSI+]. Nous avons constaté que les agrégats de Sup35p subissent des changements ultra-structuraux et fonctionnels au cours des différentes phases de croissance cellulaire. Ainsi, nous avons observés des changements importants dans la distribution de taille et dans l’infectiosité des polymères de Sup35p résistants au SDS formant les briques élémentaires du prion [PSI+]. Ces changements interviennent sans affecter les informations structurales spécifiques à chaque souche de prion [PSI+]. De façon remarquable, bien que [PSI+] n’affecte pas le taux de croissance des levures, ce prion semble prolonger significativement la durée de vie des levures. Cet effet bénéfique semble pouvoir se fixer de façon efficace et permanente dans les cellules et persister même après élimination de [PSI+]. La fixation génétique de caractéristiques épigénétiques induites par [PSI+] ont été déjà observées et l’ensemble de ces résultats suggère que [PSI+] (et éventuellement d’autres prions) peut jouer le rôle de capaciteurs évolutifs transitoires. / “Proteinaceous infectious particles”, or prions, are self-perpetuating alternate conformations of proteins that are responsible for heritable non-Mendelian traits in mammals, filamentous fungi and yeast. On a more general note, protein misfolding and aggregation is at the origin of over forty protein folding disorders including devastating neurodegenerative diseases such as Alzheimer’s, Parkinson’s or Huntington’s diseases. The aggregated proteins responsible for these diseases (i.e. amyloid-β peptide/tau, α-synuclein and huntingtin) were shown to propagate from cell to cell in a prion-like manner. The yeast Saccharomyces cerevisiae hosts many prion or prion-like proteins, unrelated in sequence and function, which proved to be excellent models for understanding the dynamics of prion aggregation and distribution upon cell division.Sup35p and Ure2p which cause the [PSI+] and [URE3] heritable traits, respectively, stand out as the most studied and best characterized yeast prions to date. A plethora of cellular factors, mostly belonging to various molecular chaperone families, were shown to affect yeast prion formation and propagation. Clearance of protein aggregates and prion particles is however poorly understood and documented. Our laboratory showed that the 26S proteasome degrades both the soluble and prion-associated fibrillar forms of Sup35p. In the first part of my thesis, we investigated the role of the 26S proteasome in the degradation of the soluble and fibrillar forms of Ure2p. We found that, as with Sup35p, the 26S proteasome is able to degrade the soluble native Ure2p, generating an array of amyloidogenic N-terminal peptides and a C-terminal fragment which is resistant to proteolysis. The N-terminal prion domain was shown to act as a degron required for proteasomal engagement and degradation. In contrast to Sup35p, fibrillar Ure2p resisted proteasomal degradation. We expect the structural variability within prion assemblies in a cellular context to dictate their interaction with proteolytic machineries in general and the proteasome in particular.The biology of yeast prions has been mostly explored in the context of logarithmically dividing cells. In nature however, most cells are generally in a post-mitotic non-dividing quiescent state. Yet little is known about the fate and properties of prion particles upon yeast cells entry into the stationary or quiescent states and the physiological consequences of harboring these prions throughout the lifespan of yeast cells. In the second part of my thesis, we addressed this issue using the [PSI+] prion as a model. Structurally different conformers of Sup35p aggregates can lead to distinct [PSI+] strains with different prion phenotypes. We found that Sup35p prion particles undergo growth phase-dependent ultrastructural and functional changes. Indeed, the size distributions of SDS-resistant core-prion particles significantly change during growth without affecting the structural information specific to each prion strain. The infectious properties of Sup35p prion particles undergo dramatic growth phase-dependent changes. Importantly, we found that while [PSI+] has little to no effects on the growth rates of yeasts, it robustly prolongs their chronological lifespan. Furthermore, this beneficial effect can then be permanently and efficiently fixed in the cells even when [PSI+] is subsequently lost. Similar genetic fixation of [PSI+]-induced epigenetic characteristics were previously observed and suggested [PSI+] (and possibly other prions) can act as transient evolutionary capacitators.
3

Mécanismes moléculaires de l'agrégation de l'insuline induite par la surface des matériaux / Molecular mechanism of material-induced insulin aggregation.

Nault, Laurent 24 October 2012 (has links)
L'agrégation protéique induite par la surface des matériaux est un phénomène important dans la stabilité des protéines thérapeutiques. En utilisant l'insuline humaine, nous avons étudié les phénomènes agrégation en présence de surfaces neutres hydrophobes ou hydrophiles et avons montré que la nucléation a lieu sur les surfaces hydrophobes que l'on soit à pH 2.5 ou 7.3. Nous avons montré que l'énergie d'activation de la nucléation est abaissée sur surface hydrophobe. De plus, il apparait que l'agitation de la solution a des effets antagonistes. En particulier, les forces hydrodynamiques de cisaillement détachent de la surface les fibres. Par Résonance Plasmonique de Surface, spectroscopie infrarouge et microscopie à fluorescence, nous avons pu définir les étapes moléculaires ayant lieu à l'interface matériaux hydrophobe/solution. L'insuline s'adsorbe tout d'abord rapidement sur la surface, puis s'accumule lentement parallèlement à une transition de la structure α initiale vers une structure β, aboutissant à la formation de fibres amyloïdes. Par la suite, nous avons étudié le mécanisme d'action d'un peptide connu pour accélérer l'agrégation de l'insuline (LVEALYL). Ce peptide s'adsorbe de façon stable sur la surface hydrophobe en structure β et facilite l'accumulation d'insuline. De plus, il apparait que la séquence du peptide n'est pas essentielle à son action car différents peptides adoptant une structure β sur la surface sont également capables d'induire l'agrégation de l'insuline. La présence de prolines aboli cette action. Ces résultats apportent d'importantes informations sur les mécanismes moléculaires d'auto-association de l'insuline. L'hydrophobicité du matériau facilite le dépliement de l'insuline adsorbée, aboutissant à l'exposition du segment LVEALYL. Cette séquence facilite la propagation du changement de conformation vers les molécules nouvellement adsorbées. Agir contre ce phénomène pourrait permettre de stabiliser les solutions protéiques. / Material surface-induced protein aggregation is important for the stability of therapeutic proteins. Using human insulin, we first study its amyloidal aggregation on neutral hydrophobic or hydrophilic surfaces and show that nucleation takes place on the hydrophobic surfaces at both pH 2.5 and 7.3. We show that the activation energy for nucleation is lower on hydrophobic surfaces than in solution. We observed that agitating the solution has several antagonistic effects. In particular, the hydrodynamic shear stress detaches surface-borne fibrils. Using Surface Plasmon Resonance imaging, infrared spectroscopy and fluorescence microscopy we then define the sequence of molecular events that happen at the interface between hydrophobic materials and fluid phase. Insulin first adsorbs rapidly on the surface and then continues to accumulate, in parallel with an alpha-to beta-structural transition leading to amyloid fibril formation. Hereafter, we study the mechanism of action of a small peptide known to accelerate insulin aggregation (LVEALYL). This peptide stably adsorbs in β-conformation on the surface and helps accumulating insulin on the surface. Moreover, it appears that its sequence is not essential for its effectiveness, since several peptides, having a β-sheet structure on the surface, induce insulin aggregation. The presence of prolines abolishes its pro-aggregative activity. These results shed light on the molecular details of insulin self-association. The hydrophobic nature of material surfaces facilitates the unfolding of adsorbed insulin, resulting in the exposure of the LVEALYL peptide segment. This peptide promotes the propagation of conformational changes among incoming proteins. Counteracting this propagation could help stabilizing protein solutions.
4

Etude des variants de l'histoire H3 : H3.2 et H3.3, au cours du développement embryonnaire d'un vertébré, Xenopus laevis

Szenker, Emmanuelle 19 September 2012 (has links) (PDF)
L'organisation en chromatine permet de compacter l'ADN génomique et de réguler finement l'expression du génome. La particule cœur du nucléosome, composée d'un octamère de protéines histones autour desquelles s'enroule l'ADN, peut être modulée par l'incorporation de variants d'histones. Pour l'histone H3, les variants réplicatifs H3.1 et H3.2 permettent une incorporation lors de la réplication de l'ADN, tandis que le variant H3.3 est incorporé tout au long du cycle cellulaire. Les données dans la littérature établissent un lien entre H3.3 et la transcription. L'incorporation d'H3.3 dépend d'une voie d'assemblage faisant intervenir le chaperon HIRA. Mon projet de recherche visait à déterminer si H3.3 et son incorporation via HIRA possédaient un rôle spécifique. Le développement embryonnaire via une régulation fine de l'expression des gènes représentait une situation idéale pour aborder ces questions. L'utilisation du vertébré Xenopus laevis qui ne possède qu'un variant H3 réplicatif : H3.2, m'a permis d'évaluer la fonction de ces variants au cours du développement. J'ai pu montrer que, malgré leur similarité, les variants H3.2 et H3.3 ne sont pas interchangeables. Une altération d'expression d'H3.3 ou l'interférence dans sa voie d'assemblage via son chaperon HIRA conduisent à des défauts majeurs à la gastrulation. Ce phénotype s'accompagne d'un défaut d'expression de gènes mésodermiques, dont le marqueur Xbra. Une désorganisation globale de la chromatine est également observée chez ces embryons. Ces données mettent en lumière l'importance de l'incorporation du variant d'histone H3.3 dans la chromatine au cours d'une étape clé du développement embryonnaire, la gastrulation
5

Principes de l’évolution du réseau de l’homéostasie des protéines

Draceni, Yasmine 12 1900 (has links)
No description available.
6

Modulation des mécanismes de Contrôle Qualité des Protéines dans la dystrophie musculaire de Duchenne / Modulation of Protein Quality Control mechanisms in Duchenne Muscular Dystrophy

Wattin, Marion 21 December 2017 (has links)
De nombreuses études ont mis en évidence l’importance du contrôle qualité des protéines, c’est à dire des mécanismes de reconformation (chaperons moléculaires) et de dégradation (autophagie, proteasome) des protéines dans différentes pathologies musculaires telles que la dystrophie musculaire d’Ullrich (UCMD), de Duchenne (DMD) ou d’Emery-Dreifuss (EDMD) ; cependant, à l’heure actuelle, aucune n’a été menée sur l’ensemble de ces mécanismes dans un seul et même modèle et sur des cellules musculaires avant leur différenciation en muscles. Nous nous sommes donc intéressés à la fonctionnalité des mécanismes de Contrôle Qualité des Protéines et à leurs interconnexions dans des myoblastes immortalisés de donneurs sains ou de patients atteints de DMD. Nous avons observé une augmentation de l’agrégation protéique dans les cellules DMD. Ce phénomène s’accompagne d’une dérégulation des mécanismes de séquestration par les chaperons moléculaires, conséquence d’une modulation de l’expression des protéines HSPB5 et HSPB8. Les mécanismes de dégradation sont également dérégulés; en effet, nous avons observé d’une part, une diminution de l’activité enzymatique du protéasome ainsi que des molécules d’adressage des protéines multiubiquitinées au protéasome et d’autre part, une augmentation de l’activité du facteur de transcription NF?B, de l’expression de protéines intervenant dans l’autophagie et des complexes BAG3/HspB8 conduisant à une augmentation du flux autophagique. L’ensemble de ces dérégulations reflète l’existence d’un stress d’agrégation protéique dans les myoblastes issus de patients DMD. Dans ce contexte, la modulation pharmacologique du PQC dans ces cellules pourrait représenter une nouvelle stratégie thérapeutique pour la Dystrophie Musculaire de Duchenne / Various studies have highlighted the importance of Protein Quality Control (PQC), including protein refolding (molecular chaperones) and degradation (autophagy, proteasome) mechanisms in inherited muscle disorders such as Ullrich Congenital Muscular Dystrophy (UCMD), Duchenne Muscular Dystrophy (DMD) or Emery-Dreifuss Muscular Dystrophy (EDMD); however, to date, no extensive study has been conducted on these mechanisms in a same model, in muscle cells before muscle differentiation. Thus, we were interested in PQC mechanisms functionality and their interconnection in human immortalized myoblasts from healthy donors or patients suffering from DMD. We observed an increase of protein aggregation in DMD cells. This phenomenon is accompanied by a deregulation of sequestration mechanisms by molecular chaperones, reflected by the modulation of HSPB5 and HSPB8 expression. Degradation mechanisms are also deregulated; indeed, we observed on one hand a decrease of proteasome enzymatic activity and multiubiquitinated proteins UPS-adressing molecules and on the other hand, an increase of NF?B transcription factor’s activity, involved in autophagy, and of BAG3/HSPB8 complexes, leading to an increase of the autophagic flux. These PQC defects reflect the existence of a protein aggregation stress in myoblasts coming from DMD patients. In this context, pharmacological modulation of PQC in these cells could represent a new therapeutic strategy for Duchenne Muscular Dystrophy
7

Microfluidics and chemical kinetics to analyse protein interactions, aggregation, and physicochemical properties

Lapinska, Urszula January 2019 (has links)
Proteins play a major role in living systems and present a wide spectrum of functionalities. Many different types of proteins are involved into biological processes, such as the catalysis of biochemical reactions, cellular membrane transport, immune system response and DNA replication. However, some proteins and peptides might become harmful to living organisms; for example, their abnormal aggregation causes neurodegenerative disorders including Alzheimer disease (AD). One of the causes of AD is the presence of amyloid beta peptides Aβ(1-42), Aβ(1-40), which self-assemble into insoluble fibrils and plaques, which surround neuronal cells impeding synapsis. The number of AD patients is increasing, but a cure has not been founded yet. Therefore, it is crucial to investigate the mechanisms underlying amyloid aggregation and screening for compounds able to prevent this irreversible process. Microfluidics permits characterising the physicochemical properties of proteins, investigate their aggregation and study their interactions with other molecules. Chemical kinetics allows studying the microscopic events occurring during protein self-assembly. The combination of these two techniques provides a powerful tool for the identification of compounds inhibiting the aggregation process. In this thesis by using microfluidics, chemical kinetics and other biophysical assays, I have investigated the proteins isoelectric point (pI) and the inhibition of aberrant Aβ(1-42) self-assembly process. Firstly, I describe the development of a microfluidic platform allowing for the measurement of the protein pI, in a gradient-free manner. This approach overcomes a fundamental limitation of convectional techniques that is the achievement of a stable and well-controlled pH gradient. Secondly, I investigate the inhibiting effect of llama nanobodies on Aβ(1-42) aggregation. The findings from this study show that nanobodies target monomeric species with high affinity whereas interactions with fibril surfaces are weak. Finally, I discuss the use of other compounds inhibiting specific nucleation stages. These include the chaperones clusterin and brichos, as well as soot and pure carbon nanoparticles. Importantly, the addition of both chaperones to Aβ(1-42) solutions has an additive inhibitory effect on aggregation. My findings will improve the characterization of the physicochemical properties of proteins as well as providing promising candidates for the inhibition of specific stages of amyloid beta aggregation opening the way to possible cures for AD disease.
8

Structure-fonction des protéines Hsp70-like chez les mycobactéries / Structure and function of Hsp70-like proteins in mycobacteria

Al-Fawares, O'la 12 April 2019 (has links)
Les protéines Hsp70 appartiennent à une famille de chaperons moléculaires très conservés qui jouent un rôle essentiel dans le contrôle qualité des protéines et qui protègent les cellules contre diverses agressions de l'environnement. Pour fonctionner comme un chaperon moléculaire, les protéines Hsp70 agissent de concert avec plusieurs co-chaperons et co-facteurs nécessaires au fonctionnement de son cycle ATPasique. Nos travaux montrent que les bactéries du genre Mycobacterium codent pour une nouvelle famille de protéines atypiques apparentées à Hsp70 dont l'architecture s'articule autour d'un domaine ATPase putatif à l'extrémité N-terminale, similaire au domaine de la superfamille Hsp70-actine, d’un segment transmembranaire (TMD) putatif et d'une longue région riche en proline/thréonine (P/T) en sa partie C-terminale. Le but de ce travail de thèse était d’étudier la fonction et la localisation cellulaire des protéines de type Hsp70 chez les mycobactéries. Nous avons d’abord constaté que la protéine Hsp70-Like de M. smegmatis (Msmg_Hsp70-Like) se localisait en foci distincts à la membrane des cellules et que son expression induisait un phénotype d’agrégation cellulaire. Afin d’éclaircir le rôle des domaines putatifs TMD et P/T, nous avons construit un ensemble de mutants dans lesquels ces éléments structurels ont été supprimés. Nous avons constaté que le domaine TMD putatif était important pour la localisation de Hsp70-Like, pour la formation des foci à la membrane et pour le phénotype d'agrégation des cellules. En revanche, le domaine riche en P/T n’a aucun effet sur ces phénotypes. In vitro, le domaine ATPase putatif de Msmg_Hsp70-Like a été purifié et des essais de cristallisation sont en cours. Des expériences supplémentaires restent cependant nécessaires pour évaluer la fonction de cette nouvelle famille de protéines. / Hsp70 belongs to a highly conserved family of molecular chaperone proteins that unambiguously plays essential roles in protein quality control, protecting cells against various environmental insults. To function as a bona fide molecular chaperone, Hsp70 acts in concert with several co-chaperones and nucleotide exchange factors to complete its ATP-dependent chaperone cycle. Our work shows that bacteria from the genus Mycobacterium encode new atypical Hsp70-Like proteins that share a common architecture: a putative ATPase domain at the N-terminus similar to members of the Hsp70-actin superfamily, a single putative transmembrane domain (TMD) in the middle of the protein and a long proline/threonine (P/T) - rich region at the C-terminal. The aim of this thesis work was to shed light on the function and the cellular localization of Hsp70-like proteins in mycobacteria. We first found that Msmg Hsp70-Like protein localizes to discrete foci within cells and that its expression induces a cell aggregation phenotype. To shed light on the role of the putative TMD and P/T- rich domains in Hsp70-Like, we engineered a set of mutants in which these structural elements were deleted. We found that the central putative TMD was important for the cell envelop localization of Hsp70-Like, for the formation of foci and for cell aggregation. In contrast, the P/T-rich had no effect on these phenomena. In vitro the putative ATPase domain of Msmg Hsp70-Like was purified and crystallization trials were performed. Further research is needed to assess the function of this novel family of proteins.
9

Dynamique des variants de l'histone H3 en réponse aux dommages de l'ADN induits par les UVC dans les cellules humaines / Histone H3 variant dynamics in response to UVC damage in human cells

Adam, Salomé 15 June 2015 (has links)
Dans les cellules eucaryotes, la réponse aux lésions de l'ADN s'accompagne d'une réorganisation de la chromatine. Cette structure, associant l'ADN aux protéines histones, est porteuse de l'information épigénétique, qui définit l'identité cellulaire. Cependant, nos connaissances concernant les mécanismes impliqués dans la réorganisation de la chromatine dont l'intégrité structurale et fonctionnelle a été menacée par un stress génotoxique sont encore limitées, en particulier dans les cellules humaines. Au cours de ma thèse, je me suis donc intéressée à cette thématique en me concentrant sur l'étude de la dynamique des variants de l'histone H3 et de leurs chaperons associés après dommages UVC. En combinant une technologie innovante de suivi spécifique des histones parentales ou néo-synthétisées à des techniques de pointe d'induction de dommages locaux dans l'ADN, j'ai ainsi mis en évidence que le chaperon HIRA (Histone Regulator A) est recruté tôt aux sites de lésions où il stimule l'incorporation locale de nouveaux variants H3.3 et assure la reprise de la transcription après réparation des dommages UVC. Nous avons aussi démontré que les anciennes histones sont initialement redistribuées dans la chromatine autour des sites de lésions par un mécanisme faisant appel au facteur de détection des dommages DDB2 (DNA Damage Binding protein 2). A plus long terme, des histones parentales " reviennent " dans les régions de chromatine en cours de réparation où elles se mélangent aux nouvelles histones incorporées. Le " retour " d'histones préexistantes contribuerait ainsi au maintien de l'intégrité de l'information épigénétique véhiculée par la chromatine avant stress génotoxique. / In eukaryotic cells, the DNA damage response involves a reorganization of chromatin structure. This structure, in which DNA is associated with histone proteins, conveys the epigenetic information, which is critical for cell identity. However, we are still far from understanding the mechanisms underlying chromatin dynamics in response to DNA damage, which challenges both the structural and functional integrity of chromatin architecture. During my PhD, I thus decided to explore this issue in human cells, by deciphering the dynamics of histone H3 variants and their dedicated chaperones in response to UVC lesions. By combining local UVC irradiation with an innovative technology that allows specific tracking of parental and newly synthesized histones, I revealed that the histone chaperone HIRA (Histone Regulator A) is recruited early to UVC-damaged chromatin regions, where it promotes local deposition of new histone H3.3 variant and facilitates transcription recovery upon repair completion. We also demonstrated that old H3 histones are initially redistributed around the damaged chromatin zone, this conservative redistribution requiring the UVC damage sensor DDB2 (DNA Damage Binding protein 2). Later in the repair process, most parental histones recover and mix with newly deposited histones in repairing chromatin regions. The recovery of pre-existing histones may contribute to preserve the integrity of the epigenetic information conveyed by chromatin before genotoxic stress.
10

Modulation of Alzheimer's disease amyloid beta peptide aggregation by molecular chaperones, polyphosphates and metal ions, and their interplay / Modulation de l’agrégation du peptide amyloid beta de la maladie d’alzheimer par des chaperons moléculaires, polyphosphates et ions métalliques, et leur interaction

Ayala Mariscal, Sara Maria 12 January 2018 (has links)
La maladie d'Alzheimer est la démence la plus répandue dans le monde. Le nombre de cas augmente de manière exponentielle et il est donc important de comprendre les mécanismes moléculaires donnant lieu à cette terrible maladie. Une des hypothèses les plus supportées est celle suggérant que la production et dégradation déséquilibrées de l'amyloïde-beta (Aß), un peptide de 42 acides aminés trouvé dans tous les individus sains, est un événement clé dans le déroulement de la maladie d'Alzheimer. En effet, une production accrue ou une dégradation faible du peptide ont pour conséquence son agrégation et accumulation dans des plaques de fibres entre les neurones des régions spécifiques du cerveau. C'est pourquoi la modulation de l'agrégation du peptide Aß est une des approches envisageables pour modifier l'évolution de la maladie d'Alzheimer. Les protéines chaperons dont une des fonctions est d'assister d'autres protéines dans leur repliement, sont parmi les molécules les plus étudiées pour leur capacité modulatrice de l'agrégation des protéines (inclus le peptide Aß). Plusieurs chaperons ont montré la capacité d'inhiber la formation des fibres par l'Aß. Cependant, du fait que les chaperons sont des molécules conservées et peu spécifiques, leur surexpression ou administration directe peut avoir des conséquences négatives si les chaperons interagissent avec des protéines autres que la protéine cible. Dans ce travail, nous nous sommes intéressés à une protéine chaperon bactérienne possédant une forte activité " holdase " (i.e., elle empêche le repliement précoce des protéines) comme possible modulateur de l'agrégation du peptide Aß. Le chaperon sauvage a une très faible capacité d'inhibition de la formation de fibres par le peptide Aß. Cependant, nous avons démontré qu'en modifiant légèrement la surface de liaison du chaperon, la protéine devient un puissant inhibiteur de l'agrégation d'Aß. En parallèle, nous nous sommes intéressés à l'influence des ions métalliques sur l'agrégation du peptide Aß. [...] / Alzheimer's disease is the most frequent type of dementia. With an exponentially growing number of cases, understanding the underlying molecular events leading to this devastating condition is of crucial importance. Much evidence points to a disequilibrium in the production and degradation of amyloid beta (Aß), a normally physiological 42 amino acid peptide, as an early key event in Alzheimer's etiology. Whether Aß is overproduced or poorly degraded, the overall result is an abnormally large pool of peptide that gradually aggregates forming extracellular deposits of fibrils, called amyloid plaques, in specific brain regions. Hence, modulation of Aß aggregation process is one of the suggested approaches to control the evolution of Alzheimer's disease. Universally conserved molecular chaperones have been intensively studied for their capacity to prevent aggregation of disease-related proteins, and many of them have proven to efficiently modulate Alzheimer's Aß aggregation. In a scenario where chaperones are overexpressed or directly administered into the affected tissue, the universal conservation and the relatively poor client-specificity of generic chaperones can become a downside because of the risk of interaction with proteins other than the targeted one is not dismissible, and thus the consequences unpredictable. In the first part of this work, we looked upon a bacterial chaperone call SecB with an unusually robust holdase activity (i.e. it prevents early protein folding) as a promising modulator of Alzheimer's Aß peptide aggregation. [...]

Page generated in 0.4523 seconds