• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 72
  • 72
  • 33
  • 28
  • 23
  • 20
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Theoretical characterization of charge transport in organic molecular crystals

Sánchez-Carrera, Roel S. 25 August 2008 (has links)
In this thesis, a first-principles methodology to investigate the impact of electron-phonon interactions on the charge-carrier mobilities in organic molecular crystals has been developed. Well-known organic materials such as oligoacene and oligothienoacene derivatives were studied in detail. The nature of the intramolecular vibronic coupling in oligoacenes and oligothienoacenes was studied using an approach that combines high-resolution gas-phase photo-electron spectroscopy measurements with first-principles quantum-mechanical calculations. The electron interactions with optical phonons in oligoacene single crystals were investigated using both density functional theory and empirical force field methods. The low-frequency optical modes are found to play a significant role in dictating the temperature dependence of the charge-transport properties in the oligoacene crystals. The microscopic charge-transport parameters in the pentathienoacene, 1,4-diiodobenzene, and 2,6-diiodo-dithieno[3,2-<i>b</i>:2',3'-<i>d</i>]thiophene crystals were also investigated. It was found that the intrinsic charge transport properties in the pentathienoacene crystal might be higher than that in two benchmark high-mobility organic crystals, i.e., pentacene and sexithienyl. For 1,4-diiodobenzene crystal, a detailed quantum-mechanical study indicated that its high mobility is primarily associated with the iodine atoms. In the 2,6-diiododithieno[3,2-<i>b</i>:2',3'-<i>d</i>]thiophene crystal, the main source of electronic interactions were found along the π-stacking direction. For negatively charged carriers, the halogen-functionalized molecular crystals show a very large polaron binding energy, which suggests significantly low charge-transport mobility for electrons.
42

Etude de l'intégration de transistors à canal en graphène épitaxié par une technologie compatible CMOS / Technological integration of graphene transistors

Clavel, Milène 15 December 2011 (has links)
Le graphène est un plan unique d'atomes de carbone formant une structure en nid d'abeilles. Dans le cas idéal, le graphène possède des propriétés physiques étonnantes résultant de sa structure électronique en « cône de Dirac ». En particulier, la mobilité électronique dans le graphène est exceptionnelle ce qui ouvre des perspectives pour les transistors futurs. Dans cette thèse notre objectif est de tester les propriétés et les performances de transistors réalisés sur graphène à l'aide d'une technologie compatible CMOS. Depuis 2004, il est connu qu'on peut obtenir ce matériau bidimensionnel à partir de la graphitisation du carbure de silicium (SiC). C'est cette technique qui a été utilisée ici. Parmi les résultats obtenus, nous présenterons en particulier une méthode innovante pour déterminer le nombre de couches de graphène. Nous détaillerons la technologie d'intégration mise au point, avec la réalisation de transistors à canal court et étroit. Nous montrerons les caractéristiques obtenues. La mobilité électronique mesurée est à l’état de l’art international. Nous analyserons également le rôle du diélectrique de grille sur la qualité des performances. / Graphene consists of a single atoms plane reorganized in honeycomb lattice. Ideal graphene has astonishing properties coming from his electronic structure in Dirac cone. One of these properties is an exceptional mobility indispensable for future transistors. In this work, our objective is to evaluate properties and performance of transistors based on graphene. These transistors are fabricated by using a CMOS-like integration. Since 2004, graphene can be obtained via sublimation of silicon carbide substrate. We used this technique to study graphene. We will present a particular method to enumerate the number of layer obtained in surface and the integration choosen to obtain short and thin transistors. We will show electrical characteristic obtained. The charge carrier mobility measured is similar to the state of the art. An analysis of the gate dielectric is also presented.
43

Structure and dynamics of poly(9,9-dioctylfluoren-2,7-co-benzothiadiazole) (F8BT) and correlations with its electrical properties / Estrutura e dinâmica molecular do poly (9,9-dioctylfluoren-2,7-diyl-co-benzothiadiazole) (F8BT) e correlações com suas propriedades elétricas.

Gregório Couto Faria 16 September 2011 (has links)
The PHD project has two main goals. The first one is specifically related to investigations on molecular dynamics, structural conformations and packing of polyfluorene-based polymers. For this purpose, Wide Angle X-Ray Diffraction (WAXD), Solid-State Nuclear Magnetic Resonance (NMR) and Dynamical-Mechanical Thermal Analysis (DMTA) are being used as the main techniques. The second goal is to correlate molecular phenomena, as characterized in the first part, with opto-electronic properties of polyfluorene when used as active layer in an electronic device, such as a Polymer Light-Emitting Diode (PLED). In the second part, fabrication of devices and their electrical characterization as a function of temperature are the main objectives. Impedance Spectroscopy, Current-Voltage characterization of the devices and Time-Of-Flight (TOF) techniques are among the main techniques to be used in the second part of the project. Therefore, the project combines fundamental studies on molecular dynamics with technological performance of organic electronic. / O projeto de doutorado entitulado \"Correlação das Propriedades Óticas e Elétricas com a Estrutura Física e Dinâmica Molecular de Filmes e Dispositivos de Polifluorenos e Derivados\". O primeiro é especificamente ligado a investigação da dinâmica molecular, conformação estrutural e empacotamento de polímeros derivados do polifluoreno. Para isso, Difração de Raio-X de Alto Ângulo (WAXD)1, Ressonânica Magnética no Estado Sólido (RMN) e Análise Térmica Dinâmico Mecânica (DMTA) serão utilizadas como técnicas principais. O segundo objetivo é o de correlacionar, os fenômenos observados na primeira parte do projeto, com as propriedades opto-eletrônicas dos filmes poliméricos sendo utilizados como camada ativa em dispositivos eletrônicos do tipo Diodo Polimérico Emissor de Luz (PLED). Na segunda parte, a fabricação dos dispositivos e sua caracterização como função da temperatura serão os principais objetivos. Espectroscopia de Impedância, Corrente-Voltagem, Tempo de Vôo (TOF) e Photo-CELIV serão as principais técnicas de caracterização utilizadas. Dessa forma, o projeto combina estudos fundamentais de aspectos moleculares com o desempenho tecnológico de dispositivos optoeletrônicos.
44

High Charge Carrier Mobility Polymers for Organic Transistors

Erdmann, Tim 10 March 2017 (has links) (PDF)
I) Introduction p-Conjugated polymers inherently combine electronic properties of inorganic semiconductor crystals and material characteristics of organic plastics due to their special molecular design. This unique combination has led to developing new unconventional optoelectronic technologies and, further, resulted in the evolution of semiconducting polymers (SCPs) as fundamental components for novel electronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs) and organic solar cells (OSCs).[1–5] Moreover, the material flexibility, capability for thin-film formation, and solution processibility additionally allow utilizing modern printing technologies for the large-scale fabrication of flexible, light-weight organic electronics. This especially enables to significantly increase the production speed and, moreover, to drastically reduce the costs per unit.[6, 7] In particular, transistors are the most important elements in modern functional electronic devices because of acting as electronic switches in logic circuits or in displays to control pixels. However, due to molecular arrangement and interactions, the electronic performance of SCPs cannot compete with the one of monocrystalline silicon which is used in state-of-the-art high-performance microtechnology.[5, 8] Nonetheless, intensive and continuing efforts of scientists focused on improving the performance of OFETs, with the special focus on the charge carrier mobility, by optimizing the polymer structure, processing conditions and OFET device architecture. By this, it was possible to identify crucial relationships between polymer structure, optoelectronic properties, microstructure, and OFET performance.[8] Nowadays, the interdisciplinary scientific success is represented by high-performance SCPs with charge carrier mobilities exceeding the value of amorphous silicon.[3, 9] However, further research is essential to enable developing the next generation of electronic devices for application in healthcare, safety technology, transportation, and communication. II) Objective and Results Within the scope of this doctoral thesis, current high-performance p-conjugated SCPs should be studied comprehensively to improve the present understanding about the interdependency between molecular structure, material properties and charge transport. Therefore, the extensive research approaches focused on different key aspects of high charge carrier mobility polymers for organic transistors. The performed investigations comprised the impact of, first, novel design concepts, second, precise structural modifications and, third, synthetic and processing conditions and led to the major findings listed below. 1. The design concept of tuning the p-conjugation length allows to gradually modulate physical material properties and demonstrates that a strong localization of frontier molecular orbitals in combination with a high degree of thin-film ordering can provide a favorable platform for charge transport in p-conjugated semiconducting polymers.[1] 2. The replacement of thiophene units with thiazoles in naphthalene diimide-based p- conjugated polymers allows to increase interchain interactions and to lower frontier molecular orbitals. This compensates the potentially detrimental enhancement of backbone torsion and drives the charge transport to unipolar electron transport, whereas mobility values are partially comparable with those of the respective thiophene containing analogs. 3. p-Conjugated diketopyrrolo[3,4-c]pyrrole-based copolymers can be synthesized within fifteen minutes what, in combination with avoiding aqueous washings and optimizing processing conditions, allowed an increase in morphological and energetic order and, thus, improved the charge transport properties significantly. III) Conclusion The key findings of this doctoral thesis provide new significant insights into important aspects of designing, synthesizing and processing high charge carrier mobility polymers. By this, they can guide future research to further improve the performance of organic electronic devices - decisive for driving the development and fabrication of smart, functional and wearable next-generation electronics. References [1] T. Erdmann, S. Fabiano, B. Milián-Medina, D. Hanifi, Z. Chen, M. Berggren, J. Gierschner, A. Salleo, A. Kiriy, B. Voit, A. Facchetti, Advanced Materials 2016, 28 (41), 9169–9174, DOI:10.1002/adma.201602923. [2] Y. Karpov, T. Erdmann, I. Raguzin, M. Al-Hussein, M. Binner, U. Lappan, M. Stamm, K. L. Gerasimov, T. Beryozkina, V. Bakulev, D. V. Anokhin, D. A. Ivanov, F. Günther, S. Gemming, G. Seifert, B. Voit, R. Di Pietro, A. Kiriy, Advanced Materials 2016, 28 (28), 6003–6010, DOI:10.1002/adma.201506295. [3] A. Facchetti, Chemistry of Materials 2011, 23 (3), 733–758, DOI:10.1021/cm102419z. [4] A. J. Heeger, Chemical Society Reviews 2010, 39, 2354–2371, DOI:10.1039/B914956M. [5] H. Klauk, Chemical Society Reviews 2010, 39, 2643–2666, DOI:10.1039/B909902F. [6] S. G. Bucella, A. Luzio, E. Gann, L. Thomsen, C. R. McNeill, G. Pace, A. Perinot, Z. Chen, A. Facchetti, M. Caironi, Nature Communications 2015, 6, 8394, DOI:10.1038/ncomms9394. [7] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290 (5499), 2123–2126, DOI:10.1126/science.290.5499.2123. [8] D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, H. Sirringhaus, Nature 2014, 515 (7527), 384–388, DOI:10.1038/nature13854. [9] S. Holliday, J. E. Donaghey, I. McCulloch, Chemistry of Materials 2014, 26 (1), 647–663, DOI: 10.1021/cm402421p.
45

Příprava a charakterizace atomárně tenkých vrstev / Fabrication and characterization of atomically thin layers

Tesař, Jan January 2020 (has links)
Tato práce se zabývá oblastí dvourozměrných materiálů, jejich přípravou a analýzou. Pravděpodobně nejznámějším zástupcem dvourozměrných materiálů je grafen. Tento 2D allotrop uhlíku, někdy nazývaný „otec 2D materiálů“, v sobě spojuje neobyčejnou kombinaci elektrických, tepelných a mechanických vlastností. Grafen získal mnoho pozornosti a byl také připraven mnoha metodami. Jedna z těchto metod však stále vyniká nad ostatními kvalitou produkovaného grafenu. Mechanická exfoliace je ve srovnání s jinými technikami velmi jednoduchá, takto připravený grafen je však nejkvalitnější. Práce je také zaměřena na optimalizaci procesu tvorby heterostruktur složených z vrstev grafenu a hBN. Dle prezentovaného postupu bylo připraveno několik van der Waalsových heterostruktur, které byly analyzovány Ramanovskou spektroskopií, mikroskopií atomových sil a nízkoenergiovou elektronovou mikroskopií. Měření pohyblivosti nosičů náboje bylo provedeno v GFET uspořádání. Získané hodnoty pohyblivosti prokázaly vynikající transportní vlastnosti exfoliovaného grafenu v porovnání s grafenem připraveným jinými metodami. V práci popsaný proces přípravy je tedy vhodný pro výrobu kvalitních heterostruktur.
46

High Charge Carrier Mobility Polymers for Organic Transistors

Erdmann, Tim 03 February 2017 (has links)
I) Introduction p-Conjugated polymers inherently combine electronic properties of inorganic semiconductor crystals and material characteristics of organic plastics due to their special molecular design. This unique combination has led to developing new unconventional optoelectronic technologies and, further, resulted in the evolution of semiconducting polymers (SCPs) as fundamental components for novel electronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs) and organic solar cells (OSCs).[1–5] Moreover, the material flexibility, capability for thin-film formation, and solution processibility additionally allow utilizing modern printing technologies for the large-scale fabrication of flexible, light-weight organic electronics. This especially enables to significantly increase the production speed and, moreover, to drastically reduce the costs per unit.[6, 7] In particular, transistors are the most important elements in modern functional electronic devices because of acting as electronic switches in logic circuits or in displays to control pixels. However, due to molecular arrangement and interactions, the electronic performance of SCPs cannot compete with the one of monocrystalline silicon which is used in state-of-the-art high-performance microtechnology.[5, 8] Nonetheless, intensive and continuing efforts of scientists focused on improving the performance of OFETs, with the special focus on the charge carrier mobility, by optimizing the polymer structure, processing conditions and OFET device architecture. By this, it was possible to identify crucial relationships between polymer structure, optoelectronic properties, microstructure, and OFET performance.[8] Nowadays, the interdisciplinary scientific success is represented by high-performance SCPs with charge carrier mobilities exceeding the value of amorphous silicon.[3, 9] However, further research is essential to enable developing the next generation of electronic devices for application in healthcare, safety technology, transportation, and communication. II) Objective and Results Within the scope of this doctoral thesis, current high-performance p-conjugated SCPs should be studied comprehensively to improve the present understanding about the interdependency between molecular structure, material properties and charge transport. Therefore, the extensive research approaches focused on different key aspects of high charge carrier mobility polymers for organic transistors. The performed investigations comprised the impact of, first, novel design concepts, second, precise structural modifications and, third, synthetic and processing conditions and led to the major findings listed below. 1. The design concept of tuning the p-conjugation length allows to gradually modulate physical material properties and demonstrates that a strong localization of frontier molecular orbitals in combination with a high degree of thin-film ordering can provide a favorable platform for charge transport in p-conjugated semiconducting polymers.[1] 2. The replacement of thiophene units with thiazoles in naphthalene diimide-based p- conjugated polymers allows to increase interchain interactions and to lower frontier molecular orbitals. This compensates the potentially detrimental enhancement of backbone torsion and drives the charge transport to unipolar electron transport, whereas mobility values are partially comparable with those of the respective thiophene containing analogs. 3. p-Conjugated diketopyrrolo[3,4-c]pyrrole-based copolymers can be synthesized within fifteen minutes what, in combination with avoiding aqueous washings and optimizing processing conditions, allowed an increase in morphological and energetic order and, thus, improved the charge transport properties significantly. III) Conclusion The key findings of this doctoral thesis provide new significant insights into important aspects of designing, synthesizing and processing high charge carrier mobility polymers. By this, they can guide future research to further improve the performance of organic electronic devices - decisive for driving the development and fabrication of smart, functional and wearable next-generation electronics. References [1] T. Erdmann, S. Fabiano, B. Milián-Medina, D. Hanifi, Z. Chen, M. Berggren, J. Gierschner, A. Salleo, A. Kiriy, B. Voit, A. Facchetti, Advanced Materials 2016, 28 (41), 9169–9174, DOI:10.1002/adma.201602923. [2] Y. Karpov, T. Erdmann, I. Raguzin, M. Al-Hussein, M. Binner, U. Lappan, M. Stamm, K. L. Gerasimov, T. Beryozkina, V. Bakulev, D. V. Anokhin, D. A. Ivanov, F. Günther, S. Gemming, G. Seifert, B. Voit, R. Di Pietro, A. Kiriy, Advanced Materials 2016, 28 (28), 6003–6010, DOI:10.1002/adma.201506295. [3] A. Facchetti, Chemistry of Materials 2011, 23 (3), 733–758, DOI:10.1021/cm102419z. [4] A. J. Heeger, Chemical Society Reviews 2010, 39, 2354–2371, DOI:10.1039/B914956M. [5] H. Klauk, Chemical Society Reviews 2010, 39, 2643–2666, DOI:10.1039/B909902F. [6] S. G. Bucella, A. Luzio, E. Gann, L. Thomsen, C. R. McNeill, G. Pace, A. Perinot, Z. Chen, A. Facchetti, M. Caironi, Nature Communications 2015, 6, 8394, DOI:10.1038/ncomms9394. [7] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290 (5499), 2123–2126, DOI:10.1126/science.290.5499.2123. [8] D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, H. Sirringhaus, Nature 2014, 515 (7527), 384–388, DOI:10.1038/nature13854. [9] S. Holliday, J. E. Donaghey, I. McCulloch, Chemistry of Materials 2014, 26 (1), 647–663, DOI: 10.1021/cm402421p.
47

The Charge-Carrier Dynamics and Photochemistry of CeO<sub>2</sub> Nanoparticles

Pettinger, Natasha January 2019 (has links)
No description available.
48

Understanding the Role of Lattice Defects and Metal Composition Ratio on the Photochemistry of CuFeO<sub>2</sub> toward Solar Energy Conversion

Fugate, Elizabeth Anne 11 September 2020 (has links)
No description available.
49

Untersuchung des elektronischen Transports an 28nm MOSFETs und an Schottky-Barrieren FETs aus Silizium-Nanodrähten

Beister, Jürgen 19 January 2019 (has links)
As modern microelectronics advances, enormous challenges have to be overcome in order to further increase device performance, enabling highspeed and ultra-low-power applications. With progressive scaling of Silicon MOSFETs, charge carrier mobility has dropped significantly and became a critical device parameter over the last decade. Present technology nodes make use of strain engineering to partially recover this mobility loss. Even though carrier mobility is a crucial parameter for present technology nodes, it cannot be determined accurately by methods typically available in industrial environments. A major objective of this work is to study the magnetoresistance mobility μMR of strained VLSI devices based on a 28 nm ground rule. This technique allows for a more direct access to charge carrier mobility, compared to conventional current/ voltage and capacitance/ voltage mobility derivation methods like the effective mobility μeff, in which series resistance, inversion charge density and effective channel length are necessary to extract the mobility values of the short channel devices. Aside from providing an anchor for accurate μeff measurements in linear operation conditions, μMR opens the possibility to investigate the saturation region of the device, which cannot be accessed by μeff. Electron and hole mobility of nFET and pFET devices with various gate lengths are studied from linear to saturation region. In addition, the interplay between mobility enhancement due to strain improvement, and mobility degradation due to short channel effects with decreasing channel length is analyzed. As a concept device for future nanoelectronic building blocks, silicon nanowire Schottky field-effect transistors are investigated in the second part of this work. These devices exhibit an ambipolar behaviour, which gives the opportunity to measure both electron and hole transport on a single device. The temperature dependence of the source/drain current for specific gate and drain voltages is analyzed within the framework of voltage dependent effective barrier heights.:1. Einleitung 2. Theoretische Grundlagen 3. Charakterisierungsmethoden 4. Messaufbau 5. Ergebnisse der Untersuchungen an MOSFETs 6. Ergebnisse der Untersuchungen an SiNW Transistoren 7. Zusammenfassung Anhang Danksagungen
50

Materialeigenschaften von Zinkmagnesiumoxinitrid und Analyse des Ladungstransports in amorphen oxidischen Halbleitern mit einem erweiterten Random Band-Edge-Modell

Welk, Antonia 04 November 2022 (has links)
In der vorliegenden Arbeit wird die Gruppe der amorphen oxidischen Halbleiter um das multi-kationische und multi-anionische Zinkmagnesiumoxinitrid erweitert und der Ladungstransport für amorphes Zink-Zinnoxid, amorphes Zinkoxinitrid und Zinkmagnesiumoxinitrid mit einem \textit{Random Band-Edge}-Modell beschrieben. \\ % Im ersten Teil der Arbeit werden Zinkmagnesiumoxinitrid-Dünnfilme mit einem reaktiven Magnetron Co-Sputterverfahren abgeschieden und anschließend im Hinblick auf ihre strukturellen, optischen und elektrischen Eigenschaften untersucht. Der Magnesiumgehalt in den Dünnfilmen wird einmal durch die Leistung am Magnesiumtarget und einmal über die Abscheidung eines kontinuierlichen Kompositionsgradienten variiert. Mit Röntgen\-diffrakto\-metrie wird überprüft, ob sich im Vergleich zu amorphem Zinkoxinitrid durch Zugabe von Magnesiumkationen kristalline Phasen bilden. Mit spektroskopischer Ellipsometrie wird die dielektrische Funktion von Zinkoxinitrid und Zinkmagnesiumoxinitrid bestimmt und so der Einfluss der Magnesiumkationen auf das Absorptionsverhalten untersucht. Die Ladungsträgerkonzentration und Hall-Mobilität werden mit Hall-Effekt Messungen bestimmt und in Abhängigkeit vom Magnesiumgehalt dargestellt. Neben der Variation des Magnesiumgehalts wird der Einfluss von molekularem Stickstoffgas, das Angebot von Stickstoffradikalen mit einer Radiofrequenz-Plasmaquelle und die Auswirkungen der Targeterosion auf die elektrischen Eigenschaften der Zink\-magnesium\-oxinitrid-Dünnfilme untersucht.\\ % Im zweiten Teil der Arbeit wird eine Erweiterung des \textit{Random Band-Edge}-Modells von Nenashev \textit{et al.} [Phys. Rev. B 100, 125202 (2019)] zur Beschreibung des Ladungstransports in amorphen oxidischen Halbleitern eingeführt. Mit dem Modell werden die Potentialfluktuationen der Mobilitätskante quantifiziert. Außerdem werden theoretische Modellparameter für die intrinsische Bandmobilität, das Femilevel und die Dichte lokalisierter Defektzustände an der Mobilitätskante bestimmt. Dafür werden temperaturabhängige Hall-Effekt Daten von amorphem Zink-Zinnoxid, Zinkoxinitrid und Zinkmagnesiumoxinitrid ausgewertet. Für Zink-Zinnoxid werden drei Probenserien mit jeweils einem variierenden Prozessparameter evaluiert: das Zn:Sn-Kationenverhältnis und der Sauerstoffpartialdruck für eine Abscheidung mit der gepulsten Laserdeposition und der Gesamtdruck für das Magnetronsputterverfahren. Daneben wird Zinkoxinitrid mit einer Variation der Substrattemperatur und Zinkmagnesiumoxinitrid mit einer Variation der Magnesiumkationenkonzentration modelliert.:1 Einleitung 2 Grundlagen 2.1 Amorphe oxidische Halbleiter 2.2 Defekte in amorphen oxidischen Halbleitern 2.3 Amorphe oxiische Halbleiter im Detail 2.4 Ladunstransport in amrophen oxidischen Halbeleitern - eine Übersicht 2.5 Random Band-Edge-Modell nach Nenashev et al. 3 Methoden 3.1 Magnetronsputterverfahren 3.2 Chemische und strukturelle Charakterisierung 3.3 Optische Charakterisierung 3.4 Elektrische Charakterisierung 4 ZnMgON-Dünnfilme 4.1 Chemische Komposition 4.2 Strukturelle Eigenschaften 4.3 Optische Eigenschaften 4.4 Elektrische Eigenschaften 4.5 ZnMgON -Untersuchung der Prozessparameter im Detail 4.6 Diskussion und Zusammenfassung - ZnMgON-Dünnfilme 4.7 Abschätzung der Potentialfluktuationen durch einen Vergleich zwischen Hall- und Drude-Mobilität 5 Erweiterung des Random Band-Edge-Modells 5.1 Variation der Modellparameter des erweiterten RBE-Modells 6 Analyse des Ladungstransports in AOS mit dem erweiterten RBE-Modell 6.1 a-IGZO - Modellierung der elektrischen Transporteigenschaften 6.2 a-ZTO - Modellierung der elektrischen Transporteigenschaften 6.3 a-ZnON - Modellierung der elektrischen Transporteigenschaften 6.4 ZnMgON - Modellierung der elektrischen Transporteigenschaften 6.5 Diskussion 6.6 Zusammenfassung - Erweiterung des RBE-Modells 7 Zusammenfassung und Ausblick / In the present work, the amorphous oxide semiconductor zinc magnesium oxynitride, as a multi-cationic and multi-anionic compound, is deposited and characterized. Further, the electrical transport properties of amorphous zinc tin oxide, amorphous zinc oxynitride and zinc magnesium oxynitride are described by an extended \textit{random band-edge} model.\\ % In the first part of this work, zinc magnesium oxynitride thin films are deposited by reactive magnetron co-sputtering and are subsequently investigated with regard to their structural, optical and electrical properties. The magnesium content in the thin films is varied by the power at the magnesium target and by depositing a continuous composition gradient. X-ray diffractometry is used to check whether crystalline phases occur due to the addition of magnesium cations. Spectroscopic ellipsometry is used to determine the dielectric function of zinc oxynitride and zinc magnesium oxynitride to investigate the influence of magnesium cations on the absorption behavior. The charge carrier concentration and Hall-mobility are determined with Hall-effect measurements and are presented as a function of magnesium content. In addition to the variation of magnesium content, the influence of molecular nitrogen gas, the supply of nitrogen radicals with a radio frequency plasma source, and the effect of target poisoning on the electrical properties of zinc magnesium oxynitride thin films are investigated.\\ % In the second part of the work, an extension of the \textit{random band-edge} model by Nenashev \textit{et al.} [Phys. Rev. B 100, 125202 (2019)] is proposed to analyze the charge carrier transport in amorphous oxide semiconductors. The model allows quantifying the potential fluctuations of the mobility edge. Besides this, theoretical model parameters as the intrinsic band mobility, the Fermi level, and the density of localized defect states at the mobility edge are determined. Therefore, temperature-dependent Hall effect data of amorphous zinc tin oxide, zinc oxynitride and zinc magnesium oxynitride are evaluated. For zinc tin oxide three different sample series are evaluated: with Zn:Sn cation and oxygen partial pressure variation for a pulsed laser deposition process and with variation of the total pressure for a magnetron sputtering process. In addition, zinc oxynitride thin films with a variation of substrate temperature and zinc magnesium oxynitride thin films with a variation of magnesium cation concentration are modeled.:1 Einleitung 2 Grundlagen 2.1 Amorphe oxidische Halbleiter 2.2 Defekte in amorphen oxidischen Halbleitern 2.3 Amorphe oxiische Halbleiter im Detail 2.4 Ladunstransport in amrophen oxidischen Halbeleitern - eine Übersicht 2.5 Random Band-Edge-Modell nach Nenashev et al. 3 Methoden 3.1 Magnetronsputterverfahren 3.2 Chemische und strukturelle Charakterisierung 3.3 Optische Charakterisierung 3.4 Elektrische Charakterisierung 4 ZnMgON-Dünnfilme 4.1 Chemische Komposition 4.2 Strukturelle Eigenschaften 4.3 Optische Eigenschaften 4.4 Elektrische Eigenschaften 4.5 ZnMgON -Untersuchung der Prozessparameter im Detail 4.6 Diskussion und Zusammenfassung - ZnMgON-Dünnfilme 4.7 Abschätzung der Potentialfluktuationen durch einen Vergleich zwischen Hall- und Drude-Mobilität 5 Erweiterung des Random Band-Edge-Modells 5.1 Variation der Modellparameter des erweiterten RBE-Modells 6 Analyse des Ladungstransports in AOS mit dem erweiterten RBE-Modell 6.1 a-IGZO - Modellierung der elektrischen Transporteigenschaften 6.2 a-ZTO - Modellierung der elektrischen Transporteigenschaften 6.3 a-ZnON - Modellierung der elektrischen Transporteigenschaften 6.4 ZnMgON - Modellierung der elektrischen Transporteigenschaften 6.5 Diskussion 6.6 Zusammenfassung - Erweiterung des RBE-Modells 7 Zusammenfassung und Ausblick

Page generated in 0.0428 seconds