• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 72
  • 72
  • 33
  • 28
  • 23
  • 20
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Elektrische und morphologische Charakterisierung organischer Feldeffekttransistoren mit aufgedampften, gesprühten sowie aufgeschleuderten organischen Halbleitern

Lüttich, Franziska 09 January 2015 (has links) (PDF)
In dieser Arbeit werden organische Feldeffekttransistoren (OFETs) aus den verschiedenen Materialien Manganphthalocyanin (MnPc), [6,6]Phenyl-C61-butansäuremethylester (PCBM), 6,13-Bis(triisopropylsilyethinyl)pentacen (TIPS-Pentacen) und N,N’- Bis(n-octyl)-1,6-Dicyanoperylen-3,4:9,10-Bis(Dicarboximid) (PDI8-CN2) hergestellt. Dabei finden unterschiedliche Abscheidemethoden wie die Molekularstrahlabscheidung, die Ultraschallsprühbeschichtung und die Drehbeschichtung Anwendung. Die Morphologie sowie die Funktionsweise der Transistoren werden in Abhängigkeit von den Herstellungsparametern und bezüglich ihrer Stabilität gegenüber Lufteinfluss und elektrischer Belastung charakterisiert. Durch Aufdampfen von MnPc konnten so zum ersten Mal ambipolare MnPc-OFETs hergestellt und charakterisiert werden. Die bestimmten Löcher- und Elektronenbeweglichkeiten bestätigen die Eignung von MnPc für die Anwendung in Spintronik-Bauelementen. Desweiteren wird anhand gesprühter PCBM- und TIPS-Pentacen-OFETs gezeigt, dass die Ultraschallsprühbeschichtung eine geeignete Technik ist, um organische Halbleiter aus Lösung für die Verwendung in OFETs abzuscheiden. Die Abscheidung organischer Filme lässt sich mit einer Vielzahl an Parametern beeinflussen und die Funktionsweise von OFETs optimieren. In Verbindung mit den Untersuchungen aufgeschleuderter PDI8-CN2-OFETs konnte ein erheblicher Einfluss der Oberflächenenergie des verwendeten SiO2-Gateisolators auf die Korngröße im organischen Film festgestellt werden.
62

Síntese e caracterização estrutural e magnética das perovskitas complexas ReFe0:5M0:5O3 (Re = Dy, Gd, Sm, Eu,Nd ; M= Mn,Al)

Santana, Marcos Cleison Silva 26 February 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Samples of Bi 2Fe4O9 mullite and ReFe 0.5M0.5O3 (Re = Nd, Sm, Eu, Gd, Dy; M = Mn, Al) complex perovskites were successfully synthesized by using the combustion synthesis method. While the mullite was obtained after thermal treatment at temperatures below 1000ºC, complex perovskites are produced after thermal treatments between 1250ºC and 1500ºC for at most 24 h. The X-ray diffraction data analysis suggests the formation of single phase orthorhombic structure, after suitable heat treatment. Scanning electron microscopy (SEM) revealed the formation of micrometric grain size, giving to the sample the relative density. EDS spectra confirmed the homogeneity and purity of complex perovskites. Magnetization measurements as a function of field and temperature showed the diversity of magnetic behavior of the samples. Among the behaviors we can highlight the reorientation of spin for ortoferritas ReFe0.5Mn0.5O3 (Re = Dy, Gd, Eu, Sm, Eu) and ReFe0.5Al0.5O3 (Re = Dy, Nd). Another interesting finding was the effect of magnetic reversal of the samples ReFe0.5Al0.5O3 (Re = Nd, Gd) and EuFe0.5Mn0.5O3. Raman spectra show anomalous bands of second order in the perovskite DyFe0.5Al0.5O3 with characteristics of resonant effects. The evolution of the band associated with the symmetric vibrational mode of the octahedron shows hardening at the temperature range of ordered magnetic phase, thus suggesting a possible spin-phonon coupling. Depolarization current measurements highlights a relaxation process due to charge carriers in the samples ReFe0.5Mn0.5O3 (Re = Dy, Gd). The application of magnetic field profoundly influences the depolarization current behavior of DyFe0.5Mn0.5O3. Dielectric permittivity measurements showed no anomalies between 10 K and 300 K, that could can be associated to a ferroelectric phase. / Amostras da mulita Bi2Fe4O9 e das perovskitas complexas ReFe0.5M0.5O3 (Re= Nd, Sm, Eu, Gd, Dy; M = Mn, Al) foram sintetizadas com sucesso utilizando o método de síntese por reação de combustão. Enquanto a mulita foi obtida após tratamento térmico com temperaturas abaixo de 1000ºC, as perovskitas complexas foram produzidas após tratamentos térmicos entre 1250ºC e 1500ºC por, no máximo, 24 h. A análise de dados de difração de raios X sugerem a formação de estruturas ortorrômbicas de fase única, após os tratamento térmico apropriado. Medidas de microscopia evidenciaram formação de grãos micrométricos conferindo às amostras relativa densidade. Os espectros EDS confirmaram a homogeneidade e pureza das perovskitas complexas. As medidas de magnetização em função do campo e da temperatura evidenciaram a diversidade de comportamentos magnéticos das amostras estudadas. Entre os comportamentos destacamos reorientação de spin para as ortoferritas ReFe0.5Mn0.5O3 (Re = Dy, Gd, Eu, Sm, Eu) e ReFe0.5Al0.5O3 (Re = Dy,Nd). Outro interessante achado foi o efeito de inversão magnética das amostras ReFe0.5Al0.5O3 (Re = Nd, Gd) e EuFe0.5Mn0.5O3. Espectros Raman demonstram bandas anômalas de segunda ordem na perovskita DyFe0.5Al0.5O3 com características de efeitos ressonantes. A evolução da banda associada ao modo vibracional simétrico do octaedro apresenta endurecimento em temperaturas na faixa da fase magnética ordenada, sugerindo assim, um possível acoplamento spin-f onon. Medidas de corrente de despolarização destaca um processo de relaxação devido aos portadores de cargas nas amostras ReFe0.5Mn0.5O3 (Re=Dy,Gd). A aplicação de campo magnético influencia profundamente o comportamento da corrente de despolarização do DyFe0.5Mn0.5O3. Medidas de permissividade dielétrica não exibiram anomalias entre 10 K e 300 K que possam a ser associadas a uma fase ferroelétrica.
63

CHAIN-LENGTH PROPERTIES OF CONJUGATED SYSTEMS: STRUCTURE, CONFORMATION, AND REDOX CHEMISTRY

Saadia T Chaudhry (8407140) 22 April 2021 (has links)
The development of solution-processable semiconducting polymers has brought mankind’s long-sought dream of plastic electronics to fruition. Their potential in the manufacturing of lightweight, flexible yet robust, and biocompatible electronics has spurred their use in organic transistors, photovoltaics, electrochromic devices, batteries, and sensors for wearable electronics. Yet, despite the successful engineering of semiconducting polymers, we do not fully understand their molecular behavior and how it influences their doping (oxidation/reduction) properties. This is especially true for donor-acceptor (D-A) p-systems which have proven to be very efficient at tuning the electronic properties of organic semiconductors. Historically, chain-length dependent studies have been essential in uncovering the relationship between the molecular structure and polymer properties. Discussed here is the systematic investigation of a complete D-A molecular series composed of monodispersed and well-defined conjugated molecules ranging from oligomer (n=3-21) to polymer scale lengths. Structure-property relationships are established between the molecular structure, chain conformation, and redox-active opto-electronic properties for the molecular series in solution. This research reveals a rod-to-coil transition at the 15 unit chain length, or 4500 Da, in solution. The redox-active optical and electronic properties are investigated as a function of increasing chain-length, giving insight into the nature of charge carriers in a D-A conjugated system. This research aids in understanding the solution behavior of conjugated organic materials. <br>
64

Optical polarization and charge carrier density in semipolar and nonpolar InGaN quantum wells in core-shell microrods and planar LEDs

Mounir, Christian 15 July 2021 (has links)
InGaN-based light emitters are strongly affected by the inhomogeneous broadening induced by random alloy fluctuations. While these effects have been extensively investigated on c-plane (e.g. localization of carriers at low carrier density due to potential fluctuations, delocalization at higher carrier density), much fewer work report on the impact of inhomogeneous broadening on the emission properties of semipolar and nonpolar InGaN quantum wells (QWs). In addition to have a higher electron- and hole-wavefunction overlap and thereby an increased radiative recombination rate thanks to the reduced/suppressed built-in electric field due to polarization discontinuities at heterointerfaces, QWs grown along semipolar/nonpolar crystal orientations have the interesting property to emit polarized light. The characterization and theoretical understanding of their optical polarization properties is the first main focus of this thesis. A correlation between spectral width and degree of linear polarization (DLP) is highlighted through extensive temperature- and excitation-dependent polarization-resolved confocal micro-photoluminescence spectroscopy carried out on planar semi-polar/nonpolar QWs and on the m-plane side facet of core-shell microrods. A theoretical model based on electronic band structure calculated by the kp-envelope function method is developed to explain this correlation by taking inhomogeneous broadening into account. Considering indium content fluctuations and the localization lengths of electrons and holes, different effective broadenings are applied to groups of subbands. It is shown that for high-inclination semipolar and nonpolar InGaN/GaN QWs inhomogeneous broadening leads to a significant increase of the DLP at room temperature. Furthermore, the DLP-drop towards high carrier density due to the transition from the Boltzmann- to the Fermi-regime is smoother and starts at lower carrier density. The model is also used to study the peculiar polarization properties of (202¯1) InGaN/GaN QWs compared to (202¯1¯) QWs: although they have equivalent band structures in the framework of k·p-theory and are therefore expected to have identical optical polarization properties, (202¯1) QWs consistently exhibit a lower DLP than (202¯1¯) QWs. This discrepancy might be related to different effective broadenings of their valence subbands induced by the rougher upper QW interface in (202¯1), by the larger sensitivity of holes to this upper interface due to the polarization field in (202¯1), and/or by the different degrees of localization of holes. Besides being strongly affected by inhomogeneous broadening, InGaN-based LEDs suffer from efficiency droop: their efficiency maximum is already reached at relatively low current density and then significantly drops towards their typical operation conditions. One way to mitigate its effect is to reduce the carrier density inside the active region, which can be achieved via several approaches, e.g. growing the active region on a 3D template, on a semipolar/nonpolar substrate or a relaxed InGaN template. The last two approaches reduce/suppress the built-in polarization field leading to wavefunctions with larger overlap and spread across the active region. In order to check and validate these approaches, a way to measure the carrier density inside the active region is necessary. This complex task, which is the second focus of this work, requires fitting a model of the carrier recombination dynamics to experimental data. Several methods are already available, which are mostly based on the basic ABC-model. The validity of this model is discussed through measurement of efficiency curves on various samples and extended to take into account the background carrier density at low carrier density and band-filling at high carrier density. The DLP drop towards high carrier density is fitted simultaneously with the efficiency curve to improve the robustness of the extraction of recombination coefficients. Nevertheless, without insights from time-resolved experimental data, extracting all recombination coefficients is shown to be very critical leading to ambiguous fitting results. Time-resolved measurements being complex and time-consuming, a new method based on an extended ABC-model and room-temperature bias-dependent photoluminescence spectroscopy is proposed. When investigating semipolar/nonpolar LEDs, this method allows to extract the carrier density within the active region without having to carry out time-resolved measurements, which is demonstrated using polarization-resolved efficiency curves measured on a m-plane LED. Growing the active region on 3D templates to reduce the local carrier density requires eventually experimental techniques with high spatial resolution for its characterization. This work reports the experimental know-how acquired through extensive characterization of single InGaN/GaN core-shell microrods. A thorough description of the confocal microscope and its alignment is given to achieve reproducible and diffraction limited spatial resolution polarization-resolved photoluminescence measurements, which allowed the first local internal quantum efficiency measurement along the side facet of InGaN/GaN core-shell microrods. / InGaN-basierte Lichtquellen sind stark von inhomogener Verbreiterung, die aus zufälligen Legierungsfluktuationen entsteht, beeinflusst. Während diese Effekte ausführlich auf die c-Ebene untersucht wurden (z.B. Ladungsträgerlokalisierung bei niedriger Ladungsträgerdichte auf Grund von Potentialfluktuationen, Delokalisierung bei höherer Ladungsträgerdichte), untersuchen wenige Studien den Einfluss von inhomogener Verbreiterung auf die Emissionseigenschaften von semipolarer und nonpolarer InGaN Quantentrögen. Quantentröge, die entlang semipolaren/nonpolaren Kristallrichtungen gewachsen sind, haben einen höheren Überlapp der Elektron- und Löcherwellenfunktionen und dadurch eine höhere strahlende Rekombinationsrate dank des niedrigen / unterdrückten elektrischen Feldes, das durch Polarizationsdiskontinuitäten an Heteroübergängen entsteht. Diese Quantentröge haben die interessante Eigenschaft, polariziertes Licht auszustrahlen. Die Charakterizierung und das theoretische Verständnis von diesen Polarizationseigenschaften ist der erste Schwerpunkt dieser Dissertation. Umfangreiche temperatur- und anregungsabhängige polarizationsaufgelöste konfokale Mikro-Photolumineszenz Spektroskopie auf planaren semipolaren/nonpolaren Quantentröge und auf die m-Ebene Seitenfacette von Core-Shell Mikrosäulen deuten auf eine Korrelation zwischen der spektralen Breite und dem optischen Polarizationsgrad. Basirend auf elektronischen Bandstrukturen, die mittels der k·p Hüllfunktionsmethode berechnet werden, wird ein theoretisches Modell entwickelt, um diese Korrelation unter Berücksichtigung der inhomogenen Verbreiterung zu erklären. In Anbetracht der Fluktuationen des Indiumgehalts und der Lokalisierungslängen von Elektronen und Löchern, werden unterschiedliche effektive Verbreiterungen auf Gruppen von Subbändern angewendet. Dadurch wird gezeigt, dass bei Raumtemperatur inhomogene Verbreiterung zu einem signifikanten Anstieg des Polarizationsgrads von semipolaren und nonpolaren InGaN/GaN Quantentrögen mit hoher Neigung führt. Darüber hinaus ist der Polarizationsgrad-Abfall bei höheren Ladungsträgerdichten aufgrund des Übergangs vom Boltzmann- zum Fermi-Regime glatter und beginnt bei niedrigerer Ladungsträgerdichte. Das Modell wird auch verwendet, um die besonderen Polarizationseigenschaften von (202¯1) InGaN/GaN Quantentrögen im Vergleich zu (202¯1¯) Quantentrögen zu untersuchen. Durch ihre äquivalenten Bandstrukturen im Rahmen der k·p-Theorie wird erwartet, dass sie ähnliche Polarizationseigenschaften zeigen. (202¯1) Quantentröge haben jedoch durchweg einen niedrigeren Polarizationsgrad als (202¯1¯) Quantentröge. Diese Diskrepanz könnte auf unterschiedliche effektive Verbreiterung ihrer Valenz-Subbänder zurückgeführt werden, die durch die rauere obere Quantentrog-Grenzfläche in (202¯1), durch die größere Empfindlichkeit der Löcher gegenüber dieser oberen Grenzfläche aufgrund des Polarizationsfelds in (202¯1) und /oder durch die unterschiedlichen Lokalisierungsgrade der Löcher induziert werden. InGaN LEDs sind nicht nur stark von inhomogener Verbreiterung beeinflusst, sondern leiden auch unter efficiency droop: Ihr Wirkungsgradmaximum wird bereits bei relativ geringer Stromdichte erreicht und fällt dann deutlich gegenüber ihrer typischen Betriebsbedingungen ab. Eine Möglichkeit, diesen Effekt abzuschwächen, ist, die Ladungsträgerdichte innerhalb des aktiven Bereichs zu verringern, was über verschiedene Ansätze erreicht werden kann. Die aktive Region kann zum Beispiel auf einer 3D-Pufferschicht, auf einem semipolaren/nonpolaren Substrat oder auf einer relaxierten InGaN-Pufferschicht gewachsen werden. Die letzten zwei Ansätze reduzieren/unterdrücken das Polarizationsfeld und führen dadurch zu Wellenfunktionen, die eine grössere Überlappung und Ausbreitung über die aktive Region haben. Damit diese Ansätze überprüft und validiert werden können, ist ein Verfahren erforderlich, um die Ladungsträgerdichte innerhalb der aktiven Region zu bestimmen. Diese komplexe Aufgabe, die den zweiten Schwerpunkt dieser Arbeit bildet, erfordert die Anpassung eines Modells der Ladungsträgerrekombinationsdynamik an experimentellen Daten. Die meisten Methoden, die bereits zur Verfügung stehen, nutzen das einfache ABC-Modell. Die Gültigkeit dieses Modells wird durch Messung von Effizienzkurven auf verschiedenen Proben diskutiert und erweitert, um die Hintergrungladungsträgerdichte bei niedriger Ladungsträgerdichte und Bandfüllung bei hoher Ladungsträgerdichte zu berücksichtigen. Der Polarizationsgrad-Abfall gegen hohe Ladungsträgerdichten wird gleichzeitig mit der Effizienzkurve angepasst, um das Bestimmen der Rekombinationskoeffizienten zu verbessern. Es ist jedoch sehr kritisch, alle Rekombinationskoeffizienten eindeutig zu bestimmen, ohne zeitaufgelöste experimentelle Daten zu berücksichtigen. Da zeitaufgelöste Messungen komplex und zeitaufwändig sind, wird eine neue Methode vorgeschlagen, die auf Bias-abhängiger Photolumineszenzspektroskopie bei Raumtemperatur und auf einem erweiterten ABC-Modell basiert. Bei der Untersuchung semipolarer/nonpolarer LEDs ermöglicht diese Methode das Bestimmen der Ladungsträgerdichte innerhalb der aktiven Region, ohne zeitaufgelöste Messungen durchführen zu müssen. Dies wird anhand polarizationsaufgelöster Effizienzkurven auf einer m-Ebene LED demonstriert. Das Wachsen der aktiven Region auf 3D-Pufferschichten zur Verringerung der lokalen Ladungsträgerdichte erfordert für ihre Charakterisierung experimentelle Techniken mit hoher räumlicher Auflösung. Diese Arbeit berichtet über das experimentelle Know-how, das durch die Charakterisierung einzelner InGaN/GaN Core-Shell Mikrosäulen erworben wurde. Eine gründliche Beschreibung des konfokalen Mikroskops und seiner Ausrichtung ist gegeben, um reproduzierbare polarizationsaufgelöste Photolumineszenzmessungen mit beugungsbegrenzter räumlicher Auflösung zu erreichen, die die ersten lokalen internen Quanteneffizienzmessungen entlang der Seitenfacette von InGaN/GaN Core-Shell Mikrosäulen ermöglichte. / Les sources lumineuses à base de InGaN sont fortement affectées par l'élargissement inhomogène dû aux fluctuations du taux d'indium. Alors que ces effets ont été étudiés extensivement sur le plan-c (par exemple: localisation des porteurs de charge à basse densité de porteurs dûe aux fluctuations de potentiel, délocalisation à plus haute densité de porteurs), seulement peu de travaux sont consacrés à l'étude de l'impact de l'élargissement inhomogène sur les propriétés d'émission des puits quantiques InGaN semipolaires et nonpolaires. En plus d'avoir un recouvrement plus grand des fonctions d'ondes des électrons et des trous, et par conséquent un taux de recombination radiatif plus élevé grâce à la réduction/suppression du champs électrique interne dû aux discontinuités de polarisation aux hétérointerfaces, les puits quantiques crûs dans les directions semipolaires/nonpolaires ont la propriété intéressante d'émettre de la lumière polarisée. La charactérisation et compréhension théorique de leurs propriétés de polarisation optique est l'un des axes de cette thèse. Une corrélation entre la largeur spectrale et le degré de polarisation linéaire (DLP = angl. degree of linear polarization) est mise en évidence par le biais de spectroscopie de micro-photoluminescence confocale résolue en polarisation en fonction de la température et de l'excitation éffectuée sur des puits quantiques planaires semipolaires et nonpolaires ainsi que sur les facettes latérales plan-m de micro-piliers core-shell. Un model théorique basé sur la structure de bandes électroniques calculée par la méthode k·p des fonctions d'enveloppe est développé pour expliquer cette corrélation en prenant l'élargissement inhomogène en compte. En considérant les fluctuations du taux d'indium et la longueur de localisation des électrons et des trous, des élargissements effectifs différents sont appliqués à des groupes de sous-bandes. Le modèle montre que pour les puits quantiques semipolaires/nonpolaires d'haute inclinaison l'élargissement inhomogène engendre une augmentation significative du DLP à température ambiante. De plus, vers les densités de porteurs plus élevées, la chute du DLP induite par la tansition du régime de Boltzmann au régime de Fermi est plus lente et commence à plus basse densité de porteurs. Le modèle est également utilisé pour étudié les propriétés particulières de polarisation optique des puits quantiques (202¯1) comparés aux puits (202¯1¯). Malgré qu'ils aient des structures de bandes équivalentes dans le cadre de la théorie k·p et devraient ainsi avoir des propriétés de polarisation optique identiques, les puits quantiques (202¯1) ont systématiquement un DLP plus bas que les puits quantiques (202¯1¯). Cette divergence est probablement liée aux élargissements effectifs différents qui s'appliquent à leurs sous-bandes de valence en raison de l'interface supérieure plus rugueuse du puit (202¯1), de la sensibilité des trous à l'interface supérieure du puit (202¯1) à cause du champ électrique interne, et/ou du différent degré de localisation des trous En plus d'être fortement affecté par l'élargissement inhomogène, les LEDs InGaN souffrent d'efficiency droop: leur efficacité maximale est atteinte déjà à une densité de courant relativement basse et baisse ensuite significativement vers leurs conditions d'opération typiques. Un moyen pour mitiger cet effet est de réduire la densité de courant dans la zone active, ce qui peut être atteint via plusieurs approches, notamment en croissant la région active sur un template 3D, sur un substrat semipolaire/nonpolaire ou un template d'InGaN relaxé. Les deux dernière approches diminuent/suppriment le champs électrique interne augmantant ainsi le recouvrement des fonctions d'onde et leur étendue dans la zone active. Afin de vérifier ces approches, une méthode pour déterminer la densité de porteurs dans la zone active est nécessaire. Cette tâche complexe, qui est le second axe de ce travail, requière d'ajuster un modèle de la dynamique de recombinaison des porteurs à des données expérimentales. La plupart des méthodes déjà disponibles se basent sur le simple modèle ABC. La validité de ce modèle est discutée à travers des courbes d'efficacité mesurées sur différents échantillons et étendue pour prendre en compte la densité de porteurs dûe au dopage à basse densité de porteurs ainsi que le remplissage des bandes à haute densité de porteurs. La chute du DLP vers les hautes densités de porteurs est ajustée simultanément à la courbe d'éfficacité pour augmenter la robustesse de la détermination des coefficients de recombinaison. Il est cependant montré que sans prendre en compte des données expériemntales résolues en temps il est très difficile d'extraire tous les coefficients de recombinaison sans ambiguosités. Les mesures résolues en temps étant complexes et longues, une nouvelle méthode basée sur un modèle ABC étendu et de la spectroscopie photoluminescence en fonction du bias à température ambiante est proposée. Lorsqu'elle est appliquée à des LEDs semipolaires/nonpolaires, elle permet d'extraire la densité de porteurs dans la région active sans devoir effectuer des mesures résolues en temps. La méthode est démontrée en utilisant des courbes d'efficacité résolues en polarisation measurées sur une LED plan-m. Croître la région active sur un template 3D afin de diminuer la densité locale de porteurs nécessite au final pour sa characterisation une technique expérimentale ayant une haute résolution spatiale. Ce travail résume le savoir-faire expérimental acquis en characterisant des micro-piliers core-shell InGaN/GaN uniques. Une description détaillée du microscope confocal et de son alignement est donnée pour atteindre des mesures de photoluminescence reproductibles et ayant une résolution limitée par la diffraction, ce qui a permis la première mesure locale d'efficacité interne quantique le long de la facette latérale de micro-piliers core-shell InGaN/GaN.
65

Elektrische und morphologische Charakterisierung organischer Feldeffekttransistoren mit aufgedampften, gesprühten sowie aufgeschleuderten organischen Halbleitern

Lüttich, Franziska 17 December 2014 (has links)
In dieser Arbeit werden organische Feldeffekttransistoren (OFETs) aus den verschiedenen Materialien Manganphthalocyanin (MnPc), [6,6]Phenyl-C61-butansäuremethylester (PCBM), 6,13-Bis(triisopropylsilyethinyl)pentacen (TIPS-Pentacen) und N,N’- Bis(n-octyl)-1,6-Dicyanoperylen-3,4:9,10-Bis(Dicarboximid) (PDI8-CN2) hergestellt. Dabei finden unterschiedliche Abscheidemethoden wie die Molekularstrahlabscheidung, die Ultraschallsprühbeschichtung und die Drehbeschichtung Anwendung. Die Morphologie sowie die Funktionsweise der Transistoren werden in Abhängigkeit von den Herstellungsparametern und bezüglich ihrer Stabilität gegenüber Lufteinfluss und elektrischer Belastung charakterisiert. Durch Aufdampfen von MnPc konnten so zum ersten Mal ambipolare MnPc-OFETs hergestellt und charakterisiert werden. Die bestimmten Löcher- und Elektronenbeweglichkeiten bestätigen die Eignung von MnPc für die Anwendung in Spintronik-Bauelementen. Desweiteren wird anhand gesprühter PCBM- und TIPS-Pentacen-OFETs gezeigt, dass die Ultraschallsprühbeschichtung eine geeignete Technik ist, um organische Halbleiter aus Lösung für die Verwendung in OFETs abzuscheiden. Die Abscheidung organischer Filme lässt sich mit einer Vielzahl an Parametern beeinflussen und die Funktionsweise von OFETs optimieren. In Verbindung mit den Untersuchungen aufgeschleuderter PDI8-CN2-OFETs konnte ein erheblicher Einfluss der Oberflächenenergie des verwendeten SiO2-Gateisolators auf die Korngröße im organischen Film festgestellt werden.
66

Elektropolymerisation, Spektroelektrochemie und Potentiometrie von funktionalisierten leitfähigen Polymeren

Tarabek, Jan 20 November 2004 (has links) (PDF)
Die vorliegende Arbeit behandelt die elektrochemische Synthese (elektrochemische Polymerisation und Copolymerisation) und die Charakterisierung der Redox- und sensorischen Eigenschaften neuer funktionalisierter Polymere für die Ionensensorik. Die Funktionalisierung wird sowohl in der Polymer-Hauptkette (Polysalene) als auch in der Polymer-Seitenkette (ein Thiophen-Copolymer: 3-Methylthiophen/6-Hydroxy-2-(2-(3-thienyl)-ethoxy)-acetophenon) dargestellt. Die Redox-Prozesse der funktionalisierten Polymere wurden mit spektroelektrochemischen Methoden: ESR-, UV-Vis-NIR- und FTIR-Spektroelektrochemie charakterisiert. Durch diese Methoden konnten während der elektrochemischen Oxidation von funktionalisierten leitfähigen Polymeren verschiedene Polymer- bzw. Copolymer-Ladungsträger nachgewiesen werden: Polaronen, Bipolaronen beim Thiophen-Copolymer, zwei Polaronen auf einer Polymerkette im Singulettezustand beim Poly(3-methylthiophen) und eine diamagnetische Spin-Spin-Wechselwirkung zwischen ungepaarten Elektronen der Cu(II)-Ionen und der ungepaarten Elektronen von bisphenolischen Ligand-Kationradikalen beim Poly[Cu(II)-salen]. Sensorische Eigenschaften gegenüber Ni(II)-Ionen wurden durch Potentiometrie an einem Poly[Ni(II)-salen]-Derivat getestet. Es zeigt eine gute potentiometrische Ni(II)-Ionenselektivität (der Logarithmus des potentiometrischen Selektivitätskoeffizienten liegt im Bereich von -0.5 bis -1.5) in Anwesenheit von Cd(II), Mn(II), Zn(II) und Na(I).
67

Nutzung der Photolumineszenz von Quantenpunkten für die Belastungsdetektion an Leichtbaumaterialien

Möbius, Martin 17 February 2021 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Entwicklung eines neuartigen, autarken, folienbasierten Sensorsystems für die Belastungsdetektion an Leichtbaumaterialien. Das integrierte Sensorsystem ist in der Lage mechanische Belastungen über die Photolumineszenz von Quantum Dots visuell darzustellen, wodurch strukturelle Defekte in Leichtbaumaterialien frühzeitig erkannt und ein Totalausfall einer gesamten Leichtbaukonstruktion verhindert werden kann. Dies führt neben einer erhöhten Sicherheit einzelner Komponenten und kompletter Konstruktionen auch zu Gewichts-, Kosten- und Rohstoffersparnissen. Die gezielte Beeinflussung der Photolumineszenz von Quantum Dots durch Ladungsträgerinjektion als Hauptmechanismus des Sensorsystems erfordert spezielle Lagenaufbauten von Dünnschichtsystemen. Durch die Kombination dieser Dünnschichtsysteme mit piezoelektrischen Materialien entsteht ein autarkes Sensorsystem, wodurch eine Auswertung, Visualisierung und Speicherung der Information über eine stattgefundene mechanische Belastung an Leichtbaumaterialien auf kleinsten Raum erreicht wird.:Inhaltsverzeichnis Formelverzeichnis Abkürzungsverzeichnis Vorwort 1 Einleitung 1.1 Motivation 1.2 Zielstellung 2 Autarker Sensor für mechanische Beanspruchungen 2.1 Sensorkonzept, -aufbau und Funktionsweise 2.2 Anforderungen an die Funktionalität 2.3 Stand der Technik 3 Theoretische Grundlagen 3.1 Quantum Dots 3.1.1 Größenquantisierungseffekt 3.1.2 Photolumineszenz 3.1.3 Aufbau und Materialien 3.1.4 Kommerziell erhältliche Quantum Dots 3.2 Mechanismen zur Beeinflussung der Photolumineszenz 3.2.1 Ladungsträgerinjektion in den QD Kern 3.2.2 Feldinduzierte Ionisation des Exzitons 3.2.3 Weitere Mechanismen 3.3 Ladungsträgertransportschichten 3.3.1 Poly(N-vinylkarbazol) 3.3.2 N,N,N´,N´-Tetrakis(3-methylphenyl)-3,3´-dimethylbenzidin 3.3.3 Poly(3,4-ethylendioxythiophen)-poly(styrolsulfonat) 3.4 Lithiumfluorid als elektrischer Isolator 3.5 Modellsysteme 3.5.1 Einbettung der QDs in organische Lochtransportschichten 3.5.2 QDs zwischen Elektrode und organischer Lochtransportschicht 3.5.3 QDs zwischen Elektrode und Nichtleiter 4 Experimentelle Vorgehensweise 4.1 Layout und Kontaktierung von Teststrukturen 4.2 Verfahren zur Herstellung dünner Schichten 4.2.1 Physikalische Gasphasenabscheidung 4.2.2 Rotationsbeschichtung 4.2.3 Weitere Verfahren 4.3 Charakterisierung der Schichten und der Gesamtfunktionalität 4.3.1 Mikrospektroskopieaufbau 4.3.2 Weitere Messverfahren 4.4 Integration der Schichtstapel in Faserkunststoffverbund 5 Experimentelle Untersuchungen 5.1 Einordnung der einzelnen Schichten der Modellsysteme 5.1.1 Elektroden 5.1.2 Matrixmaterial und Quantum Dots 5.2 Einordnung des elektrischen Verhaltens der Modellsysteme 5.2.1 Modellsystem I 5.2.2 Modellsystem II 5.2.3 Modellsystem III 5.3 Einfluss externer Beleuchtung am Modellsystem II und III 5.3.1 Modellsystem II 5.3.2 Modellsystem III 5.4 Wiederholbarkeit der elektrischen Beanspruchung am Modellsystem III 5.4.1 Photolumineszenzintensität 5.4.2 Stromdichte 5.4.3 Gesamtwiderstand im Schichtstapel 5.5 Einfluss des elektrischen Feldes am Modellsystem III 5.5.1 Photolumineszenzintensität 5.5.2 Stromdichte 5.5.3 Widerstand 5.6 Einfluss der Integration auf das Verhalten von Modellsystem III 5.6.1 Optisches Verhalten der Laminiertasche und des Harzsystems 5.6.2 Funktionalität des Schichtstapels nach der Integration 5.7 Temperaturwechseltest am integrierten Schichtstapel 5.8 Speicherzeit elektrischer Ladungsträger am Modellsystem III 5.8.1 Stabilität des Lasers und der PL Intensität 5.8.2 Reproduzierbarkeit 5.8.3 Langzeitmessung 5.9 Kopplung des Schichtsystems mit piezoelektrischem Element 6 Zusammenfassung und Ausblick 6.1 Zusammenfassung 6.2 Ausblick Anhang A : Layouts für untere Elektrode E1 und obere Elektrode E2 Anhang B : Halter für die Kontaktierung der Teststrukturen Anhang C : Frontpanel zur Aufnahme der Photolumineszenz Anhang D : Messdaten Profilometer Veeco Dektak 150 Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Lebenslauf / This work focuses on the development of a novel, self-sufficient, film-based sensor system for load detection on lightweight materials. The integrated sensor system is capable to visualize mechanical loads on lightweight structures by quenching the photoluminescence of quantum dots. Structural defects in lightweight materials can thus be detected at an early stage and total failure of an entire lightweight structure can be prevented. In addition to increased safety of individual components and complete structures, this also leads to weight, cost and raw material savings. The quenching of the photoluminescence of quantum dots by charge carrier injection as the main mechanism of the sensor system requires special thin-film layer stacks. By combining these thin-film layer stacks with piezoelectric materials, a self-sufficient sensor system is created. An evaluation, visualization and storage of the information about a mechanical load that has taken place on lightweight materials is thus achieved in a very small space.:Inhaltsverzeichnis Formelverzeichnis Abkürzungsverzeichnis Vorwort 1 Einleitung 1.1 Motivation 1.2 Zielstellung 2 Autarker Sensor für mechanische Beanspruchungen 2.1 Sensorkonzept, -aufbau und Funktionsweise 2.2 Anforderungen an die Funktionalität 2.3 Stand der Technik 3 Theoretische Grundlagen 3.1 Quantum Dots 3.1.1 Größenquantisierungseffekt 3.1.2 Photolumineszenz 3.1.3 Aufbau und Materialien 3.1.4 Kommerziell erhältliche Quantum Dots 3.2 Mechanismen zur Beeinflussung der Photolumineszenz 3.2.1 Ladungsträgerinjektion in den QD Kern 3.2.2 Feldinduzierte Ionisation des Exzitons 3.2.3 Weitere Mechanismen 3.3 Ladungsträgertransportschichten 3.3.1 Poly(N-vinylkarbazol) 3.3.2 N,N,N´,N´-Tetrakis(3-methylphenyl)-3,3´-dimethylbenzidin 3.3.3 Poly(3,4-ethylendioxythiophen)-poly(styrolsulfonat) 3.4 Lithiumfluorid als elektrischer Isolator 3.5 Modellsysteme 3.5.1 Einbettung der QDs in organische Lochtransportschichten 3.5.2 QDs zwischen Elektrode und organischer Lochtransportschicht 3.5.3 QDs zwischen Elektrode und Nichtleiter 4 Experimentelle Vorgehensweise 4.1 Layout und Kontaktierung von Teststrukturen 4.2 Verfahren zur Herstellung dünner Schichten 4.2.1 Physikalische Gasphasenabscheidung 4.2.2 Rotationsbeschichtung 4.2.3 Weitere Verfahren 4.3 Charakterisierung der Schichten und der Gesamtfunktionalität 4.3.1 Mikrospektroskopieaufbau 4.3.2 Weitere Messverfahren 4.4 Integration der Schichtstapel in Faserkunststoffverbund 5 Experimentelle Untersuchungen 5.1 Einordnung der einzelnen Schichten der Modellsysteme 5.1.1 Elektroden 5.1.2 Matrixmaterial und Quantum Dots 5.2 Einordnung des elektrischen Verhaltens der Modellsysteme 5.2.1 Modellsystem I 5.2.2 Modellsystem II 5.2.3 Modellsystem III 5.3 Einfluss externer Beleuchtung am Modellsystem II und III 5.3.1 Modellsystem II 5.3.2 Modellsystem III 5.4 Wiederholbarkeit der elektrischen Beanspruchung am Modellsystem III 5.4.1 Photolumineszenzintensität 5.4.2 Stromdichte 5.4.3 Gesamtwiderstand im Schichtstapel 5.5 Einfluss des elektrischen Feldes am Modellsystem III 5.5.1 Photolumineszenzintensität 5.5.2 Stromdichte 5.5.3 Widerstand 5.6 Einfluss der Integration auf das Verhalten von Modellsystem III 5.6.1 Optisches Verhalten der Laminiertasche und des Harzsystems 5.6.2 Funktionalität des Schichtstapels nach der Integration 5.7 Temperaturwechseltest am integrierten Schichtstapel 5.8 Speicherzeit elektrischer Ladungsträger am Modellsystem III 5.8.1 Stabilität des Lasers und der PL Intensität 5.8.2 Reproduzierbarkeit 5.8.3 Langzeitmessung 5.9 Kopplung des Schichtsystems mit piezoelektrischem Element 6 Zusammenfassung und Ausblick 6.1 Zusammenfassung 6.2 Ausblick Anhang A : Layouts für untere Elektrode E1 und obere Elektrode E2 Anhang B : Halter für die Kontaktierung der Teststrukturen Anhang C : Frontpanel zur Aufnahme der Photolumineszenz Anhang D : Messdaten Profilometer Veeco Dektak 150 Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Lebenslauf
68

Elektropolymerisation, Spektroelektrochemie und Potentiometrie von funktionalisierten leitfähigen Polymeren

Tarabek, Jan 25 November 2004 (has links)
Die vorliegende Arbeit behandelt die elektrochemische Synthese (elektrochemische Polymerisation und Copolymerisation) und die Charakterisierung der Redox- und sensorischen Eigenschaften neuer funktionalisierter Polymere für die Ionensensorik. Die Funktionalisierung wird sowohl in der Polymer-Hauptkette (Polysalene) als auch in der Polymer-Seitenkette (ein Thiophen-Copolymer: 3-Methylthiophen/6-Hydroxy-2-(2-(3-thienyl)-ethoxy)-acetophenon) dargestellt. Die Redox-Prozesse der funktionalisierten Polymere wurden mit spektroelektrochemischen Methoden: ESR-, UV-Vis-NIR- und FTIR-Spektroelektrochemie charakterisiert. Durch diese Methoden konnten während der elektrochemischen Oxidation von funktionalisierten leitfähigen Polymeren verschiedene Polymer- bzw. Copolymer-Ladungsträger nachgewiesen werden: Polaronen, Bipolaronen beim Thiophen-Copolymer, zwei Polaronen auf einer Polymerkette im Singulettezustand beim Poly(3-methylthiophen) und eine diamagnetische Spin-Spin-Wechselwirkung zwischen ungepaarten Elektronen der Cu(II)-Ionen und der ungepaarten Elektronen von bisphenolischen Ligand-Kationradikalen beim Poly[Cu(II)-salen]. Sensorische Eigenschaften gegenüber Ni(II)-Ionen wurden durch Potentiometrie an einem Poly[Ni(II)-salen]-Derivat getestet. Es zeigt eine gute potentiometrische Ni(II)-Ionenselektivität (der Logarithmus des potentiometrischen Selektivitätskoeffizienten liegt im Bereich von -0.5 bis -1.5) in Anwesenheit von Cd(II), Mn(II), Zn(II) und Na(I).
69

Electrical properties of amorphous selenium based photoconductive devices for application in x-ray image detectors

Belev, Gueorgui Stoev 14 February 2007
In the last 10-15 years there has been a renewed interest in amorphous Se (a-Se) and its alloys due to their application as photoconductor materials in the new fully digital direct conversion flat panel x-ray medical image detectors. For a number of reasons, the a-Se photoconductor layer in such x-ray detectors has to be operated at very high electric fields (up to 10 Volts per micron) and one of the most difficult problems related to such applications of a Se is the problem of the dark current (the current in the absence of any radiation) minimization in the photoconductor layer. <p>This PhD work has been devoted to researching the possibilities for dark current minimization in a-Se x-ray photoconductors devices through a systematic study of the charge transport (carrier mobility and carrier lifetimes) and dark currents in single and multilayered a-Se devices as a function of alloying, doping, deposition condition and other fabrication factors. The results of the studies are extensively discussed in the thesis. We have proposed a new technological method for dark current reduction in single and multilayered a-Se based photoconductor for x-ray detector applications. The new technology is based on original experimental findings which demonstrate that both hole transport and the dark currents in a-Se films are a very strong function of the substrate temperature (Tsubstrate) during the film deposition process. We have shown that the new technique reduces the dark currents to approximately the same levels as achievable with the previously existing methods for dark current reduction. However, the new method is simpler to implement, and offers some potential advantages, especially in cases when a very high image resolution (20 cycles/mm) and/or fast pixel readout (more than 30 times per second) are needed. <p>Using the new technology we have fabricated simple single and double (ni-like) photoconductor layers on prototype x-ray image detectors with CCD (Charge Coupled Device) readout circuits. Dark currents in the a-Se photoconductor layer were not a problem for detector operation at all tested electric fields. Compared to the currently available commercial systems for mammography, the prototype detectors have demonstrated an excellent imaging performance, in particular superior spatial resolution (20 cycles/mm). Thus, the newly proposed technology for dark current reduction has shown a potential for commercialization.
70

Electrical properties of amorphous selenium based photoconductive devices for application in x-ray image detectors

Belev, Gueorgui Stoev 14 February 2007 (has links)
In the last 10-15 years there has been a renewed interest in amorphous Se (a-Se) and its alloys due to their application as photoconductor materials in the new fully digital direct conversion flat panel x-ray medical image detectors. For a number of reasons, the a-Se photoconductor layer in such x-ray detectors has to be operated at very high electric fields (up to 10 Volts per micron) and one of the most difficult problems related to such applications of a Se is the problem of the dark current (the current in the absence of any radiation) minimization in the photoconductor layer. <p>This PhD work has been devoted to researching the possibilities for dark current minimization in a-Se x-ray photoconductors devices through a systematic study of the charge transport (carrier mobility and carrier lifetimes) and dark currents in single and multilayered a-Se devices as a function of alloying, doping, deposition condition and other fabrication factors. The results of the studies are extensively discussed in the thesis. We have proposed a new technological method for dark current reduction in single and multilayered a-Se based photoconductor for x-ray detector applications. The new technology is based on original experimental findings which demonstrate that both hole transport and the dark currents in a-Se films are a very strong function of the substrate temperature (Tsubstrate) during the film deposition process. We have shown that the new technique reduces the dark currents to approximately the same levels as achievable with the previously existing methods for dark current reduction. However, the new method is simpler to implement, and offers some potential advantages, especially in cases when a very high image resolution (20 cycles/mm) and/or fast pixel readout (more than 30 times per second) are needed. <p>Using the new technology we have fabricated simple single and double (ni-like) photoconductor layers on prototype x-ray image detectors with CCD (Charge Coupled Device) readout circuits. Dark currents in the a-Se photoconductor layer were not a problem for detector operation at all tested electric fields. Compared to the currently available commercial systems for mammography, the prototype detectors have demonstrated an excellent imaging performance, in particular superior spatial resolution (20 cycles/mm). Thus, the newly proposed technology for dark current reduction has shown a potential for commercialization.

Page generated in 0.0907 seconds