41 |
Chemical bonding analysis of complex solids in real space from the projector augmented-wave methodGolub, Pavlo 11 August 2017 (has links)
Quantum mechanics became a foundation for incessant development of versatile computational methods for analysis of chemical and physical properties of molecules and crystals. A huge progress has been made in the fifield of density functional theory, since nowadays this theory offers the best compromise between precision of results and efficiency fiof computation. The chemical bonding analysis can be easily performed with real space methods based on chemical concepts introduced via partitioning of real space into chemically meaningful domains, since the orbital based approach is not well applicable due to the delocalized nature of plane waves. However the practical usage of those methods often requires a signifificant amount of computational resources. Some methods require the evaluation of so called domain overlap matrices, that is a formidable task for complex and low-symmetry systems. In the present research the author enables the investigation of complex solid compounds with real space chemical bonding indicators by introducing the derivation of the expression for the evaluation of the domain overlap matrix elements from the projected-augmented wave method. The corresponding program module was developed, which is capable to perform the real space chemical bonding analysis with a number of methods, like electron localizability indicators, electron localization function, localization/delocalization indices and domain averaged Fermi hole orbitals. The efficiency and the accuracy of the developed implementation is demonstrated by the comparison with the domain overlap matrix elements evaluation from the full-potential linearized augmented plane wave method on a set of simple compounds with three atoms per primitive cell at most. A set of complex periodic structures is analyzed and the capability of the present implementation to unravel intricate chemical bonding patterns is demonstrated.
|
42 |
Untersuchungen zur Natur der Laves-Phasen in Systemen der ÜbergangsmetalleGrüner, Daniel 08 January 2007 (has links)
Laves-Phasen sind intermetallische Verbindungen der Zusammensetzung AB2, die in den Strukturtypen C14 (MgZn2), C15 (MgCu2), C36 (MgNi2) oder deren Abkömmlingen kristallisieren. Diese sind Polytypen mit einem gemeinsamen grundlegenden Strukturmuster. Insgesamt sind über 1400 binäre und ternäre Laves-Phasen bekannt. Sie stellen damit die größte Gruppe der bislang bekannten intermetallischen Verbindungen dar. Laves-Phasen wurden intensiv untersucht um grundlegende Aspekte der Phasenstabilität zu verstehen. Geometrische und elektronische Faktoren haben sich in ihrer Vorhersagekraft bezüglich des Auftretens und der Stabilität einer Laves-Phase aber nur in wenigen Fällen als hilfreich erwiesen. Das Auftreten von Homogenitätsbereichen und damit einhergehender struktureller Defekte ist in den meisten Fällen immer noch unklar und spiegelt grundsätzliche Probleme in der Chemie intermetallischer Verbindungen wider: Das unvollständige Bild der chemischen Bindung, die Tendenz zur Bildung ausgedehnter Homogenitätsbereiche sowie der Einfluss von Minoritätskomponenten auf Struktur und Phasenstabilität ist bei intermetallischen Verbindungen größer als bei vielen anderen Verbindungsklassen. Daher sind die Informationen über Struktur, Stabiblität und physikalische Eigenschaften intermetallischer Verbindungen im Allgemeinen unvollständig und mitunter unzuverlässig oder widersprüchlich. Um diese Probleme anzugehen wurden in dieser Arbeit Laves-Phasen in den Systemen Nb--TM (TM = Cr, Mn, Fe, Co) und Nb--Cr--TM (TM = Co, Ni) als Modellsysteme ausgewählt. Das Ziel der Untersuchung ist, das Wechselspiel zwischen chemischer Bindung, Struktur und Phasenstabilität für die Laves-Phasen auf der Grundlage genauer experimenteller Daten sowie quantenmechanischer Rechnungen zu beleuchten. Die Untersuchungen des binären Systems Nb--Co nehmen hier eine Schlüsselposition ein. Eine Neubestimmung des Phasendiagramms des Systems Nb--Co im Bereich der Laves-Phasen bestätigt die Existenz von Phasen mit C14-, C15- und C36-Struktur. Dabei wurden schmale Zweiphasenfelder C15 + C36 und C15 + C14 sowie ein schmaler, aber signifikanter Homogenitätsbereich der C36-Phase experimentell nachgewiesen. Die Kristallstrukturen von C36-Nb(1-x)Co(2+x) (x = 0,265), C15-Nb(1-x)Co(2+x) (x = 0,12), C15-NbCo2 und C14-Nb(1+x)Co(2-x) (x = 0,07) wurden mittels Einkristall-Röntgenstrukturanalyse verfeinert. Im Falle von C36-Nb(1-x)Co(2+x) (x = 0,265) und C15-Nb(1-x)Co(2+x) (x = 0,12) wird bestätigt, dass der Homogenitätsbereich durch Substitution von Nb durch Co erzeugt wird. Im Fall von C14-Nb(1+x)Co(2-x) werden Abweichungen von der Zusammensetzung NbCo2 durch Substitution von Co durch überschüssiges Nb erzeugt, wobei nur eine der beiden Co-Lagen gemischt besetzt wird. Quantenmechanische Rechnungen zeigen, dass dieses Besetzungsmuster energetisch bevorzugt ist. Weder mittels Röntgenbeugung noch mittels hochauflösender Elektronenmikroskopie und Elektronenbeugeng wurden Ordnungsvarianten oder Stapelvarianten der Laves-Phasen beobachtet. In der Kristallstruktur von C36-Nb(1-x)Co(2+x) (x = 0,265) ist mehr als ein Viertel des Nb durch überschüssiges Co ersetzt. Von zwei kristallographischen Nb-Lagen wird eine bevorzugt von Co besetzt, so dass sich der Co-Anteil der beiden Lagen etwa wie 2:1 verhält. Co-Antistrukturatome sind relativ zu der Nb-Position verschoben. Triebkraft dieser Verschiebungen ist die Bildung von Nb--Co-Kontakten innerhalb der A-Teilstruktur. Gemischte Besetzung der Nb-Lagen, die Verteilung der Co-Antistrukturatome und mit der Substitution einhergehende Verzerrungen führen zu einer komplizierten Realstruktur. Zur Beschreibung der elektronischen Struktur von C36-Nb(1-x)Co(2+x) (x = 0,265) werden daher verschiedene Modelle verwendet, die Tendenzen sowohl zur beobachteten Mischbesetzung als auch zur Verzerrung der Kristallstruktur aufzeigen. Die elektronische Struktur und chemische Bindung von C14-, C15- und C36-NbCo2 wurde vergleichend untersucht. Berechnungen der Gesamtenergie zeigen sehr geringe Energiedifferenzen zwischen den drei Strukturen, die mit einer sehr ähnlichen Bindungssituation der Polytypen im Einklang ist. In den Systemen Nb--Cr und Nb--Fe wurde der Verlauf der Gitterparameter innerhalb des gesamten Homogenitätsbereichs der Laves-Phase bei ausgewählten Temperaturen untersucht. Die Kristallstrukturen von C15-NbCr2 und C14-NbFe2 wurden erstmals verfeinert. Vorläufige Untersuchungen bestätigen die Existenz von zwei Hochtemperaturmodifikationen (C14 und C36) von NbCr2. Im System Nb--Mn wurde die Mn-reiche Seite des Homogenitätsbereichs bei 800 °C und 1100 °C an aus zweiphasigen (Mn(Nb) + C14) Präparaten isolierten Einkristallen untersucht. Bei 800 °C wird ein Kristall der Zusammensetzung NbMn2 erhalten, während bei 1100 °C ausgeprägte Löslichkeit von Mn in der C14-Phase beobachtet wird. Die Summenformel kann als Nb(1-x)Mn(2+x) (x = 0,13) geschrieben werden. Die Substitution von Nb durch Mn führt zu Verschiebungen der Antistrukturatome bezüglich der Nb-Lagen und damit zur Bildung kurzer Nb--Mn-Abstände. In den ternären Systemen Nb--Cr--Co und Nb--Cr--Ni wurden die Kristallstrukturen der C14-Phasen C14-Nb(Cr(1-x)Co(x))2 und C14-Nb(Cr(1-x)Ni(x))2 am Einkristall untersucht. Neben den auch für die binären C14-Phasen beobachteten Verzerrungen zeigen die Kristallstrukturen eine teilweise geordnete Verteilung von Cr und Co bzw. Cr und Ni auf die beiden kristallographischen Lagen der B-Teilstruktur. Die bevorzugte Besetzung wurde auf der Grundlage von Extended-Hückel-Rechnungen untersucht. Zwar können diese Rechnungen kein quantitatives Bild liefern, jedoch werden Tendenzen im System Nb--Cr--Co richtig wiedergegeben. Im System Nb--Cr--Ni liefern die Rechnungen jedoch dem Experiment widersprechende Ergebnisse. Die Vorhersagekraft der Methode ist also begrenzt. Vergleichende Untersuchungen der Reihe NbTM2, TM = Cr, Mn, Fe, Co mittels Röntgenabsorptionsspektroskopie und Bandstrukturrechnungen zeigen, dass die chemische Bindung der untersuchten Verbindungen im wesentlichen ähnlich ist, aber dass durchaus Entwicklungen innerhalb der Reihe festgestellt werden können. Diese Entwicklung wird besonders in der Verzerrung der C14-Phasen und hier speziell der B-Teilstruktur deutlich, die in den experimentell zugänglichen C14-Phasen in NbMn2 deutlicher ausgeprägt ist als in NbFe2. Analysen der chemischen Bindung mit Hilfe der COHP-Methoden zeigen eine ähnliche Tendenz zur Verzerrung, die vereinfacht auch als Funktion der Valenzelektronenkonzentration aufgefasst werden kann. Berechnungen der Gesamtenergie unterstützen diese Interpretation. Im Gesamtbild der elektronischen Struktur ist eine leichte Zunahme des ionischen Bindungsanteils von TM = Cr zu TM = Co zu erkennen. Die Natur der Laves-Phasen in Systemen der Übergangsmetalle ist ein sehr vielschichtiges Problem, das weiterhin intensive und interdisziplinäre Forschung erfordert. Insbesondere mit der Charakterisierung nichtstöchiometrischer Laves-Phasen wurden aber bereits wichtige Beiträge zum Verständnis der Bildung der Homogenitätsbereiche erarbeitet.
|
43 |
Structural Chemistry of Intermetallic Compounds of Beryllium and Magnesium with Late Transition MetalsAgnarelli, Laura 03 November 2023 (has links)
This work is dedicated to the investigation on intermetallic compounds of beryllium and magnesium with late transition metals. By conducting fundamental research, the objective is to unveil novel intermetallic compounds possessing distinctive chemical bonding and interesting physical properties, with the aim to identify potential semiconductor materials for further thermoelectric applications.
Following the recent discovery of the semiconducting properties of Be5Pt, it was initially hypothesised that replacing Be with Mg, while preserving the semiconducting properties, could enhance the widespread applicability of said material considering the lower toxicity of magnesium compared to that of beryllium. The study of the already well-investigated Mg–Pt system, revealed that a phase with composition Mg5Pt does not exist, instead two new phases, Mg3Pt2 and Mg29-xPt4+y (x = 0.47, y = 0.07), were discovered.
Mg3Pt2 can be synthesised by direct reaction of its constituent elements or through spark plasma sintering (SPS) using MgH2 and PtCl2 as precursors. An in-depth analysis of the chemical bonding in Mg3Pt2 allowed to conclude that belonging to the same structural prototype (Eu3Ga2) does not necessarily indicate the same chemical bonding scenario.
The isolation of single crystals for diffraction experiments combined with atomic-resolution transmission electron microscopy (TEM), enabled the determination and examination of the crystal structure of Mg29-xPt4+y, the existence of which had previously only been hinted on the basis of powder diffraction or metallography analysis. The investigation of the chemical bonding in Mg29-xPt4+y revealed a unique characteristic, that distinguishes it from other complex intermetallic compounds (CMAs). Notably, a spatial separation of regions with different bonding features was observed, explaining a distinctive mixed Mg/Pt site occupancy near the origin of the unit cell.
Beryllium has garnered considerable interest due to its versatile behaviour when combined with other elements. These combinations can give rise to materials exhibiting distinctive physical properties and intriguing chemical bonding characteristics. However, the high toxicity associated with beryllium and its compounds as well as difficulties in characterisation, e.g. very low X-ray scattering power, has limited systematic investigations of Be–based intermetallic compounds. This comprehensive study focuses on the binary Be–Ru system.
The redetermination of the Be3Ru crystal structure, showed that it crystallises with TiCu3–type structure. The crystal structure can be derived by ‘colouring’ the hexagonal closest packing of spheres characteristic for large groups of intermetallic compounds. Be3Ru exhibits diamagnetic properties, and its metallic electrical resistivity is in good agreement both with electronic structure calculations and experimental measurements.
Be2Ru crystallises with Fe2P–type structure, instead of the previously reported MgZn2–type one. Detailed investigations using single crystal X-ray diffraction experiments together with atomic-resolution electron microscopy have revealed the presence of minor orthorhombic inclusions dispersed within the hexagonal Fe2P–type matrix crystal structure. Despite these structural variations, both atomic arrangements primarily consist of similar structural layers and exhibit comparable chemical bonding characteristics.
It has been also discovered that Be3Ru2 crystallises with U3Si2–type structure, in contrast to the previously reported (Mn0.5Fe0.5)2O3–type structure.
Be7Ru4 and Be12Ru7 represent two new phases in the Be–Ru system. They possess a very close atomic composition (63.6 at. % Be and 63.2 at. % Be, respectively) and are situated between Be2Ru and Be3Ru2 in the Be–Ru phase diagram. Together with Be2Ru, these two new phases form a series of two-dimensional intergrowth structures, incorporating building blocks of Be2Ru and Be3Ru2 (Fe2P– and U3Si2– type structure). The first one is comprised of hexagonal channels of Ru atoms accompanied by embedded columns of [Be@Be6] trigonal prisms, while the second structure consists of columns composed of tetragonal [Be@Ru8] and trigonal [Be@Ru6] prisms. The structural organisation observed in Be7Ru4 and Be12Ru7 has not been documented previously, indicating that these two phases represent novel structural prototypes.
A careful investigation of the crystal structure of Be17Ru3, revealed that the center of a cage [X@Be12] around at the origin of the unit cell, is not completely empty, but rather partly occupied by either Be or Ru. Furthermore, it was observed that this cage can be filled by rare earth and actinide elements giving rise to a novel family of ternary compounds with composition RBe68Ru12 (R = U, Th, Ce, Pr, Gd, Ho).
Finally, two new Be–based Laves phases C15–Be2Fe1-xRux (x = 0.52) and C14–Be2Fe1-xOsx (x= 0.57) were discovered through alloying Ru and Os to C14–Be2Fe Laves phase. This study confirmed that the stability of C15 or C14 AB2 Laves phases cannot be predicted by simple reasoning such as atomic size ratio between the A and B atoms, difference in electronegativity or valence electron concentration (VEC), particularly when all three elements, Fe, Ru and Os, belong to the same group of the periodic table.
Despite their different chemical behaviour, the investigation of chemical bonding using quantum chemical techniques in the Be– and Mg–based intermetallic compounds with late transition metals, unveiled shared characteristics whereby their crystal structures are stabilised by the formation of polar multiatomic bonds. The observed charge transfer not only serves a decisive role in stabilising the atomic configurations, but also contributes to the emergence of distinct structuring of the calculated electronic density of states of states, DOS, i.e. appearance of more or less prominent dips in the vicinity of the Fermi level, implying their proximity to a semiconducting state, in particular as far as Be–based intermetallic compounds are concerned.
|
44 |
Jonbindning i svenska läromedel : Hur begreppet presenteras i läromedel och hur de kan påverka alternativa föreställningarRagagnin, Gianna January 2016 (has links)
Syftet med det här arbetet är att få en ökad insikt om hur begreppet jonbindning presenteras isvenska läromedel för gymnasieskolan. Läromedel som analyserats är läroböcker och didaktiskavideoklipp. Studien omfattar en undersökning om vilka element i läromedel förhåller sig till envetenskaplig representation och vilket innehåll som istället är känt i ämnesdidaktisk litteratur för attskapa alternativ förstärka missuppfattningar kring jonbindning. I studien analyseras dessutomskillnaderna mellan innehållet i böcker och videoklipp. Detta genomfördes genom en komparativinnehållsanalys.De flesta läromedel visar att den centrala idén är elektronövergången mellan en metall och enickemetall, ofta kopplat till visuella representationer av jonpar. Den här representationen kan bidratill missuppfattningen att jonföreningars består av diskreta molekylära enheter. I hälften avläromedel beskrivs otydligt att den elektrostatiska interaktionen är den drivande kraften ijonbindning. Läroböckerna har en mer homogen utformning och bättre grafiska lösningar, medanvideoklipps kvalitet och innehåll är mer varierad.Vissa videoklipp visar att det är möjligt att förklara jonbindningen utan att användaelektronövergången och bildning av jonpar. Man kan spekulera om lärarna som producerade demest didaktiska videoklippen har då varit medvetna om den vanligaste problematiken som orsakarmissuppfattningar om jonbindningen.
|
45 |
Modélisation au sein de la DFT des propriétés des structures électronique et magnétique et de liaison chimique des Hydrures d’Intermétalliques / DFT modeling of the electronic and magnetic structures and chemical bonding properties of intermetallic hydridesAl Alam, Adel F. 26 June 2009 (has links)
Cette thèse présente une étude modélisatrice de différentes familles d'intermétalliques et de leurs hydrures qui présentent un intérêt à la fois fondamental et appliqué. Deux méthodes complémentaires construites au sein de la théorie de la fonctionnelle densité (DFT) ont été choisies : d'une part celle à base de pseudo potentiels (VASP) pour l'optimisation géométrique, la recherche structurale et la cartographie de localisation électronique (ELF), d'autre part celle de type "tous-électrons" (ASW), pour une description détaillée de la structure électronique, des propriétés de liaison chimique suivant différents schémas et des quantités impliquant les électrons de c\oe ur comme le champ hyperfin. Un accent particulier est mis sur les rôles compétitifs des effets magnétovolumiques par rapport à ceux chimiques (liaison métal-H) dans les phases hydrurées, binaires de Laves (ex. ScFe2) et de Haucke (ex. LaNi5) et ternaires à base de cérium (ex. CeRhSn) et d'uranium (ex. U2Ni2Sn). / This thesis presents an ab initio study of several classes of intermetallics and their hydrides. These compounds are interesting from both a fundamental and an applied points of view. To achieve this aim two complementary methods, constructed within the DFT, were chosen : (i) pseudo potential based VASP for geometry optimization, structural investigations and electron localization mapping (ELF), and (ii) all-electrons ASW method for a detailed description of the electronic structure, chemical bonding properties following different schemes as well as quantities depending on core electrons such as the hyperfine field. A special interest is given with respect to the interplay between magnetovolume and chemical interactions (metal-H) effects within the following hydrided systems : binary Laves (e.g. ScFe2) and Haucke (e.g. LaNi5) phases on one hand, and ternary cerium based (e.g. CeRhSn) and uranium based (e.g. U2Ni2Sn) alloys on the other hand.
|
46 |
Bindungsmodelle für intermetallische Verbindungen mit der Struktur des CuAl2-TypsArmbrüster, Marc 28 December 2004 (has links) (PDF)
Das Ziel der vorliegenden Arbeit war es neue Wege aufzuzeigen, mit deren Hilfe Modelle der chemischen Bindung in intermetallischen Verbindungen entwickelt werden können. Diese Modelle sollten sowohl auf experimentelle als auch auf quantenchemische Befunde gestützt und physikalisch sinnvoll sein. Untersuchungsobjekt waren intermetallische AB2-Verbindungen mit der Struktur des CuAl2-Typs. Von den vielen Vertretern wurden drei Substanzklassen mit insgesamt sechs Verbindungen gewählt, nämlich CuAl2, die Stannide (MnSn2, FeSn2 und CoSn2) sowie die Antimonide (TiSb2 und VSb2). Für die Bestimmung der physikalischen Eigenschaften der Verbindungen wurden Einkristalle mit verschiedenen synthetischen Methoden (Antimonide und Stannide: Synthese in der Schmelze; FeSn2: chemischer Transport; CuAl2: modifiziertes Bridgman-Verfahren) hergestellt. Für alle Verbindungen wurden Einkristallstrukturanalysen durchgeführt, die die aus der Literatur bekannten Strukturlösungen deutlich verbessern konnten. An die Ermittlung der Existenzbedingungen schloss sich die Charakterisierung der Verbindungen hinsichtlich ihrer physikalischen Eigenschaften an. Informationen über Art und Stärke der chemischen Bindung wurden anhand von polarisierten Raman-Messungen an orientierten Einkristallen, Ermittlung der Hall-Tensor- und Widerstands-Tensor-Komponenten, XAS-Spektren und Hochdruckuntersuchungen ermittelt. Um die experimentell bestimmten Eigenschaften der Verbindungen besser verstehen zu können, wurden quantenchemische Berechnungen an den Verbindungen durchgeführt. Auf der Basis von TB-LMTO-ASA-Berechnungen wurden die Bandstrukturen und die DOS der Verbindungen ermittelt. Die anschließende Berechnung der ELF gab Hinweise auf die Bindungstopologie in den Verbindungen. Demnach ändert sich die Topologie der chemischen Bindung mit dem konstituierenden Hauptgruppenmetall und alle bindenden Wechselwirkungen in den Verbindungen besitzen kovalenten Charakter. Zusätzlich wurden anhand von Frozen-Phonon-Berechnungen mittels LAPW-Berechnungen die Schwingungsfrequenzen der Raman-aktiven Moden der Verbindungen TiSb2, VSb2 und CuAl2 ermittelt, wodurch die experimentelle Symmetriezuordnung bestätigt werden konnte. In Zusammenarbeit mit Herrn Dr. A. Yaresko (Max-Planck-Institut für Physik komplexer Systeme, Dresden) wurden die Hall-Tensor-Komponenten der Verbindungen berechnet. Aus der großen Anzahl an Daten über die Verbindungen wurden anschließend Modelle der chemischen Bindung erstellt. Zunächst wurde anhand der Bindungs-Topologie aus den ELF-Berechnungen der Ort der partiell kovalenten Bindungen im Realraum erfasst. Basierend auf dieser Bindungstopologie wurden mit Hilfe von Kraftkonstanten-Modellen die Bindungsstärken auf der Grundlage der Raman-Daten ermittelt. Die erhaltenen Modelle wurden aufgrund von berechneten Phononen-Dispersions-Diagrammen auf ihre mechanische Stabilität hin überprüft. Die experimentellen Bindungsordnungen der verschiedenen Bindungen wurden durch Vergleich mit spektroskopischen Daten von überwiegend metallorganischen Verbindungen aus der Literatur ermittelt. Abschließend wurde die Art der chemischen Bindung aufgrund der ELF-Berechnungen, relativen Raman-Intensitäten und Daten aus der Literatur über Mößbauer- und NMR-Untersuchungen sowie den Eigenschaften der Verbindungen abgeleitet. Demnach herrscht die kovalente Bindung in diesen Verbindungen vor, zusätzlich sind jedoch freie Ladungsträger vorhanden, die für die elektrische Leitfähigkeit verantwortlich sind. Den Abschluss der Arbeit bildet ein Vergleich der verschiedenen Verbindungen hinsichtlich Topologie, Art und Stärke der chemischen Bindung und eine Weiterentwicklung der Strukturtheorie des CuAl2-Typs. Im Rahmen dieser Arbeit konnten wesentliche und neue Beiträge zum Verständnis der chemischen Bindung in intermetallischen Verbindungen mit der Struktur des CuAl2-Typs erarbeitet werden.
|
47 |
Bindungsmodelle für intermetallische Verbindungen mit der Struktur des CuAl2-TypsArmbrüster, Marc 08 December 2004 (has links)
Das Ziel der vorliegenden Arbeit war es neue Wege aufzuzeigen, mit deren Hilfe Modelle der chemischen Bindung in intermetallischen Verbindungen entwickelt werden können. Diese Modelle sollten sowohl auf experimentelle als auch auf quantenchemische Befunde gestützt und physikalisch sinnvoll sein. Untersuchungsobjekt waren intermetallische AB2-Verbindungen mit der Struktur des CuAl2-Typs. Von den vielen Vertretern wurden drei Substanzklassen mit insgesamt sechs Verbindungen gewählt, nämlich CuAl2, die Stannide (MnSn2, FeSn2 und CoSn2) sowie die Antimonide (TiSb2 und VSb2). Für die Bestimmung der physikalischen Eigenschaften der Verbindungen wurden Einkristalle mit verschiedenen synthetischen Methoden (Antimonide und Stannide: Synthese in der Schmelze; FeSn2: chemischer Transport; CuAl2: modifiziertes Bridgman-Verfahren) hergestellt. Für alle Verbindungen wurden Einkristallstrukturanalysen durchgeführt, die die aus der Literatur bekannten Strukturlösungen deutlich verbessern konnten. An die Ermittlung der Existenzbedingungen schloss sich die Charakterisierung der Verbindungen hinsichtlich ihrer physikalischen Eigenschaften an. Informationen über Art und Stärke der chemischen Bindung wurden anhand von polarisierten Raman-Messungen an orientierten Einkristallen, Ermittlung der Hall-Tensor- und Widerstands-Tensor-Komponenten, XAS-Spektren und Hochdruckuntersuchungen ermittelt. Um die experimentell bestimmten Eigenschaften der Verbindungen besser verstehen zu können, wurden quantenchemische Berechnungen an den Verbindungen durchgeführt. Auf der Basis von TB-LMTO-ASA-Berechnungen wurden die Bandstrukturen und die DOS der Verbindungen ermittelt. Die anschließende Berechnung der ELF gab Hinweise auf die Bindungstopologie in den Verbindungen. Demnach ändert sich die Topologie der chemischen Bindung mit dem konstituierenden Hauptgruppenmetall und alle bindenden Wechselwirkungen in den Verbindungen besitzen kovalenten Charakter. Zusätzlich wurden anhand von Frozen-Phonon-Berechnungen mittels LAPW-Berechnungen die Schwingungsfrequenzen der Raman-aktiven Moden der Verbindungen TiSb2, VSb2 und CuAl2 ermittelt, wodurch die experimentelle Symmetriezuordnung bestätigt werden konnte. In Zusammenarbeit mit Herrn Dr. A. Yaresko (Max-Planck-Institut für Physik komplexer Systeme, Dresden) wurden die Hall-Tensor-Komponenten der Verbindungen berechnet. Aus der großen Anzahl an Daten über die Verbindungen wurden anschließend Modelle der chemischen Bindung erstellt. Zunächst wurde anhand der Bindungs-Topologie aus den ELF-Berechnungen der Ort der partiell kovalenten Bindungen im Realraum erfasst. Basierend auf dieser Bindungstopologie wurden mit Hilfe von Kraftkonstanten-Modellen die Bindungsstärken auf der Grundlage der Raman-Daten ermittelt. Die erhaltenen Modelle wurden aufgrund von berechneten Phononen-Dispersions-Diagrammen auf ihre mechanische Stabilität hin überprüft. Die experimentellen Bindungsordnungen der verschiedenen Bindungen wurden durch Vergleich mit spektroskopischen Daten von überwiegend metallorganischen Verbindungen aus der Literatur ermittelt. Abschließend wurde die Art der chemischen Bindung aufgrund der ELF-Berechnungen, relativen Raman-Intensitäten und Daten aus der Literatur über Mößbauer- und NMR-Untersuchungen sowie den Eigenschaften der Verbindungen abgeleitet. Demnach herrscht die kovalente Bindung in diesen Verbindungen vor, zusätzlich sind jedoch freie Ladungsträger vorhanden, die für die elektrische Leitfähigkeit verantwortlich sind. Den Abschluss der Arbeit bildet ein Vergleich der verschiedenen Verbindungen hinsichtlich Topologie, Art und Stärke der chemischen Bindung und eine Weiterentwicklung der Strukturtheorie des CuAl2-Typs. Im Rahmen dieser Arbeit konnten wesentliche und neue Beiträge zum Verständnis der chemischen Bindung in intermetallischen Verbindungen mit der Struktur des CuAl2-Typs erarbeitet werden.
|
Page generated in 0.0741 seconds