1 |
Modélisation de nanoalliages à base de platine : Co-Pt, système emblématique de l'ordre, et Pt-Ag, système hybride entre ordre et démixtion / A theoretical study of Pt-based nanoalloys : Co-Pt, typical ordering system, and Pt-Ag, hybrid system between ordering and demixionFront, Alexis 20 December 2018 (has links)
Cette thèse est consacrée à l'étude de deux systèmes, à la fois proches et différents par leur comportement : Co-Pt, système emblématique de l'ordre chimique, et Pt-Ag, système hybride présentant à la fois un ordre chimique et une tendance à la démixtion, ainsi qu'une forte tendance à la ségrégation. Afin de répondre à ces diverses questions, nous adoptons une approche semi-empirique à travers un potentiel à $N$-corps, permettant les relaxations atomiques, dans l'approximation du second moment de la densité d'états (SMA), couplé à des simulations Monte Carlo dans différents ensembles. Des agrégats de différentes tailles (allant de 1000 à 10000 atomes) et de différentes morphologies (octaèdre tronqué, décaèdre, ou icosaèdre) sont analysés en terme de composition chimique sur les différents sites inéquivalents (sommet, arête, facettes (100) et (111) et coeur) puis comparés aux systèmes de référence (surfaces, volume) sur toute la gamme de concentration. Pour le système Co-Pt, nous observons des structures ordonnées similaires à celles du volume pour le coeur et similaires à celles des surfaces pour les facettes. L'impact de la phase bidimensionnelle (√3×√3)R30◦ propre à la surface, est d'autant plus important sur l'ordre chimique au coeur que la nanoparticule est de petite taille. Pour le système Pt-Ag, nous observons une importante ségrégation de l'Ag en surface, ainsi qu'un enrichissement de Pt en sous-surface, et la stabilisation de la phase ordonnée L1$_{1}$ au coeur. Cette structure peut apparaître en un seul variant ou bien en adoptant tous les variants possibles, conduisant ainsi à une structure en pelures d'oignon. / Due to the correlation between atomic arrangement and physical properties, ordered nanoalloys are particularly interesting in the field of catalysis, magnetism, or optics. By reducing the system size, from alloy to nanoalloy, a lot of questions arise: Is chemical ordering conserved? What is the morphology of nanoalloys? What is the properties evolution as a size function? Is there a coupling between segregation and core ordering? This thesis is dedicated to two systems: Co-Pt, a typical example of ordering and Pt-Ag, hybrid system between ordering and demixion. To answer these questions, we performed Monte Carlo simulations in different ensembles with semi-empirical many-body potential within the Second Moment Approximation (SMA) of the density of states which allows atomic relaxations. Nanoparticles of different sizes (from 1000 to 10000 atoms) and shapes (truncated octahedra, decahedra, or icosahedra) are analyzed considering chemical composition on each site (vertex, edge, (111) and (100) facets and core) and compared to reference systems (surfaces and bulk) on the whole range of composition. For Co-Pt, we get ordered structures similar to the bulk ones and similar to surfaces for facets. The bidimensional phase (√3×√3)R30◦, purely due to surface effect, impacts core ordering, even more for small clusters. For Pt-Ag, we get a strong Ag segregation on surface coupled with a Pt sub-surface enrichment, and a stable L1$_{1}$ phase in the core. This ordered structure may appear with a single variant or with multiple variants, leading to an onion-like structure.
|
2 |
Synergistic Effects of Lattice Instability and Chemical Ordering on FCC Based Complex Concentrated AlloysDasari, Sriswaroop 08 1900 (has links)
The current work investigates how the interactions among constituent elements in high entropy alloys or complex concentrated alloys (HEA/CCAs) can lead to lattice instability and local chemical ordering which in turn affects the microstructure and properties of these alloys. Using binary enthalpies of mixing, the degree of ordering in concentrated multi-component solid solutions was successfully tailored by introducing Cr, Al and Ti in a CoFeNi HEA/CCA. CoFeNi was selected as the base alloy to achieve a close to random solid solution as indicated by the near-zero binary enthalpies in CoFeNi alloy system. The room temperature tensile properties of these alloys with varied degree of ordering follow a consistent trend where yield stress increased with degree of ordering. This novel approach provides a new alloy design strategy to obtain controlled ordering tendencies and consequently targeted mechanical properties. Further studies on specific alloys have been conducted to utilize this ordering tendency in attaining precipitation strengthening. For this purpose, Al, Ti and Ni were selected to promote ordering and Co, Fe, and Cr were chosen to strengthen the solid solution matrix. In Al0.25CoFeNi HEA/CCA, the ordering tendency between Al and Ni results in a competition between two long-range ordered phases, L12 and B2. While homogenous L12 precipitation takes place at an annealing temperature of 500oC, heterogeneous B2 precipitation occurs at 700oC. At 600oC, this competition between L12 and B2 phases results in a novel nano-lamellar microstructure. The alternating lamellae are mainly FCC and BCC based whose morphology is similar to pearlite in steels. However, the FCC lamella is made up of FCC and L12 phases and the BCC lamella is made up of BCC and B2 phases. A different thermomechanical processing route can be used to obtain the same phase composition but distributed in a nano-grained fashion. This nano-grained microstructure exhibits the best strength-ductility combination in this alloy. Thermomechanical processing can also be used to engineer the transformation pathway of L12 from homogenous to discontinuous precipitation. The homogenous and discontinuous L12 precipitation has been investigated in two different alloys namely, Al0.2Ti0.3Co1.5CrFeNi1.5 and Al0.3Ti0.2Co0.7CrFeNi1.7. While discontinuous precipitation (DP) is generally considered deleterious to mechanical properties, the results from this study suggests that microstructures with DP perform better compared to homogenous L12 up to 500oC. However, beyond 500oC, microstructures with homogenous L12 appears to perform better than discontinuously precipitated FCC+L12 microstructure.
|
3 |
Études des propriétés magnétiques d'assemblées de nanoparticules de Co, FeRh et FeAu / Study of magnetic properties on assemblies of Co, FeRh and FeAu nanoparticlesHillion, Arnaud 05 October 2012 (has links)
Les nano-aimants se situent à la limite entre le complexe moléculaire et l’état massif. D’un point de vue fondamental, les effets dus à la taille réduite du système et en particulier les effets de surface sont susceptibles de faire apparaitre de nouvelles propriétés. Ces propriétés peuvent être à l’origine de nouvelles applications dans des domaines comme le stockage d’information magnétique, la catalyse, la biotechnologie, le diagnostic médical ou l’énergie. Dans ce travail, des nanoparticules de 1,5 à 5 nm de diamètre ont été synthétisés par low energy cluster beam deposition (LECBD) puis encapsulées dans différentes matrices. Dans un premier temps, des systèmes modèles à base de nanoparticules de Cobalt fortement diluées dans différentes matrice ont été synthétisés dans l’optique de remonter le plus précisément aux propriétés intrinsèques des nano-aimants. La suite de ce travail a consisté à augmenter la concentration en nanoparticules dans ces échantillons afin de caractériser l’influence des interactions sur le comportement magnétique macroscopique des particules. Enfin, après l’élaboration d’outils permettant de déterminer précisément les propriétés de systèmes modèles, ceux-ci ont été appliqués à des systèmes bimétalliques à fort intérêts théorique et applicatif (FeRh et FeAu). Nous avons montré que, après recuit sous ultra-vide, les nanoparticules d’alliage FeRh en matrice de carbone présentent une transition de phase A1 vers B2 sans trace de pollution ni de coalescence. Cette transition a été mise en évidence structurellement par microscopie électronique à transmission haute résolution et magnétiquement par magnétométrie à SQUID et dichroïsme magnétique de rayons X. / Nanomagnets are at the limit between a molecular complex and the bulk state. From a fundamental standpoint, the effects due to the small size of the system and particularly the increasing surface to volume ratio are likely to bring about new properties. Nanoparticles have found numerous applications in areas such as magnetic information storage, catalysis, biotechnology, medical diagnostics and energy. In this work, nanoparticles of 1.5 to 5 nm in diameter were synthesized by low energy cluster beam deposition (LECBD) and encapsulated in different matrices. As a first step, model systems based on cobalt nanoparticles strongly diluted in different matrices were fabricated in order to study more precisely the intrinsic properties of the nanomagnets. The continuation of this work consisted in increasing the concentration of nanoparticles in order to characterize the influence of interactions on the macroscopic magnetic behavior of the particles. Finally, after the development of tools to accurately determine the properties of model systems, these tools have been applied to bimetallic systems of significant theoretical and applicative interest (FeRh and FeAu). In particular, this work shows that after annealing under ultrahigh vacuum, the FeRh alloy nanoparticles in a carbon matrix show a phase transition A1 to B2 with no trace of pollution or coalescence. This transition has been demonstrated structurally by high resolution transmission electron microscopy (HRTEM) and magnetically by SQUID magnetometry and X-ray magnetic dichroism (XMCD).
|
4 |
Caractérisation structurale et magnétique de nanoparticules de CoPt : mise en évidence de la transition de phase A1 vers L10 / Structural and magnetic characterization of CoPt nanoparticles : direct observation of the phase transition between the A1 phase and the L10 oneBlanc, Nils 09 December 2009 (has links)
Les nanoalliages à base de matériaux ferromagnétiques sont intéressants car ils peuvent être à la base d’une technologie de stockage haute densité innovante. En particulier, l’alliage CoPt présente une phase ordonnée fortement anisotrope. Dans ce travail, des nanoparticules de 1,5 à 5 nm de diamètre ont été synthétisées dans un bâti ultra-vide par "Mass Selected Low Energy Cluster Beam Deposition " puis déposées avec une faible énergie et enrobées dans une matrice de carbone amorphe.Après une caractérisation des couches d’agrégats en matrice de carbone par microscopie électronique en transmission (MET), la structure des nanoparticules est étudiée par MET en mode haute-résolution et comparée `a des simulations d’images. Cette approche originale permet de mettre en évidence la mise en ordre des nanoparticules et de quantifier le paramètre d’ordre d’une particule unique. La diffraction des rayons X en incidence rasante (GIXRD) permet, grâce `a des modélisations d’arriver `a la même conclusion :après un recuit sous ultra-vide de 2 h à 650°C, les nanoparticules d’alliage CoPt en matrice de carbone présentent une transition de phase A1 vers L10 sans trace de pollution ni de coalescence.Une étude magnétique des mêmes échantillons par magnétométrie à SQUID et dichroïsme magnétique des rayons X (XMCD) permet de confirmer que les nanoparticules, après un tel traitement thermique,subissent un changement de propriétés magnétiques allant dans le sens d’une mise en ordre chimique même pour des très petites tailles (de diamètre 1,8 nm). / CoPt nanoalloy are interesting: because of the huge anisotropy of the bulk phase it representsa good candidate for high-density magnetic storage applications. In this work CoPt nanoparticles are synthesizedunder ultra high vacuum conditions using “Mass Selected Low Energy Cluster Beam Deposition”in the size range of 1.5 to 5 nm in diameter and co-deposited in an amorphous carbon matrix.After a characterization of the nanoparticle layers in the carbon matrix using conventional transmissionelectron microscopy (TEM) the nanoparticle structure is studied using high resolution TEM togetherwith image simulation. This novel technique brings to light the phase transition of the alloy between thechemically disordered phase A1 and the ordered one L10. In the same time, the long-range chemicalorder parameter can be measured for an individual nanoparticle. The grazing incidence X ray diffractionspectra together with spectra modelisations provide the same conclusion after an annealing of 2 h at650°C the nanoparticles undergo a phase transition without any pollution or coalescence.A magnetic characterization using SQUID magnetometry and X ray magnetic circular dichro¨ısm(XMCD) confirms that after annealing the nanoparticles even for small sizes (1.8 nm) display a changein their magnetic properties corroborating the structural measurements.
|
5 |
Atomistic modelling of precipitation in Ni-base superalloysSchmidt, Eric January 2019 (has links)
The presence of the ordered $\gamma^{\prime}$ phase ($\text{Ni}_{3}\text{Al}$) in Ni-base superalloys is fundamental to the performance of engineering components such as turbine disks and blades which operate at high temperatures and loads. Hence for these alloys it is important to optimize their microstructure and phase composition. This is typically done by varying their chemistry and heat treatment to achieve an appropriate balance between $\gamma^{\prime}$ content and other constituents such as carbides, borides, oxides and topologically close packed phases. In this work we have set out to investigate the onset of $\gamma^{\prime}$ ordering in Ni-Al single crystals and in Ni-Al bicrystals containing coincidence site lattice grain boundaries (GBs) and we do this at high temperatures, which are representative of typical heat treatment schedules including quenching and annealing. For this we use the atomistic simulation methods of molecular dynamics (MD) and density functional theory (DFT). In the first part of this work we develop robust Bayesian classifiers to identify the $\gamma^{\prime}$ phase in large scale simulation boxes at high temperatures around 1500 K. We observe significant \gamma^{\prime} ordering in the simulations in the form of clusters of $\gamma^{\prime}$-like ordered atoms embedded in a $\gamma$ host solid solution and this happens within 100 ns. Single crystals are found to exhibit the expected homogeneous ordering with slight indications of chemical composition change and a positive correlation between the Al concentration and the concentration of $\gamma^{\prime}$ phase. In general, the ordering is found to take place faster in systems with GBs and preferentially adjacent to the GBs. The sole exception to this is the $\Sigma3 \left(111\right)$ tilt GB, which is a coherent twin. An analysis of the ensemble and time lag average displacements of the GBs reveals mostly `anomalous diffusion' behaviour. Increasing the Al content from pure Ni to Ni 20 at.% Al was found to either consistently increase or decrease the mobility of the GB as seen from the changing slope of the time lag displacement average. The movement of the GB can then be characterized as either `super' or `sub-diffusive' and is interpreted in terms of diffusion induced grain boundary migration, which is posited as a possible precursor to the appearance of serrated edge grain boundaries. In the second part of this work we develop a method for the training of empirical interatomic potentials to capture more elements in the alloy system. We focus on the embedded atom method (EAM) and use the Ni-Al system as a test case. Recently, empirical potentials have been developed based on results from DFT which utilize energies and forces, but neglect the electron densities, which are also available. Noting the importance of electron densities, we propose a route to include them into the training of EAM-type potentials via Bayesian linear regression. Electron density models obtained for structures with a range of bonding types are shown to accurately reproduce the electron densities from DFT. Also, the resulting empirical potentials accurately reproduce DFT energies and forces of all the phases considered within the Ni-Al system. Properties not included in the training process, such as stacking fault energies, are sometimes not reproduced with the desired accuracy and the reasons for this are discussed. General regression issues, known to the machine learning community, are identified as the main difficulty facing further development of empirical potentials using this approach.
|
Page generated in 0.0909 seconds