1 |
Reciclagem química de espumas de poliuretano / Chemical recycling of polyurethane foamsRibeiro, Elem Cristina Carlos 16 August 2018 (has links)
Orientador: Marco-Aurelio De Paoli / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-16T00:53:24Z (GMT). No. of bitstreams: 1
Ribeiro_ElemCristinaCarlos_M.pdf: 2244998 bytes, checksum: d362a28fecd398558d6b535a95ecd592 (MD5)
Previous issue date: 2010 / Resumo: Os poliuretanos representam uma variedade de produtos caracterizados pela presença de grupos carbamatos na cadeia principal, formados através da reação de poliadição dos compostos isocianatos com outros contendo hidrogênio ativo, assim como os alcoóis. São utilizados em diversas áreas e constituem um dos mais importantes grupos de polímeros devido à versatilidade em diferentes aplicações. Como conseqüência direta do sucesso comercial tem-se, proporcionalmente, uma grande quantidade de resíduos gerados, que muitas vezes são destinados ao descarte em aterros sanitários, constituindo um problema econômico e ambiental. Sendo assim, a reciclagem química dos poliuretanos torna-se oportuna quando outros processos usuais de reciclagem não podem ser aplicados, ou constitui uma opção mais viável ao invés do descarte nos aterros. O objetivo principal deste trabalho foi recuperar o poliol utilizado na produção da espuma de poliuretano através de reciclagem química. Utilizou-se uma reação de glicólise em duas fases com dietilenoglicol e dietanolamina, como solvente e catalisador, respectivamente. Os parâmetros da reação foram investigados e os produtos foram caracterizados, de forma a avaliar o poliol recuperado presente na fase superior, bem como os subprodutos presentes na fase inferior. A caracterização do poliol reciclado foi realizada através de Espectroscopia no Infravermelho com Transformada de Fourier, Cromatografia de Permeação em Gel, Ressonância Magnética Nuclear, titulação Karl Fischer e índice de acidez. O poliol recuperado foi utilizado na produção de espumas e as amostras comparadas à espuma submetida ao processo de reciclagem. A caracterização das espumas foi realizada por análise termogravimétrica, calorimetria diferencial de varredura, análise dinâmico-mecânica e microscopia eletrônica de varredura / Abstract: Polyurethanes are characterized by the presence of carbamate groups in the polymer chain, that are originated by polyaddition reaction of isocyanates with others compounds having an active hydrogen, like alcohols. Polyurethanes are applied in different areas of the industry and represent one of the most important polymer groups due to its versatile application. As direct consequence of the its successful applications, it has generates a lot of wastes of polyurethanes that sometimes are discarded in landfillings. Due to the environmental and economic issues, polyurethane chemical recycling became suitable when other recycling processes are not applicable to polyurethanes, being an alternative to landfillings. The main proposal of this work is to recover the constituent polyol from the polyurethane scrap, since it is a valuable raw material, through a chemical recycling process. Among the existing processes, it was considered the ¿splitphase¿ glycolysis using diethylene glycol (DEG), as a glycolysis agent, and diethanolamine (DEA), as a catalyst, in order to obtain better quality products by reactants activity. Reaction parameters were investigated and the products of the glycolysis reaction were characterized in order to evaluate the glycol recovered and present on the upper phase, while the by-products, like amides and urea; and excess of DEG and DEA excess composed the bottom lower phase. The characterization of recycled polyol was done by Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Nuclear Magnetic Resonance, water content by Karl Fisher titration and acidity index. Recovered polyol was used to produce new foams and their characterizations were compared to the original one. The characterizations of the foams were done by Thermogravimetric Analysis, Differential Scanning Calorimetry, Dynamic Mechanic Analysis and Scanning Electron Microscopy / Mestrado / Quimica Inorganica / Mestre em Química
|
2 |
Separation for regeneration : Chemical recycling of cotton and polyester textilesBjörquist, Stina January 2017 (has links)
In 2015, 96.7 million tonnes of textile fibres were produced world-wide. Our high consumption of textiles leads to an increased amount of textile waste. In Sweden, the majority of used clothing and textiles are incinerated due to the lack of recycling techniques. A large amount of post-consumer textile waste is made from blended materials. One of the most common blends, used in as near as all workwear and service textiles, is cotton/polyester. To enable chemical recycling of such textiles, cotton and polyester must first be separated. The aim of this thesis was to separate the materials by depolymerizing the polyester using alkaline hydrolysis. The focus of the work was on how such a process should be performed without a catalyst, in order to result in both a high yield and a high purity of the cotton residue. In order to recycle the residue as a raw material for manufacturing of man-made cellulosic fibres, the cellulose chains in the cotton must also be maintained as unaffected as possible. The polyester in new sheets was completely depolymerized after 390 min at a temperature of 90ºC using a 10% sodium hydroxide concentration and a 1% material-to-liquor concentration. The separation using these conditions gave high yields (above 96%) of the cotton residue regardless of the material fineness used in the process. Furthermore, the separation performed on old sheets show that a pure cotton residue could be produced using higher material concentrations. It was shown that the cotton residue from old sheets, laundered around 50 times, had an intrinsic viscosity comparable to dissolving pulps used for viscose fibre spinning. This study concludes that alkaline hydrolysis without the use of a catalyst could be used to separate cotton and polyester in blended textiles. Furthermore, the findings show that cotton percentage in old sheets only decreased slightly after 50 launderings. Characterization of the materials using ATR FTIR spectroscopy indicate that an integrated textile recycling of hospital bed sheets could be performed since the sheets only contain cotton and polyester in all parts of the sheets.
|
3 |
Reciclagem mecânica-química de resíduos de filmes de polietileno de baixa densidade em combinação com o polipropileno / Mechanical-chemical recycling of low density polyethylene film waste in combination with polypropyleneCamargo, Rayane Veloso de 08 February 2019 (has links)
O desafio da gestão dos resíduos gerados pela produção e consumo de produtos sempre acompanhou a humanidade, revelando-se um problema quando se trata do seu descarte e destinação. No entanto, nos últimos anos verifica-se um agravamento deste problema, dado o volume e diversidade de resíduos gerados. Em especial, os resíduos poliméricos merecem bastante destaque pelo seu grande volume nos aterros sanitários e pela poluição causada em diversos ecossistemas. A reciclagem deste material é apontada como uma alternativa e auxílio na solução do problema. O presente estudo teve como objetivo o desenvolvimento de um método de reciclagem do polietileno de baixa densidade que envolve operações de processamento mecânico e tratamento térmico e químico do material. Para isto, blendas de resíduos de polietileno de baixa densidade (PEBD) e polipropileno (PP) com até 30 % em massa de PP foram preparadas com a incorporação de catalisadores do tipo zeólita ZSM-5 e Ziegler-Natta e submetidas ao tratamento térmico em condições controladas de temperatura e atmosfera de nitrogênio. Os resultados obtidos mostram a ação do catalisador zeólita ZSM- 5 como modificador da estrutura polimérica já na etapa de processamento termomecânico do material. Os catalisadores proporcionam mudanças consideráveis nas propriedades das blendas PEBD/PP, de acordo com as condições em que os ensaios são realizados. O tratamento de resíduos poliméricos em presença de catalisadores apresenta potencial para a reciclagem de resíduos poliméricos podendo gerar materiais reciclados com propriedades melhoradas. / The challenge for the waste management generated by the production and consume of products has always followed the Humankind, showing as a problem for discard and destination. However, in the last years an aggravation of this problem has been verified due to the volume and diversity of the waste produced. Particularly, the polymeric waste has a great prominence due to the large amount in landfills and pollution caused in several ecosystems. The polymeric recycling is indicated as an alternative for the problem. The aims of this study had been the development of a method for the recycling of the low-density polyethylene (LDPE) that involves mechanical processing operations and thermal-chemical treatment of the material. For this reason, blends of LDPE waste and polypropylene (PP) containing until 30 wt% of PP has been prepared with incorporation of zeolite ZSM-5 and Ziegler-Natta catalyst and submitted to thermal treatment under controlled conditions of temperature and nitrogen flow. The results presents the action of zeolite catalyst as modifier of the polymeric structure during step of the thermomechanical processing of the material. The catalysts have caused considerable changes on the properties of LDPE/PP blends, according to the experimental conditions. The treatment of polymeric waste in presence of catalyst shows potential for the recycling of polymeric materials and can generate recycled materials with improved properties.
|
4 |
Despolimerização de PET por glicólise catalisada por nanotubos de titanatosLima, Gabrielle Ritter January 2018 (has links)
O poli(tereftalato de etileno), PET, é um material polimérico importante, largamente utilizado na produção de garrafas para refrigerante e água mineral. Entretanto, a destinação das embalagens de PET pós-consumo vem criando sérias preocupações econômicas e ambientais. Uma das alternativas de destino desse material é a reciclagem química por glicólise, tendo como objetivo a produção do monômero tereftalato de bis-hidroxietila (BHET). Esta reação, embora referenciada, ainda apresenta problemas como rendimento de BHET e tempo de reação, entre outros, tendo como desafio o desenvolvimento de novos catalisadores eficientes e altamente seletivos. Dentro deste contexto, o presente trabalho busca estudar a atividade catalítica de um material nanoestruturado, os nanotubos de titanatos (TNT), na glicólise de PET (virgem e pós-consumo) comparado ao acetato de zinco (catalisador mais utilizado citado em literatura), a otimização de alguns parâmetros reacionais (granulometria de PET pós-consumo, razão Etilenoglicol:PET, porcentagem molar de TNT) e uma modificação dos nanotubos com zinco (ZnTNT) na despolimerização do PET Para a caracterização dos produtos as principais técnicas utilizadas foram a Calorimetria Exploratória Diferencial (DSC), Análise Termogravimétrica (TGA) e Ressonância Magnética Nuclear (RMN), além de resultados de rendimento, turnover number (TON) e turnover frequency (TOF). A despolimerização ocorreu por reação de glicólise utilizando PET virgem e pós-consumo e etilenoglicol para diferentes tempos a uma temperatura de 196°C. Os principais resultados mostram os TNT como catalisadores promissores, apresentando rendimentos em BHET de 83,9 e 76,7%, para PET virgem e pós-consumo, respectivamente, para 3 horas de reação. Esses valores são equiparáveis aos obtidos quando utilizado acetato de zinco, em que foi alcançado 79,4% (PET virgem) e 80,8% (PET pós-consumo). Após a modificação dos TNT com zinco, os resultados de rendimento em BHET alcançaram 87,1% para 3 horas de reação na menor granulometria estudada, demonstrando ser um catalisador ainda mais eficiente para essa reação. / Polyethylene terephthalate, PET, is an important polymer material, widely used in the production of bottles for soda and mineral water. However, the disposal of post-consumer PET packaging has created serious economic and environmental concerns. One of the alternatives for the disposal of this material is the chemical recycling by glycolysis, aiming the production of the monomer bis-(2hydroxyethyl) terephthalate (BHET). This reaction, although referenced, still presents problems such as BHET yield and reaction time, among others, having as challenge the development of new efficient and highly selective catalysts. In this context, the present work aims to study the catalytic activity of a nanostructured material, the titanate nanotubes (TNT) in PET glycolysis (virgin and post-consumer) compared to zinc acetate (the most used catalyst cited in literature), the study of some reaction parameters (post-consumer PET granulometry, Ethylene glycol:PET ratio and TNT molar percentage) and a modification of the catalyst with zinc (ZnTNT) in the depolymerization of PET For the characterization of the products, the main techniques used were Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Nuclear Magnetic Resonance (NMR), as well as yield, turnover number (TON) and turnover frequency (TOF) results. The depolymerization occurred by glycolysis reaction using virgin and post-consumer PET and ethylene glycol at different times at a temperature of 196°C. The main results show TNT as promising catalysts, with yields of BHET yields of 83.9 and 76.7%, for virgin and post-consumer PET, respectively, for 3 hours of reaction. These values are similar to those obtained when zinc acetate was used, in which 79.4% (virgin PET) and 80.8% (post-consumer PET) were reached. After the modification of the TNT with zinc, the yield results in BHET reached 87.1% for 3 hours of reaction at the smaller particle size studied, proving itself to be an even more efficient catalyst for this reaction.
|
5 |
Despolimerização de PET por glicólise catalisada por nanotubos de titanatosLima, Gabrielle Ritter January 2018 (has links)
O poli(tereftalato de etileno), PET, é um material polimérico importante, largamente utilizado na produção de garrafas para refrigerante e água mineral. Entretanto, a destinação das embalagens de PET pós-consumo vem criando sérias preocupações econômicas e ambientais. Uma das alternativas de destino desse material é a reciclagem química por glicólise, tendo como objetivo a produção do monômero tereftalato de bis-hidroxietila (BHET). Esta reação, embora referenciada, ainda apresenta problemas como rendimento de BHET e tempo de reação, entre outros, tendo como desafio o desenvolvimento de novos catalisadores eficientes e altamente seletivos. Dentro deste contexto, o presente trabalho busca estudar a atividade catalítica de um material nanoestruturado, os nanotubos de titanatos (TNT), na glicólise de PET (virgem e pós-consumo) comparado ao acetato de zinco (catalisador mais utilizado citado em literatura), a otimização de alguns parâmetros reacionais (granulometria de PET pós-consumo, razão Etilenoglicol:PET, porcentagem molar de TNT) e uma modificação dos nanotubos com zinco (ZnTNT) na despolimerização do PET Para a caracterização dos produtos as principais técnicas utilizadas foram a Calorimetria Exploratória Diferencial (DSC), Análise Termogravimétrica (TGA) e Ressonância Magnética Nuclear (RMN), além de resultados de rendimento, turnover number (TON) e turnover frequency (TOF). A despolimerização ocorreu por reação de glicólise utilizando PET virgem e pós-consumo e etilenoglicol para diferentes tempos a uma temperatura de 196°C. Os principais resultados mostram os TNT como catalisadores promissores, apresentando rendimentos em BHET de 83,9 e 76,7%, para PET virgem e pós-consumo, respectivamente, para 3 horas de reação. Esses valores são equiparáveis aos obtidos quando utilizado acetato de zinco, em que foi alcançado 79,4% (PET virgem) e 80,8% (PET pós-consumo). Após a modificação dos TNT com zinco, os resultados de rendimento em BHET alcançaram 87,1% para 3 horas de reação na menor granulometria estudada, demonstrando ser um catalisador ainda mais eficiente para essa reação. / Polyethylene terephthalate, PET, is an important polymer material, widely used in the production of bottles for soda and mineral water. However, the disposal of post-consumer PET packaging has created serious economic and environmental concerns. One of the alternatives for the disposal of this material is the chemical recycling by glycolysis, aiming the production of the monomer bis-(2hydroxyethyl) terephthalate (BHET). This reaction, although referenced, still presents problems such as BHET yield and reaction time, among others, having as challenge the development of new efficient and highly selective catalysts. In this context, the present work aims to study the catalytic activity of a nanostructured material, the titanate nanotubes (TNT) in PET glycolysis (virgin and post-consumer) compared to zinc acetate (the most used catalyst cited in literature), the study of some reaction parameters (post-consumer PET granulometry, Ethylene glycol:PET ratio and TNT molar percentage) and a modification of the catalyst with zinc (ZnTNT) in the depolymerization of PET For the characterization of the products, the main techniques used were Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Nuclear Magnetic Resonance (NMR), as well as yield, turnover number (TON) and turnover frequency (TOF) results. The depolymerization occurred by glycolysis reaction using virgin and post-consumer PET and ethylene glycol at different times at a temperature of 196°C. The main results show TNT as promising catalysts, with yields of BHET yields of 83.9 and 76.7%, for virgin and post-consumer PET, respectively, for 3 hours of reaction. These values are similar to those obtained when zinc acetate was used, in which 79.4% (virgin PET) and 80.8% (post-consumer PET) were reached. After the modification of the TNT with zinc, the yield results in BHET reached 87.1% for 3 hours of reaction at the smaller particle size studied, proving itself to be an even more efficient catalyst for this reaction.
|
6 |
Despolimerização de PET por glicólise catalisada por nanotubos de titanatosLima, Gabrielle Ritter January 2018 (has links)
O poli(tereftalato de etileno), PET, é um material polimérico importante, largamente utilizado na produção de garrafas para refrigerante e água mineral. Entretanto, a destinação das embalagens de PET pós-consumo vem criando sérias preocupações econômicas e ambientais. Uma das alternativas de destino desse material é a reciclagem química por glicólise, tendo como objetivo a produção do monômero tereftalato de bis-hidroxietila (BHET). Esta reação, embora referenciada, ainda apresenta problemas como rendimento de BHET e tempo de reação, entre outros, tendo como desafio o desenvolvimento de novos catalisadores eficientes e altamente seletivos. Dentro deste contexto, o presente trabalho busca estudar a atividade catalítica de um material nanoestruturado, os nanotubos de titanatos (TNT), na glicólise de PET (virgem e pós-consumo) comparado ao acetato de zinco (catalisador mais utilizado citado em literatura), a otimização de alguns parâmetros reacionais (granulometria de PET pós-consumo, razão Etilenoglicol:PET, porcentagem molar de TNT) e uma modificação dos nanotubos com zinco (ZnTNT) na despolimerização do PET Para a caracterização dos produtos as principais técnicas utilizadas foram a Calorimetria Exploratória Diferencial (DSC), Análise Termogravimétrica (TGA) e Ressonância Magnética Nuclear (RMN), além de resultados de rendimento, turnover number (TON) e turnover frequency (TOF). A despolimerização ocorreu por reação de glicólise utilizando PET virgem e pós-consumo e etilenoglicol para diferentes tempos a uma temperatura de 196°C. Os principais resultados mostram os TNT como catalisadores promissores, apresentando rendimentos em BHET de 83,9 e 76,7%, para PET virgem e pós-consumo, respectivamente, para 3 horas de reação. Esses valores são equiparáveis aos obtidos quando utilizado acetato de zinco, em que foi alcançado 79,4% (PET virgem) e 80,8% (PET pós-consumo). Após a modificação dos TNT com zinco, os resultados de rendimento em BHET alcançaram 87,1% para 3 horas de reação na menor granulometria estudada, demonstrando ser um catalisador ainda mais eficiente para essa reação. / Polyethylene terephthalate, PET, is an important polymer material, widely used in the production of bottles for soda and mineral water. However, the disposal of post-consumer PET packaging has created serious economic and environmental concerns. One of the alternatives for the disposal of this material is the chemical recycling by glycolysis, aiming the production of the monomer bis-(2hydroxyethyl) terephthalate (BHET). This reaction, although referenced, still presents problems such as BHET yield and reaction time, among others, having as challenge the development of new efficient and highly selective catalysts. In this context, the present work aims to study the catalytic activity of a nanostructured material, the titanate nanotubes (TNT) in PET glycolysis (virgin and post-consumer) compared to zinc acetate (the most used catalyst cited in literature), the study of some reaction parameters (post-consumer PET granulometry, Ethylene glycol:PET ratio and TNT molar percentage) and a modification of the catalyst with zinc (ZnTNT) in the depolymerization of PET For the characterization of the products, the main techniques used were Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Nuclear Magnetic Resonance (NMR), as well as yield, turnover number (TON) and turnover frequency (TOF) results. The depolymerization occurred by glycolysis reaction using virgin and post-consumer PET and ethylene glycol at different times at a temperature of 196°C. The main results show TNT as promising catalysts, with yields of BHET yields of 83.9 and 76.7%, for virgin and post-consumer PET, respectively, for 3 hours of reaction. These values are similar to those obtained when zinc acetate was used, in which 79.4% (virgin PET) and 80.8% (post-consumer PET) were reached. After the modification of the TNT with zinc, the yield results in BHET reached 87.1% for 3 hours of reaction at the smaller particle size studied, proving itself to be an even more efficient catalyst for this reaction.
|
7 |
Gävleborgs förutsättningar för etablering av kemisk återvinning : Materialåtervinning av plastavfall med pyrolys som ett komplement till regionens befintliga avfallssystemLindborg, Maja, Zaar, Josefin January 2021 (has links)
Plast är ett kostnadseffektivt och användbart material i dagens samhälle. Baksidan med plasten är dock hur den produceras och slutbehandlas. I dagsläget är ungefär 90 % av plastmaterialet på marknaden producerat av fossil råolja, vilket är en ändlig resurs som uppskattas vara förbrukad om 50 år om detta inte förändras. Världen över deponeras eller förbränns majoriteten av plastavfallet som på så sätt ger upphov till negativ miljöpåverkan som växthusgasutsläpp och läckage till mark och vatten. Materialåtervinning av plastavfall sker i en jämförelsevis låg grad och då främst genom mekanisk återvinning. Tekniken är begränsad och av den anledningen har alternativa tekniker, som bland annat kemisk återvinning, uppmärksammats inom politiken och forskning. Det är ett samlingsnamn på ett flertal tekniker som kan användas för materialåtervinning genom att sönderdela materialet till sina minsta beståndsdelar och därigenom framställa en produkt som liknar jungfruligt material. I denna studie har den kemiska återvinningstekniken pyrolys valts ut baserat på sådant som vilken typ av plast tekniken lämpar sig för och dess kommersiella användning på marknaden. Syftet med studien var att undersöka vilka förutsättningar det finns för att upprätta en pyrolysanläggning i Gävleborg med avseende på regionens plastavfallsflöden, dess befintliga infrastruktur samt miljömål och strategier. Gävleborg valdes ut som fokusområde med anledningen av att det för närvarande inte pågår något projekt för etablering av kemisk återvinning i de nordliga delarna av Sverige. Samtliga aktuella projekt är lokaliserade i syd- och mellansverige, framför allt i anslutning till plasttillverkaren Borealis som har en anläggning i Stenungsund, Göteborg. Inom studien tog författarna fram två teoretiska scenarion för hur en pyrolysbehandling av plastavfall inom regionen kan möjliggöras. Scenario 1 utgår från att pyrolysanläggningen tar emot avfall bestående av enbart plast som identifierats inom regionen, vilket sedan sorteras i anslutning till pyrolysanläggningen. I scenario 2 upprättas en extern sorteringsanläggning för att möjliggöra att plasten från samtliga avfallsflöden och näringar samlas in och sorteras. Därifrån transporteras lämpligt plastmaterial till pyrolysanläggningen. En slutsats baserad på studiens frågeställningar och avgränsningar visar att det finns möjligheter för etablering av en pyrolysanläggning i Gävleborg med avseende på infrastruktur, tillgång till plastavfallsflöden och att det potentiellt kan gynna regionens uppsatta mål inom plastavfallshantering. En förutsättning är dock att ett utökat insamlings- och sorteringssystem implementeras för att detta ska vara genomförbart i och med att tekniken kräver ett väldefinierat och rent plastavfallsflöde. / Plastic is a cost-effective and valuable material in the modern society. However, the downside of plastic primarily lies in its production and end-of-life treatment. Roughly 90 % of all plastics are currently manufactured from fossil oil, which is a non-renewable resource, and it is estimated that the global reserves will be depleted in 50 years unless something changes. Worldwide, most plastic waste is landfilled or combusted, which harms the environment due to, among others, reasons such as greenhouse gas emissions and leakage to the ground and waters. The degree of material recycling of plastic waste is comparatively low and is mainly carried out by mechanical recycling. The technology has its limitations and owing to this, politicians and researchers have investigated alternative recycling methods such as chemical recycling. It is an umbrella-term for several technologies that are used to recycle waste by breaking down the material to its smallest components and produce a product of near-virgin quality. This study focused on the chemical recycling method pyrolysis, based on aspects such as the type of plastic it has the capacity to treat and its commercial use. The purpose of this study was to review what potential Gävleborg has for establishing a pyrolysis facility regarding plastic waste flows in the region, its infrastructure and current environmental goals and strategies. Gävleborg was chosen as the focus for the study since there, as of today, are no projects exploring the possibility for establishment of chemical recycling in the northern parts of Sweden. All ongoing projects are situated in proximity to the plastic manufacturer Borealis and its facility in Stenungsund, Gothenburg. The authors formed two hypothetical scenarios as to how plastic waste recycling by pyrolysis can be implemented in Gävleborg. The first scenario assumes that the pyrolysis facility receives waste identified by the region as only consisting of plastic, which then is further sorted at the facility. The second scenario is carried out by establishing an external sorting facility to enable sorting and collection of plastic from all waste flows and industries. Thereafter the suitable plastic waste is transported to the pyrolysis facility. A conclusion drawn from the study’s findings showed that there is potential for establishing a pyrolysis facility in Gävleborg as to infrastructure and plastic waste flows and would as well contribute to the region’s goals relating to plastic waste recycling. However, to make this viable an implementation of an extended collecting and sorting system is required, since the technology is dependent on a clean and well-defined plastic waste flow.
|
8 |
Advanced Process Design and Modeling Methods for Sustainable and Energy Efficient ProcessesMcNeeley, Adam M. 06 January 2025 (has links)
Chemical engineering, as a discipline, uses knowledge of chemistry, thermodynamics, and transport to process and refine resources on a global scale. The chemical processing industry has an enormous impact on global energy consumption and contributes to climate change. Chemical engineers play a major role in the transition of the chemical industry away from fossil fuels and develop more sustainable and efficient methods to produce commodities. To achieve this goal, new chemical and processing technologies must be developed. It is critical in these early stages of development to identify chemical and processing pathways that are both practical and economically competitive to existing technologies. With the goal of increasing the speed of developing and implementing new chemical and processing technologies, screening and early stage evaluation is essential to guiding research towards the most promising new processes and chemical pathways.
This work focuses on the investigation of new chemical processing technologies, which have received academic attention, but have not been evaluated in the context of practical implementation, process design, or energy consumption. We investigate the background of these new technologies and compare them to the conventional counterparts. We present chemical and operational insights gained from industrial patents to develop feasible process designs that inform the operation and demonstrate drastic improvements possible with established heat integration and process intensification techniques.
One technology we investigate is aromatics separation from petroleum feedstocks using new ionic liquid (IL) solvents. ILs are very popular in literature to replace conventional organic solvents with their main novelty being non-volatility. A practically limitless number of ILs with different properties can be synthesized introducing the potential to develop IL solvents tailored to specific applications. We investigate the potential of ILs for aromatic extraction by first developing a methodology to model the process and capture molecular interactions between the solvent and typical hydrocarbons. We then developed an IL specific process design that overcomes the challenges related to the target feedstock. We finally determined the ideal IL solvent properties for the target application investigated. We simulate and optimize designs considering 16 different ILs and use the data to correlate solvent properties to key process variables and total process energy demand. We demonstrate that 11 of the 16 ILs require less energy compared to the conventional solvent with the best performing IL reduced energy demand by 43%.
Another technology we investigate is chemical recycling of poly(ethylene terephthalate) (PET), commonly used in bottles, textiles, and packaging. Chemical recycling converts waste PET into monomers that can be reprocessed into PET polymer. The monomer products are easier to purify, and chemical recycling expands the scope of recyclable waste material. There are three PET chemical recycling pathways considered by industry and academia: glycolysis, methanolysis, and hydrolysis. We investigate the fundamental differences between these chemical pathways and highlight how differences in physical and chemical properties of reactants and products lead to processing differences. We use a combination of industrial literature review and design knowledge to develop the first complete process configurations for each depolymerization pathway. We demonstrate heat integration and process intensifications that drastically reduce energy demand. We use the combination of process design and literature to compare the designs and discuss uncertainties and advantages and disadvantages. Heat integrated continuous PET chemical recycling processes can be expected to consume between 6,000 – 10,000 kJ/kg PET regardless of the depolymerization route.
Continuing the trend of investigating chemical recycling of polymers we consider nylon 6, the most widely produced polyamide used for electronics, automotive parts, and textiles. Nylon 6 polymer is readily converted to its monomer caprolactam with or without the use of water as a solvent. While the recycling of post-consumer nylon 6 waste has been limited, the recovery and recycling of nylon 6 scrap and oligomers is well known. We identify the three processing routes commonly used to produce caprolactam from nylon 6: liquid-phase hydrolysis, steam stripping, and solvent-free depolymerization. We identify decomposition reactions and use experimental data to develop a kinetic model for nylon 6 depolymerization. We incorporate the kinetic model into process models for the different processing routes and demonstrate novel process intensifications to drastically reduce energy demand. We compare and discuss potential applications for each process configuration processing different types of post-consumer waste.
Concluding the topic of chemical recycling of polymers, we investigate nylon 66 depolymerization, which despite chemical similarities to nylon 6, is hardly considered for chemical recycling. We provide an overview of the different chemical recycling pathways proposed in literature including acid and alkaline hydrolysis, and ammonolysis. We use experimental data to develop a novel activity coefficient based kinetic model for nylon 66 hydrolysis and add degradation reactions to present the first alkaline hydrolysis process design for nylon 66. We investigate different sections of the process and operation sensitivity to design assumptions and provide a comparison to the similar PET alkaline hydrolysis process. We find the nylon 66 alkaline hydrolysis process has favorable energy demand and is deserving of further evaluation for commercial implementation.
Overall, this work has advanced the aromatic extraction technology and chemical recycling of step growth polymers. We demonstrate broad and systematic methods of incorporating data from academic and industrial evaluations to produce practical and thermodynamically consistent process models. We use these models to describe the reactions, separations, and purifications of new technologies to quantify energy demands and where operational or data uncertainties exist to focus future research. We use the defined process flows and separations to demonstrate process intensifications that drastically reduce process energy demand by as much as 70%, which can alter conclusions and favorability of certain process configurations. / Doctor of Philosophy / Chemical engineering plays a critical role in the global efforts to transition from fossil fuels to renewable and sustainable resources. This includes improving energy efficiency of existing chemical processes, improving processes to consume less raw materials, and developing new pathways to produce chemicals traditionally derived from fossil fuels. Academic chemical engineering research focuses on developing new chemicals and chemical processes to aid in this effort. There are a vast number of new chemicals and processes investigated in academia, but it is extremely rare that these advance beyond a conceptual or lab-scale, which limits the contribution of the research towards solving the problems it aims to address.
We use our expertise in process design, modeling, and the general ability to understand how technology advances from concept to implementation. We take new chemicals or reaction pathways and conceptualize practical designs or implementations of the technology at commercial scale. We use the development of the designs to rank and screen favorability of new technologies against other new or conventional technologies, approximate the relative complexity and resource consumption, and identify important parts of the process where data is critical for continued development or a more accurate assessment of technological viability. In this way, we guide research for new technologies to increase the speed and likelihood of real-world implementation and impact. In this dissertation, we consider the application of a new type of solvents, claimed to be 'green', that are used to separate petroleum products, and recycling processes for plastics that convert the plastic to chemicals, which are purified and converted back to the original plastic.
The results of our work demonstrate the new type of solvents we investigated have properties that can reduce the energy demand of the process for which they are proposed by almost 50% using a novel design concept we developed. Despite the potential of these solvents, we raise concerns about uncertainties related to their practical implementation that require resolution. For the chemical recycling of plastics, we demonstrate a disconnect between academic focus and industrial practice. We develop some of the first models for several waste plastic chemical recycling processes to demonstrate how the plastics are chemically converted and purified to be suitable for consumer use. We compare different methods to recycle specific types of plastic, providing insight into the advantages and disadvantages of each method, considering applications for which they are most suitable, and indicating where further research is best applied. We demonstrate that these processes, using advanced processing techniques, can drastically reduce energy demand, in some cases by as much as 70%.
|
9 |
Polyamidåtervinning; Är det lönsamt för ett konfektionsföretag med implementering av återvunnen polyamid i sin produktion? / Nylon recyclingSandrén, Elin January 2012 (has links)
Textilåtervinning är mycket aktuellt, främst för syntetiska fibrer då dess framställningpåverkar miljön i hög grad. Dessutom utvinns de ur petrokemisk källa som är en ändbarresurs. Återvinningsindustrin för textilier fungerar i dagsläget inte optimalt, vilket motiverardetta examensarbete. Återvunnen polyester, från PET-flaskor eller textilier har funnits i ca 10år men nu börjar även återvunnen polyamid lanseras på marknaden. Denna rapport ger enöverskådlig bild över textil- och polyamidåtervinning. En parallell har dragits tillmattindustrin där den tekniska apparaturen för återvinning är mer utvecklad. För att bliframgångsrik måste ett företag visa att det eftersträvar hållbar utveckling och ansvarar för det”ekologiska fotavtryck” som dess produkter efterlämnar.Examensarbetet har utförts i samarbete med Houdini Sportswear AB, ett företag somtillverkar konfektion för sport- och friluftsliv. Syftet med rapporten är att undersöka om det ärlönsamt för företaget att implementera återvunnen polyamid med avseende på pris, prestandaoch miljö. Kemiskt återvunnen fiber anses vara av samma kvalitet som jungfrulig, för attundersöka om detta påstående är korrekt samt påvisa den återvunna polyamidens prestandahar mekaniska dragprovningstester utförts.Textile recycling is a very current subject, especially for synthetic fibres because theirproduction has a high influence on the environment. It is also extracted from petrochemicalresources, which is limited. The present situation regarding the recycling industry for textilesis not optimal, which motivates this thesis work. Recycled polyester, from PET bottles andtextiles have been established in approximately 10 years but now recycled polyamide islaunched at the market as well. This report gives a foreseeable view of textile- and polyamiderecycling.References have been drawn to the carpet industry where the technical apparatusfor recycling is much more developed. To be successful, a company have to show that itdesire sustainable development and take responsibility for “the ecological footprint” that theirproducts leave.The thesis work has been made in cooperation with Houdini Sportswear AB, a company thatmanufactures confection for sports- and outdoor-life. The aim with the report is to investigateif it is profitable for the company to implement recycled polyamide bear reference to price,performance and environment. Chemical recycled fibres are considered to be the same qualityas virgin, to investigate if this statement is correct and to indicate the performance of therecycled polyamide a determination of the tensile properties has been made. / Program: Textilingenjörsutbildningen
|
10 |
Reciclagem qu?mica de Polietileno utilizando S?lica Mesoporosa tipo SBA-15 avalizada por Termogravimetriae Espectrometria de MassasFernandes, Glauber Jos? Turolla 31 March 2010 (has links)
Made available in DSpace on 2014-12-17T15:42:28Z (GMT). No. of bitstreams: 1
GlauberJTF_TESE.pdf: 2011053 bytes, checksum: d21e71a60d82e3bce89064ab78884cef (MD5)
Previous issue date: 2010-03-31 / The chemical recycling of polyolefins has been the focus of increasing attention owing
potential application as a fuel and as source chemicals. The use of plastic waste contributes to
the solution of pollution problems.The use of catalysts can enhance the thermal degradation of
synthetic polymers, which may be avaliated by Themogravimetry (TG) and mass
spectrometry (MS) combined techniques. This work aims to propose alternatives to the
chemistry recycling of low-density polyethylene (LDPE) on mesoporous silica type SBA-15
and AlSBA-15.The mesoporous materials type SBA-15 and AlSBA-15 were synthesized
through the hydrothermal method starting from TEOS, pseudobohemite, cloridric acid HCl
and water. As structure template was used Pluronic P123. The syntheses were accomplished
during the period of three days. The best calcination conditions for removal of the organic
template (P123) were optimized by thermal analysis (TG/DTG) and through analyses of Xray
diffraction (XRD), infrared spectroscopy (FT-IR), nitrogen adsorption and scanning electron
microscopy (SEM) was verified that as much the hydrothermal synthesis method as the
calcination by TG were promising for the production of mesoporous materials with high
degree of hexagonal ordination. The general analysis of the method of Analog Scan was
performed at 10oC/min to 500 oC to avoid deterioration of capillary with very high
temperatures. Thus, with the results, we observed signs mass/charge more evident and, using
the MID method, was obtained curve of evolution of these signals. The addition of catalysis
produced a decrease in temperature of polymer degradation proportional to the acidity of the
catalyst. The results showed that the mesoporous materials contributed to the formation of
compounds of lower molecular weight and higher value in the process of catalytic degradation
of LDPE, representing an alternative to chemical recycling of solid waste / A reciclagem qu?mica de poliolefinas tem sido foco de crescente aten??o, devido ao
seu uso potencial como combust?vel e como fonte de produtos qu?micos. O aproveitamento de
res?duos pl?sticos contribui para a solu??o dos problemas de polui??o. O uso de catalisadores
adequados pode facilitar a degrada??o t?rmica de pol?meros sint?ticos, que pode ser avaliada
por termogravimetria e espectrometria de massas. Este trabalho teve como objetivo avaliar
uma alternativa de reciclagem qu?mica de polietileno de baixa densidade (PEBD) sobre s?lica
mesoporosa tipo SBA-15 e AlSBA-15 utilizando termogravimetria e espectrometria de
massas.Os materiais mesoporosos tipo SBA-15 e AlSBA- 15 foram sintetizados atrav?s do
m?todo hidrot?rmico partindo de tetraetilortosilicato TEOS, pseudobohemita, ?cido
clor?drico - HCl e ?gua destilada. Como direcionador estrutural foi utilizado Pluronic P123
(copol?mero tribloco). As s?nteses foram realizadas durante um per?odo de tr?s dias. As
melhores condi??es de calcina??o para remo??o do direcionador org?nico (P123) foram
otimizadas por an?lise t?rmica (TG/DTG) e atrav?s de an?lises por difra??o de raios X
(DRX), espectroscopia na regi?o do infravermelho (FTIR), adsor??o de nitrog?nio e
microscopia eletr?nica de varredura (MEV) se verificou que tanto o m?todo de s?ntese
hidrot?rmico, como tamb?m as condi??es de calcina??o baseadas nos estudos cin?ticos por
termogravimetria (TG) foram promissores ? produ??o de materiais mesoporosos com alto
grau de ordena??o hexagonal. Os estudos de decomposi??o e evolu??o de gases foram
realizados em uma termobalan?a acoplada a um espectr?metro de massas. A an?lise geral das
amostras com o m?todo de Scan Analog foi realizada a 10?C/min at? 500?C para n?o
deteriorar o capilar com temperaturas muito altas. Assim, com os resultados foi poss?vel
observar os sinais massa-carga mais evidentes e, empregando o m?todo MID, foi obtida a
curva de evolu??o desses sinais. A adi??o de catalisadores produziu uma diminui??o na
temperatura de degrada??o do pol?mero proporcional ? acidez do catalisador. Os resultados
obtidos, mostraram que os materiais mesoporosos contribu?ram para a forma??o de compostos
de menor massa molecular e maior valor agregado no processo de degra??o catal?tica do
PEBD, representando uma alternativa de reciclagem qu?mica destes res?duos s?lidos
|
Page generated in 0.0764 seconds