• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 8
  • 7
  • 6
  • 2
  • 2
  • Tagged with
  • 61
  • 12
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Fe(III) reduction in Hanford sediments and its application to chromium immobilization

Bishop, Michael Edward 03 August 2015 (has links)
No description available.
52

Functionalized cellulose nanoparticles in the stabilization of oil-in-water emulsions:bio-based approach to chemical oil spill response

Ojala, J. (Jonna) 30 April 2019 (has links)
Abstract Nanocellulose is a renewable, biodegradable, and easily available material that is considered as an attractive resource for many different value-added applications in the emerging bio-based economy. Its outstanding properties, such as strength, lightness, transparency, and good thermal insulation, have inspired research and product development around nanocellulose. The potential of nanocellulose to replace synthetic chemicals made from non-renewable sources, for example, is considered to be very promising. Chemical functionalization, that is, the modification of the cellulosic surface properties, is seen to be beneficial in applications such as those in which higher hydrophobicity is needed. In this thesis, the ability of cellulose nanoparticles to stabilize oil droplets in oil-in-water emulsions was studied. The aim of the study was to explore the possibility of developing a new type of "green" oil spill chemical from cellulose. Therefore, the cellulose was chemically modified in an aquatic environment with a sequential periodate oxidation and chlorite oxidation followed by reductive amination reaction, which increased the hydrophobicity of the produced nanocellulose. In addition, the use of deep-eutectic solvents in the preparation of modified (succinylated and carboxylated) and non-modified cellulose nanoparticles was studied. Chemical (kraft) pulp, dissolving pulp, and semi-chemical fine fibers were used as raw materials in this research. The results demonstrated that chemically modified cellulose nanoparticles work well as stabilizers for oil-water emulsions resulting in small, stable oil droplets and impeding creaming, which is a typical phenomenon for particle stabilized emulsions. The modification of cellulose nanoparticles improved their ability to partition at the oil-water interface, which enabled efficient and irreversible adsorption. It was found that because of their small size, the cellulose nanocrystals can be compressed more tightly onto the surface of the oil droplet, while longer and more flexible cellulose nanofibrils formed a web structure between the oil droplets. All cellulose nanoparticle-stabilized emulsions were stable against droplet coalescence, and even at low temperatures, they retained their droplet size and stability. Salinity, on the other hand, improved stability when CNCs from chemical pulp were used, but it negatively affected stability when nanocrystals from semichemical pulp were used. / Tiivistelmä Uusiutuva, biohajoava ja helposti saatavilla oleva nanoselluloosa on merkittävä tulevaisuuden raaka-aine useissa erilaisissa käyttökohteissa. Sen ylivertaiset ominaisuudet, kuten lujuus, keveys, läpinäkyvyys ja lämmöneristävyys ovat olleet innoittamassa nanoselluloosan tutkimusta ja tuotekehitystä. Nanoselluloosan mahdollisuuksia ja käyttöä eri sovelluksissa korvaamaan esimerkiksi uusiutumattomista luonnonvaroista valmistettuja kemikaaleja, pidetään erittäin lupaavina. Kemiallisesta funktionalisoinnista eli selluloosan pintaominaisuuksien muokkauksesta nähdään olevan hyötyä, kun tavoitellaan nanoselluloosan toiminnallisuutta esimerkiksi hydrofobista luonnetta vaativissa sovelluksissa pinta-aktiivisen aineen tavoin. Tässä työssä tutkittiin erityisesti nanoselluloosapartikkeleiden kykyä stabiloida öljypisaroita dieselöljy-vesiemulsioissa. Tutkimuksen päämääränä oli selvittää mahdollisuutta kehittää uudentyyppistä, ”vihreää” öljyntorjuntakemikaalia selluloosasta. Tämän vuoksi selluloosaa muokattiin kemiallisesti vesiympäristössä yhdistetyllä hapetus- ja aminointikäsittelyllä, mikä lisäsi valmistetun nanoselluloosan hydrofobisuutta. Toisena käsittelyvaihtoehtona tutkittiin syväeutektisten liuottimien käyttöä sekä muokattujen (sukkinyloidut ja karboksyloidut) että muokkaamattomien nanoselluloosapartikkeleiden  valmistuksessa. Raaka-aineina työssä käytettiin kemiallista sellumassaa, liukosellua sekä puolikemiallista hienokuitua. Työn tuloksena voidaan todeta, että nanoselluloosasta valmistetut kemiallisesti muokatut (funktionalisoidut) nanopartikkelit toimivat hyvin öljy-vesiemulsiossa estäen emulsion öljypisaroiden yhteensulautumista. Nanopartikkelit stabiloivat emulsiossa olevan öljyn hyvin pieniksi pisaroiksi hidastaen kermottumista eli emulsion yleistä faasierottumista. Nanoselluloosan funktionalisointi paransi sen kykyä hakeutua öljy-vesi rajapintaan, mahdollistaen tehokkaan ja palautumattoman adsorption. Havaittiin, että pienen kokonsa vuoksi selluloosananokiteet pystyivät pakkautumaan tiiviimmin öljyn pinnalle, kun taas selluloosananokuidut, jotka ovat pidempiä, muodostivat verkkomaisen rakenteen myös öljypisaroiden väliin. Suolan lisäys vaikutti emulsion stabiilisuuteen vaihtelevasti eri näytteiden välillä, kun taas kylmät olosuhteet poikkeuksetta paransivat stabiilisuutta.
53

Efficacy and safety of various tooth-whitening products, with special reference to the three dimensional colour space (L*a*b*) measurements and the microhardness tests

Majeed, Abdul January 2011 (has links)
Tooth-whitening or tooth-bleaching has become an integral part of modern dental practice. Today, a large number of whitening products are available on the market which are commonly categorized into dentist-supervised home bleaching, in-office bleaching and over-the-counter bleaching products according to their mode of application. This thesis looks into safety and efficacy of various tooth-whitening products and methods.
54

Regional character of the lower Tuscaloosa formation depositional systems and trends in reservoir quality

Woolf, Kurtus Steven 07 November 2013 (has links)
For decades the Upper Cretaceous Lower Tuscaloosa Formation of the U.S. Gulf Coast has been considered an onshore hydrocarbon play with no equivalent offshore deposits. A better understanding of the Lower Tuscaloosa sequence stratigraphic and paleogeographic framework, source-to-sink depositional environments, magnitude of fluvial systems, regional trends in reservoir quality, and structural influences on its deposition along with newly acquired data from offshore wells has changed this decades-long paradigm of the Lower Tuscaloosa as simply an onshore play. The mid-Cenomanian unconformity, underlying the Lower Tuscaloosa, formed an extensive regional network of incised valleys. This incision and accompanying low accommodation allowed for sediment bypass and deposition of over 330 m thick gravity-driven sand-rich deposits over 400 km from their equivalent shelf edge. Subsequently a transgressive systems tract comprised of four fluvial sequences in the Lower Tuscaloosa Massive sand and an overlying estuarine sequence (Stringer sand) filled the incised valleys. Both wave- and tide-dominated deltaic facies of the Lower Tuscaloosa are located at the mouths of incised valleys proximal to the shelf edge. Deltaic and estuarine depositional environments were interpreted from impoverished trace fossil suites of the Cruziana Ichnofacies and detailed sedimentological observations. The location and trend of valleys are controlled by basement structures. Lower Tuscaloosa rivers were 3.8m – 7.8m deep and 145m – 721m wide comparable to the Siwalik Group outcrop and the modern Missouri River. These systems were capable of transporting large amounts of sediment indicating the Lower Tuscaloosa was capable of transporting large amounts of sediments to the shelf edge for resedimentation into the deep offshore. Anomalously high porosity (>25%) and permeability (>1200md) in the Lower Tuscaloosa at stratigraphic depths below 20,000 ft. are influenced by chlorite coating the detrital grains. Chlorite coatings block quartz nucleation sites inhibiting quartz cementation. Chlorite coats in the Lower Tuscaloosa are controlled by the presence and abundance of volcanic rock fragments supplying the ions needed for the formation of chlorite. Chlorite decrease to the east in sediments derived from the Appalachian Mountains. An increase in chlorite in westward samples correlates with an increase of volcanic rock fragments derived from the Ouachita Mountains. / text
55

Efficacy and safety of various tooth-whitening products, with special reference to the three dimensional colour space (L*a*b*) measurements and the microhardness tests

Majeed, Abdul January 2011 (has links)
Tooth-whitening or tooth-bleaching has become an integral part of modern dental practice. Today, a large number of whitening products are available on the market which are commonly categorized into dentist-supervised home bleaching, in-office bleaching and over-the-counter bleaching products according to their mode of application. This thesis looks into safety and efficacy of various tooth-whitening products and methods.
56

Efficacy and safety of various tooth-whitening products, with special reference to the three dimensional colour space (L*a*b*) measurements and the microhardness tests

Majeed, Abdul January 2011 (has links)
Philosophiae Doctor - PhD / Tooth-whitening or tooth-bleaching has become an integral part of modern dental practice. Today, a large number of whitening products are available on the market which are commonly categorized into dentist-supervised home bleaching, in-office bleaching and over-the-counter bleaching products according to their mode of application. This thesis looks into safety and efficacy of various tooth-whitening products and methods. / South Africa
57

Lipid-based Oxidative Protein Modifications in Glaucoma

Annangudi Palani, Suresh Babu January 2006 (has links)
No description available.
58

MICROBIAL REDUCTION OF FE(III) IN MULTIPLE CLAY MINERALS BY SHEWANELLA PUTREFACIENS AND REACTIVITY OF BIOREDUCED CLAY MINERALS TOWARD TC(VII) IMMOBILIZATION

Bishop, Michael Edward 01 December 2010 (has links)
No description available.
59

Sr behaviour during hydrothermal alteration of oceanic gabbros exposed at Hess Deep : implications for 87SR/86SR compositions as a proxy for fluid-rock interaction.

Kirchner, Timo 26 May 2011 (has links)
Mid-ocean ridge hydrothermal systems are known to extend to deep levels of the oceanic crust, including the plutonic section, but little is known about the timing and nature of fluid-rock interactions at these levels. To investigate the temporal and spatial characteristics of hydrothermal alteration in the lower crust, this study investigates a suite of hydrothermally altered (<5 to >20% hydrous alteration) gabbroic rocks recovered from the Hess Deep Rift, where 1.2 Ma fast-spreading East Pacific Rise crust is well-exposed. These samples were altered to amphibole-dominated assemblages with chlorite-rich samples occurring in a restricted region of the field area. Hornfels, indicative of reheated, previously altered rocks, are clustered in the central part of the field area. The entire sample suite has elevated 87Sr/86Sr (mean: 0.70257±0.00007 (2σ), n=16) with respect to fresh rock (0.7024). Bulk rock 87Sr/86Sr is strongly correlated with percentage of hydrous alteration and weakly correlated with bulk rock Sr content. The distribution of Sr in igneous and metamorphic minerals suggests that greenshist-facies alteration assemblages (chlorite, actinolitic amphibole, albitic plagioclase) lose Sr to the fluid while amphibolite-facies secondary assemblages (secondary hornblende, anorthitic plagioclase) take up Sr. The temperature-dependent mobilization of Sr in hydrothermal systems has implications for the 87Sr/86Sr and ultimately fluid/rock ratio calculations based on the assessed 87Sr/86Sr systematics. Considering Sr behaviour, minimum fluid/rock ratios of ~1 were calculated for the plutonic section. Due to the large uncertainty regarding fluid Sr composition at depth and the sensitivity of fluid/rock ratio calculations on this parameter, a model combining the sheeted dike complex and the plutonic section to one hydrothermal system is introduced, yielding a fluid/rock ratio of 0.5. This value may be more realistic since the fluid composition entering and exiting the sheeted dike complex is better constrained. The regional distribution of hornfelsed material with elevated 87Sr/86Sr suggests that fluid ingress into the upper plutonics at Hess Deep occurred on-axis in a dynamic interface of a vertically migrating axial magma chamber (AMC) and the base of the hydrothermal system. / Graduate
60

Soil Organic Matter Composition Impacts its Degradability and Association with Soil Minerals

Clemente, Joyce S. 11 December 2012 (has links)
Soil organic matter (OM) is a complex mixture of compounds, mainly derived from plants and microbes at various states of decay. It is part of the global carbon cycle and is important for maintaining soil quality. OM protection is mainly attributed to its association with minerals. However, clay minerals preferentially sorb specific OM structures, and clay sorption sites become saturated as OM concentrations increase. Therefore, it is important to examine how OM structures influence their association with soil minerals, and to characterize other protection mechanisms. Several techniques, which provide complementary information, were combined to investigate OM composition: Biomarker (lignin phenol, cutin-OH acid, and lipid) analysis, using gas chromatography/mass spectrometry; solid-state 13C nuclear magnetic resonance (NMR) spectroscopy; and an emerging method, solution-state 1H NMR spectroscopy. OM composition of sand-, silt-, clay-size, and light fractions of Canadian soils were compared. It was found that microbial-derived and aliphatic structures accumulated in clay-size fractions, and lignin phenols in silt-size fractions may be protected from further oxidation. Therefore, OM protection through association with minerals may be structure-specific. OM in soils amended with maize leaves, stems, and roots from a biodegradation study were also examined. Over time, lignin phenol composition, and oxidation; and aliphatic structure contribution changed less in soils amended with leaves compared to soils amended with stems and roots. Compared to soils amended with leaves and stems, amendment with roots may have promoted the more efficient formation of microbial-derived OM. Therefore, plant chemistry influenced soil OM turnover. Synthetic OM-clay complexes and soil mineral fractions were used to investigate lignin protection from chemical oxidation. Coating with dodecanoic acid protected lignin from chemical oxidation, and overlying vegetation determined the relative resistance of lignin phenols in clay-size fractions from chemical oxidation. Therefore, additional protection from chemical oxidation may be attributed to OM composition and interactions between OM structures sorbed to clay minerals. Overall, these studies suggest that while association with minerals is important, OM turnover is also influenced by vegetation, and protection through association with clay minerals was modified by OM structure composition. As well, OM-OM interaction is a potential mechanism that protects soil OM from degradation.

Page generated in 0.041 seconds