• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 6
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 75
  • 28
  • 26
  • 23
  • 20
  • 17
  • 14
  • 12
  • 12
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

The role of PPARgamma in cartilage growth and development using cartilage-specific PPARgamma knockout mice

Monemdjou, Roxana 07 1900 (has links)
Le cartilage est un tissu conjonctif composé d’une seule sorte de cellule nommée chondrocytes. Ce tissu offre une fondation pour la formation des os. Les os longs se développent par l'ossification endochondral. Ce processus implique la coordination entre la prolifération, la différenciation et l'apoptose des chondrocytes, et résulte au remplacement du cartilage par l'os. Des anomalies au niveau du squelette et des défauts liés à l’âge tels que l’arthrose (OA) apparaissent lorsqu’il y a une perturbation dans l’équilibre du processus de développement. À ce jour, les mécanismes exacts contrôlant la fonction et le comportement des chondrocytes pendant la croissance et le développement du cartilage sont inconnus. Le récepteur activateur de la prolifération des peroxysomes (PPAR) gamma est un facteur de transcription impliqué dans l'homéostasie des lipides. Plus récemment, son implication a aussi été suggérée dans l'homéostasie osseuse. Cependant, le rôle de PPARγ in vivo dans la croissance et le développement du cartilage est inconnu. Donc, pour la première fois, cette étude examine le rôle spécifique de PPARγ in vivo dans la croissance et le développement du cartilage. Les souris utilisées pour l’étude avaient une délétion conditionnelle au cartilage du gène PPARγ. Ces dernières ont été générées en employant le système LoxP/Cre. Les analyses des souris ayant une délétion au PPARγ aux stades embryonnaire et adulte démontrent une réduction de la croissance des os longs, une diminution des dépôts de calcium dans l’os, de la densité osseuse et de la vascularisation, un délai dans l’ossification primaire et secondaire, une diminution cellulaire, une perte d’organisation colonnaire et une diminution des zones hypertrophiques, une désorganisation des plaques de croissance et des chondrocytes déformés. De plus, la prolifération et la différenciation des chondrocytes sont anormales. Les chondrocytes et les explants isolés du cartilage mutant démontrent une expression réduite du facteur de croissance endothélial vasculaire (VEGF)-A et des éléments de production de la matrice extracellulaire. Une augmentation de l’expression de la métalloprotéinase matricielle (MMP)-13 est aussi observée. Dans les souris âgées ayant une délétion au PPARγ, y est aussi noté des phénotypes qui ressemblent à ceux de l’OA tel que la dégradation du cartilage et l'inflammation de la membrane synoviale, ainsi qu’une augmentation de l’expression de MMP-13 et des néoépitopes générés par les MMPs. Nos résultats démontrent que le PPARγ est nécessaire pour le développement et l’homéostasie du squelette. PPARγ est un régulateur essentiel pour la physiologie du cartilage durant les stades de croissance, de développement et de vieillissement. / Cartilage, a connective tissue composed of chondrocytes, provides an intermediate template on which bones are formed. Long bones develop through endochondral ossification, involving coordination between chondrocyte proliferation, differentiation and apoptosis, resulting in bone replacing cartilage. Disturbances in this balance results in skeletal abnormalities, and age-related defects including osteoarthritis (OA). The exact mechanisms that control chondrocyte function and behaviour during growth and development are unknown. Peroxisome proliferator-activated receptor (PPAR) gamma, a transcription factor involved in lipid homeostasis, has recently been suggested to be involved in bone homeostasis. However, PPARγ’s role in cartilage growth and development in vivo is unknown. Therefore, for the first time, this study examines PPARγ’s specific in vivo role in cartilage growth and development using cartilage-specific PPARγ knockout (KO) mice. Conditional KO mice were generated using LoxP/Cre system. Histomorphometric analyses of embryonic and adult mutant mice demonstrate reduced long bone growth, calcium deposition, bone density, vascularity, and delayed primary and secondary ossification. Mutant growth plates are disorganized with abnormal chondrocyte shape, proliferation and differentiation, reduced cellularity, loss of columnar organization, and shorter hypertrophic zones. Isolated mutant chondrocytes and cartilage explants show decreased vascular endothelial growth factor (VEGF)-A and extracellular matrix (ECM) production product expression, and increased matrix metalloproteinase (MMP)-13 expression. Aged mutant mice exhibit accelerated OA-like phenotypes, and enhanced cartilage degradation, synovial inflammation, MMP-13 and MMP-generated neoepitope expression. Our data demonstrate that PPARγ is required for normal skeletal development and homeostasis, and is a critical regulator of cartilage health and physiology in early growth and development and aging.
72

骨形成因子 (Bone Morphogenetic Protein-BMP) とフィブリン糊混合剤の骨・軟骨誘導能に関する研究

HATTORI, TOSHIKADO, 服部, 寿門 09 1900 (has links)
名古屋大学博士学位論文 学位の種類 : 博士(医学)(論文) 学位授与年月日:平成3年2月1日 服部寿門氏の博士論文として提出された
73

The role of PPARgamma in cartilage growth and development using cartilage-specific PPARgamma knockout mice

Monemdjou, Roxana 07 1900 (has links)
Le cartilage est un tissu conjonctif composé d’une seule sorte de cellule nommée chondrocytes. Ce tissu offre une fondation pour la formation des os. Les os longs se développent par l'ossification endochondral. Ce processus implique la coordination entre la prolifération, la différenciation et l'apoptose des chondrocytes, et résulte au remplacement du cartilage par l'os. Des anomalies au niveau du squelette et des défauts liés à l’âge tels que l’arthrose (OA) apparaissent lorsqu’il y a une perturbation dans l’équilibre du processus de développement. À ce jour, les mécanismes exacts contrôlant la fonction et le comportement des chondrocytes pendant la croissance et le développement du cartilage sont inconnus. Le récepteur activateur de la prolifération des peroxysomes (PPAR) gamma est un facteur de transcription impliqué dans l'homéostasie des lipides. Plus récemment, son implication a aussi été suggérée dans l'homéostasie osseuse. Cependant, le rôle de PPARγ in vivo dans la croissance et le développement du cartilage est inconnu. Donc, pour la première fois, cette étude examine le rôle spécifique de PPARγ in vivo dans la croissance et le développement du cartilage. Les souris utilisées pour l’étude avaient une délétion conditionnelle au cartilage du gène PPARγ. Ces dernières ont été générées en employant le système LoxP/Cre. Les analyses des souris ayant une délétion au PPARγ aux stades embryonnaire et adulte démontrent une réduction de la croissance des os longs, une diminution des dépôts de calcium dans l’os, de la densité osseuse et de la vascularisation, un délai dans l’ossification primaire et secondaire, une diminution cellulaire, une perte d’organisation colonnaire et une diminution des zones hypertrophiques, une désorganisation des plaques de croissance et des chondrocytes déformés. De plus, la prolifération et la différenciation des chondrocytes sont anormales. Les chondrocytes et les explants isolés du cartilage mutant démontrent une expression réduite du facteur de croissance endothélial vasculaire (VEGF)-A et des éléments de production de la matrice extracellulaire. Une augmentation de l’expression de la métalloprotéinase matricielle (MMP)-13 est aussi observée. Dans les souris âgées ayant une délétion au PPARγ, y est aussi noté des phénotypes qui ressemblent à ceux de l’OA tel que la dégradation du cartilage et l'inflammation de la membrane synoviale, ainsi qu’une augmentation de l’expression de MMP-13 et des néoépitopes générés par les MMPs. Nos résultats démontrent que le PPARγ est nécessaire pour le développement et l’homéostasie du squelette. PPARγ est un régulateur essentiel pour la physiologie du cartilage durant les stades de croissance, de développement et de vieillissement. / Cartilage, a connective tissue composed of chondrocytes, provides an intermediate template on which bones are formed. Long bones develop through endochondral ossification, involving coordination between chondrocyte proliferation, differentiation and apoptosis, resulting in bone replacing cartilage. Disturbances in this balance results in skeletal abnormalities, and age-related defects including osteoarthritis (OA). The exact mechanisms that control chondrocyte function and behaviour during growth and development are unknown. Peroxisome proliferator-activated receptor (PPAR) gamma, a transcription factor involved in lipid homeostasis, has recently been suggested to be involved in bone homeostasis. However, PPARγ’s role in cartilage growth and development in vivo is unknown. Therefore, for the first time, this study examines PPARγ’s specific in vivo role in cartilage growth and development using cartilage-specific PPARγ knockout (KO) mice. Conditional KO mice were generated using LoxP/Cre system. Histomorphometric analyses of embryonic and adult mutant mice demonstrate reduced long bone growth, calcium deposition, bone density, vascularity, and delayed primary and secondary ossification. Mutant growth plates are disorganized with abnormal chondrocyte shape, proliferation and differentiation, reduced cellularity, loss of columnar organization, and shorter hypertrophic zones. Isolated mutant chondrocytes and cartilage explants show decreased vascular endothelial growth factor (VEGF)-A and extracellular matrix (ECM) production product expression, and increased matrix metalloproteinase (MMP)-13 expression. Aged mutant mice exhibit accelerated OA-like phenotypes, and enhanced cartilage degradation, synovial inflammation, MMP-13 and MMP-generated neoepitope expression. Our data demonstrate that PPARγ is required for normal skeletal development and homeostasis, and is a critical regulator of cartilage health and physiology in early growth and development and aging.
74

Tubular Tissue Engineered Scaffold-Free High-Cell-Density Mesenchymal Condensations For Femoral Defect Regeneration

Varghai, Daniel 30 August 2017 (has links)
No description available.
75

Nouvelles stratégies thérapeutiques des affections articulaires du cheval : évaluation du potentiel thérapeutique des chondrocytes autologues et des cellules souches de cordon ombilical (sang et gelée de Wharton) : vers l'industrialisation de cellules médicaments. / New therapeutic strategies for articular disorders in the equine model : therapeutic potential evaluation of autologous chondrocytes and umbilical cord stem cells (from umbilical cord blood and Wharton jelly) : toward industrialization of drug cells

Rakic, Rodolphe 05 September 2017 (has links)
Les affections articulaires touchant le cartilage, telles que les lésions focales et l’arthrose, correspondent aux principales causes de baisse de performance et d’arrêt prématuré de la carrière sportive du cheval. Ainsi, le traitement des affections du cartilage représente un enjeu vétérinaire majeur dans le monde équin, du fait des importantes pertes financières qu’elles occasionnent à la filière. Les faibles capacités de réparation intrinsèque du cartilage, ainsi que l’absence de thérapie à long terme des dommages cartilagineux, nécessitent le recours à des thérapies de nouvelles générations telle que l’ingénierie tissulaire du cartilage. Dans ce cadre, notre étude s’est attachée à comparer différents types cellulaires pour la génération de cartilage in vitro, afin d’envisager une implantation pour traiter les atteintes cartilagineuses chez le cheval. Une technique initialement développée chez l’Homme, la transplantation de chondrocytes autologues, représente toujours un « gold standard » en ingénierie tissulaire du cartilage. Dans ce travail de thèse, après avoir développé une nouvelle génération de substitut cartilagineux de haute qualité biologique, à partir de chondrocytes articulaires équins, des limites techniques et biologiques inhérentes au type cellulaire persistent. Ainsi, nos travaux se sont tournés vers la recherche de types cellulaires alternatifs. Les cellules souches/stromales mésenchymateuses (CSM) néonatales issues de cordon ombilical telles que les CSM de sang placentaire (CSM-SPL) et les CSM de gelée de Wharton (CSM-GW) pourraient représenter un avantage thérapeutique du fait de leur isolement non-invasif, de leur forte prolifération cellulaire et de leur capacité de différenciation en chondrocyte. Il est néanmoins indispensable de définir le meilleur candidat thérapeutique, parmi ces deux sources cellulaires, pour l’obtention d’un substitut cartilagineux de qualité biologique optimale. Ces résultats de thèse ont montré d’importantes différences dans le processus de chondrogenèse de ces deux sources de CSM néonatales et plaident en faveur de l’utilisation des CSM-SPL dans le cadre d’une stratégie thérapeutique d’ingénierie tissulaire du cartilage équin. Ces travaux ont permis une meilleure compréhension de la biologie du chondrocyte et des CSM. De surcroît, ces travaux permettent d’envisager de futurs essais cliniques chez le cheval, afin de traiter les affections articulaires de ce modèle gros animal. / Articular cartilage disorders, such as focal defects and osteoarthritis, are the main causes of decreased performance or early retirement of sport- and racehorses. Thus, cartilage disorders represent a major veterinary issue in the equine industry, due to significant financial losses. Poor intrinsic cartilage repair properties and the absence of long- term therapy for cartilage defects lead to the development and use of new generation therapies such as autologous chondrocytes implantation. In this context, our study aimed to compare different cell types for the in vitro cartilage generation, in order to implant the biological substitute to treat cartilage defects in the horse. A therapeutic strategy initially developed in human medicine, the autologous chondrocytes transplantation, always represents a "gold standard" in cartilage tissue engineering. In the present study, after developing a new generation of cartilaginous substitute of high biological quality, composed of equine articular chondrocytes, technical and biological limits inherent to the cell type persist. Thus, we have used alternative cell types such as neonatal mesenchymal stem/stromal cells (MSCs) from umbilical cord, such as umbilical cord blood MSC (UCB-MSCs) and umbilical cord matrix or Wharton jelly MSCs (UCM- MSCs). These MSCs sources could represent a therapeutic advantage due to their non-invasive isolation, their high cell proliferation and their ability to differentiate into chondrocytes. Nevertheless, it is essential to define the best therapeutic candidate between these two MSCs sources, to obtain an optimal quality for the neocartilaginous substitute. Our data highlighted important differences in the chondrogenesis process of these two neonatal MSCs sources, allowing us to consider UCB-MSCs as the best therapeutic candidate for equine cartilage tissue engineering. This work allows a better understanding of the chondrocyte and MSCs biology. Moreover, this work leads the way to setting-up future clinical trials in the horse, in order to treat articular defects of this large animal model.

Page generated in 0.0423 seconds