• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 13
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Coreografias no problema de N corpos / Choreographies in the N-body problem

Gabriela Iunes Depetri 03 March 2011 (has links)
O objetivo deste trabalho é a obtenção numérica de soluções periódicas para o problema geral de N corpos sujeitos apenas à atração gravitacional mútua. Em particular, procuramos soluções chamadas de coreografias, que apresentam em comum a propriedade de que todos os corpos se movem sobre a mesma curva. O interesse neste tipo de solução aumentou muito recentemente devido aos avanços na Física das ondas gravitacionais. Com a possível detecção de ondas gravitacionais prevista para um futuro próximo, todas as configurações periódicas do problema de N corpos passam a ser consideradas como possíveis fontes de radiação gravitacional. Identificar os padrões de radiação associados a estas órbitas é uma das tarefas prementes atualmente na área. Tendo isso em vista, iremos calcular também as ondas gravitacionais emitidas por um sistema em que os corpos que o constituem seguem uma órbita coreográfica. Começamos este trabalho com um capítulo que descreve historicamente a busca pela solução geral do problema de N corpos, inicialmente motivada pelo interesse na análise da estabilidade do Sistema Solar. Em seguida, no Capítulo 2, apresentamos as principais definições e teoremas que serão utilizados ao longo do texto. O leitor pode escolher entre seguir este capítulo no início de sua leitura, ou então utilizá-lo para consulta quando necessário. No Capítulo 3, identificamos os graus de liberdade do sistema formado pelos N corpos e determinamos quais grandezas físicas nele se conservam, através do Teorema de Noether. Com isso estabelecemos a não integrabilidade deste sistema, no sentido de Liouville, para N > 2. Escrevemos também a solução geral do problema de dois corpos, conhecido como problema de Kepler, e mostramos duas soluções particulares para o problema de três corpos com massas iguais, conhecidas como soluções de Euler (1765) e Lagrange (1772). Na solução de Euler, os três corpos estão dispostos sobre uma mesma reta que gira com velocidade angular constante ao redor do seu centro de massa, e na de Lagrange, estão dispostos sobre os vértices de um triângulo equilátero que gira com velocidade angular constante ao redor do seu centro de massa. Com o intuito de descrever as soluções periódicas conhecidas para o Problema de N Corpos, no Capítulo 4 estudaremos as órbitas homográficas, que apresentam a característica de que a configuração do sistema em qualquer instante pode ser obtida através de uma rotação composta com uma dilatação/contração da configuração inicial. Essas soluções generalizam as soluções de Euler e Lagrange citadas anteriormente. No Capítulo 5, analisaremos as órbitas coreográficas. Esta classe de soluções foi descoberta por Cris Moore em 1993, que encontrou numericamente uma solução coreográfica para o problema de três corpos em que eles seguem uma mesma curva em forma de oito. A existência e a estabilidade desta solução foram estudadas de maneira rigorosa por Richard Montgomery e Alain Chenciner. Neste trabalho, damos um esboço de como construir a solução em forma de oito no caso em que as massas são idênticas. Simularemos esta e outras órbitas coreográficas, além de algumas outras órbitas periódicas descritas anteriormente, através do método de integração de Runge-Kutta de quarta ordem. Finalmente, no Capítulo 6 calculamos as ondas gravitacionais emitidas pelas órbitas homográficas e coreográficas simuladas anteriormente. Finalizaremos com uma breve discussão comparando os padrões de ondas gravitacionais obtidos para as diferentes órbitas e analisando a possibilidade de determinar a fonte de emissão a partir da medida de um sinal de uma onda gravitacional. / The purpose of this work is the numerical computing of the periodic solutions to the N-body problem, that is, the general problem of determinig the motion of N bodies exclusively subject to gravitational forces between them. In particular, we search for solutions that were named choreographies, which have in common the property that all bodies move along the same curve. The interest in this kind of solution has recently increased due to technological advances in Gravitational Wave (GW) Physics. As the detection of Gws is foreseen for the near future, all periodic configurations of the N-body problem may be considered as possible sources of gravitational radiation. Identifying the patterns of radiation associated to these orbits is nowadays one of the pressing tasks in this field. Having this fact in mind, we calculate the GWs emitted by a system in which all bodies describe a choreographic orbit. In Chapter 1, we briefly describe the history of the search for the general solution to the N-body Problem, initially motivated by the interest in the stability analysis of the Solar System. Next, in Chapter 2, we present the main definitions and theorems to which we refer during this text. The reader may opt between following this chapter as he begins to read this thesis and consulting it only if necessary or when he is referred to. In Chapter 3, we identify the degrees of freedom of the system consisting of N bodies and determine the physical quantities it conserves, through Noethers theorem. Doing that, we establish the non-integrability of our dynamical system, in the sense of Liouville integrability, if N > 2. We also give the general solution to the 2-body problem, known as Keplers Problem, and present two particular solutions to the 3-body Problem, known as Eulers solution (1765) and Lagranges solution (1772). In Eulers solution, all three bodies are in the same line, which revolves around its center of mass, and in Lagranges solux tion they are at the vertices of an equilateral triangle, which also revolves around its center of mass. In order to describe all known periodic solutions to the N-body Problem, in Chapter 4 we study homographic orbits, that is, orbits in which the configuration at any instant can be obtained by a rotation and a dilation/contraction of the initial configuration. These solutions generalize the solutions by Euler and Lagrange mentioned above. In Chapter 5, we analyze choreographic orbits. This class of solutions was discovered by Cris Moore in 1993, who computed numerically a choreographic solution in which the bodies move along the same curve in the shape of an eight. The existence and stability of this orbit were rigorously studied by Richard Montgomery and Alain Chenciner. Here, we sketch the construction of the figure eight solution in the particular case where all masses are identical. We simulate this and other choreographic solutions, as well as some other periodic solutions described before, through the use of a fourth order Runge- Kutta method of numerical integration. Finally, in Chapter 6 we calculate the Gws emitted by the homographic and choreographic orbits simulated before. We end this work with a brief discussion comparing the GW patterns obtained to different orbits and analyzing the possibility of determining the mission source from a measurement of a GW signal.
12

Path probability and an extension of least action principle to random motion

Lin, Tongling 19 February 2013 (has links) (PDF)
The present thesis is devoted to the study of path probability of random motion on the basis of an extension of Hamiltonian/Lagrangian mechanics to stochastic dynamics. The path probability is first investigated by numerical simulation for Gaussian stochastic motion of non dissipative systems. This ideal dynamical model implies that, apart from the Gaussian random forces, the system is only subject to conservative forces. This model can be applied to underdamped real random motion in the presence of friction force when the dissipated energy is negligible with respect to the variation of the potential energy. We find that the path probability decreases exponentially with increasing action, i.e., P(A) ~ eˉγA, where γ is a constant characterizing the sensitivity of the action dependence of the path probability, the action is given by A = ∫T0 Ldt, a time integral of the Lagrangian L = K-V over a fixed time period T, K is the kinetic energy and V is the potential energy. This result is a confirmation of the existence of a classical analogue of the Feynman factor eiA/ħ for the path integral formalism of quantum mechanics of Hamiltonian systems. The above result is then extended to real random motion with dissipation. For this purpose, the least action principle has to be generalized to damped motion of mechanical systems with a unique well defined Lagrangian function which must have the usual simple connection to Hamiltonian. This has been done with the help of the following Lagrangian L = K - V - Ed, where Ed is the dissipated energy. By variational calculus and numerical simulation, we proved that the action A = ∫T0 Ldt is stationary for the optimal paths determined by Newtonian equation. More precisely, the stationarity is a minimum for underdamped motion, a maximum for overdamped motion and an inflexion for the intermediate case. On this basis, we studied the path probability of Gaussian stochastic motion of dissipative systems. It is found that the path probability still depends exponentially on Lagrangian action for the underdamped motion, but depends exponentially on kinetic action A = ∫T0 Kdt for the overdamped motion.
13

Holonomic versus nonholonomic constraints

Flygare, Mattias January 2012 (has links)
Courses in analytical mechanics for undergraduate students are often limited to treatment of holonomic constraints, which are constraints on coordinates. The concept of nonholonomic constraints, constraints on velocities, is usually only mentioned briefly and it is easy to get a wrongful idea of what they are and how to treat them. This text explains and compares the methods of deriving the Euler-Lagrange equations and the consequences when imposing different kinds of constraints. One way to properly treat both holonomic and nonholonomic constraints is given, pinpointing the difficulties and common errors. Along the way, the treatment in local coordinates is also put in more modern terms, in the language of differential geometry, which is the language most commonly used in modern texts on the subject.
14

Classical and quantum aspects of topological solitons (using numerical methods)

Weidig, Tom January 1999 (has links)
In Introduction, we review integrable and topological solitons. In Numerical Methods, we describe how to minimize functionals, time-integrate configurations and solve eigenvalue problems. We also present the Simulated Annealing scheme for minimisation in solitonic systems. In Classical Aspects, we analyse the effect of the potential term on the structure of minimal- energy solutions for any topological charge n. The simplest holomorphic baby Skyrme model has no known stable minimal-energy solution for n > 1. The one-vacuum baby Skyrme model possesses non-radially symmetric multi-skyrmions that look like 'skyrmion lattices' formed by skyrmions with n = 2. The two-vacua baby Skyrme model has radially symmetric multi- skyrmions. We implement Simulated Annealing and it works well for higher order terms. We find that the spatial part of the six-derivative term is zero. In Quantum Aspects, we find the first order quantum mass correction for the Ф(^4) kink using the semi-classical expansion. We derive a trace formula which gives the mass correction by using the eigenmodes and values of the soliton and vacuum perturbations. We show that the zero mode is the most important contribution. We compute the mass correction of Ф(^4) kink and Sine-Gordon numerically by solving the eigenvalue equations and substituting into the trace formula.
15

Variational problems arising in classical mechanics and nonlinear elasticity

Spencer, Paul January 1999 (has links)
No description available.
16

Reforçando a relação entre a matemática e a física no ensino médio através de exemplos básicos de mecânica clássica / Reinforcing the relatioship between mathematics and physics in high school through basic examples of classical mechanics

Medina, Renato Rodrigues 15 February 2017 (has links)
Submitted by Milena Rubi (milenarubi@ufscar.br) on 2017-04-05T14:36:38Z No. of bitstreams: 1 MEDINA_Renato_2017.pdf: 32490687 bytes, checksum: dad854d12c7bf3ae0093f0dbc031a5b8 (MD5) / Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-04-05T14:36:52Z (GMT) No. of bitstreams: 1 MEDINA_Renato_2017.pdf: 32490687 bytes, checksum: dad854d12c7bf3ae0093f0dbc031a5b8 (MD5) / Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-04-05T14:37:04Z (GMT) No. of bitstreams: 1 MEDINA_Renato_2017.pdf: 32490687 bytes, checksum: dad854d12c7bf3ae0093f0dbc031a5b8 (MD5) / Made available in DSpace on 2017-04-05T14:37:14Z (GMT). No. of bitstreams: 1 MEDINA_Renato_2017.pdf: 32490687 bytes, checksum: dad854d12c7bf3ae0093f0dbc031a5b8 (MD5) Previous issue date: 2017-02-15 / Não recebi financiamento / In this work a study is presented using some teaching strategies in order to strengthen the relationship between mathematics and physics in high school. It is shown how important it is to describe mathematically a physical phenomenon to motivate students in the description and prediction of situations that can be observed in their daily lives. For this purpose, simple examples are considered in classical mechanics, such as Newton’s second law applications and uniform rectilinear and circular motions. The physical phenomena were explored through mathematical concepts which are suitable for high school level such as functions, unit vector, vectors and their projections, coordinate systems and graphs. The approach considered here can be an important step for addressing more advanced and modern topics in physics in which mathematics is imperative, such as relativity and quantum mechanics. It can also favor the understanding of more abstract concepts such as the electromagnetic field, and the modeling of systems in which the performance of experiments or its observation is impracticable, such as the movement of planets or the behavior of atoms in a gas. This proposal was applied to 35 students in the third year of high school in the Bragan¸ca Paulista city, state of S˜ao Paulo. Several calculations and the explanations developed by the students are presented, showing that the proposal was successful, being very well received by the students. The outcome educational product from this proposal consists of a booklet containing all details and the importance of quantifying physical phenomena through mathematical modeling. / Neste trabalho é apresentado um estudo com algumas estratégias de ensino na tentativa de fortalecer a relação entre a matemática e a física no ensino médio. Através de problemas simples em temas da mecânica clássica como aplicações da segunda lei de Newton e movimentos retilíneo e circular uniformes, é discutida a importância de se quantificar matematicamente fenômenos físicos para a descrição e predição de situações que podem ser observadas no dia a dia dos alunos. Para isso foi utilizada uma matemática simples e adequada para o ensino médio explorando conceitos como funções, versores, vetores e suas projeções, sistemas de coordenadas e gráficos. A forma com que os exercícios foram tratados pode ser um passo importante para abordar t´ópios mais avançados e modernos da física em que a matemática é imprescindível, como a relatividade e a mecânica quântica, ou até mesmo favorecer o entendimento de conceitos mais abstratos como o de campo em eletromagnetismo e a modelagem de sistemas em que a execução de experimentos ou a observação seja inviável, como o movimento de planetas ou o comportamento dos átomos em um gás. Esta proposta foi aplicada em uma escola da rede particular da cidade de Bragança Paulista, estado de São Paulo, em uma turma do 3? ano do ensino médio com aproximadamente 35 alunos. Vários cálculos e explicações desenvolvidos pelos estudantes são apresentados, mostrando que a proposta foi muito bem recebida pelos alunos e bem sucedida. O produto educacional proveniente da aplicação desta proposta consiste de um material paradidático no formato de um pequeno livro contendo todos os detalhes e a importância de se quantificar fenômenos físicos através da modelagem matemática.
17

Les systèmes super intégrables d’ordre trois séparables en coordonnées paraboliques

Popper, Iuliana Adriana 04 1900 (has links)
Ce mémoire est une poursuite de l’étude de la superintégrabilité classique et quantique dans un espace euclidien de dimension deux avec une intégrale du mouvement d’ordre trois. Il est constitué d’un article. Puisque les classifications de tous les Hamiltoniens séparables en coordonnées cartésiennes et polaires sont déjà complétées, nous apportons à ce tableau l’étude de ces systèmes séparables en coordonnées paraboliques. Premièrement, nous dérivons les équations déterminantes d’un système en coordonnées paraboliques et ensuite nous résolvons les équations obtenues afin de trouver les intégrales d’ordre trois pour un potentiel qui permet la séparation en coordonnées paraboliques. Finalement, nous démontrons que toutes les intégrales d’ordre trois pour les potentiels séparables en coordonnées paraboliques dans l’espace euclidien de dimension deux sont réductibles. Dans la conclusion de l’article nous analysons les différences entre les potentiels séparables en coordonnées cartésiennes et polaires d’un côté et en coordonnées paraboliques d’une autre côté. Mots clés: intégrabilité, superintégrabilité, mécanique classique, mécanique quantique, Hamiltonien, séparation de variable, commutation. / This thesis is a contribution to the study of classical and quantum superintegrability in a two-dimensional Euclidean space involving a third order integral of motion. It consists of an article. Because the classifications of all separable hamiltonians into Cartesian and polar coordinates are already complete, we bring to this picture the study of those systems in parabolic coordinates. First, we derive the determinating equations of a system into parabolic coordinates, after which we solve the obtained equations in order to find integrals of order three for potentials, which allow the separations of variables into the parabolic coordinates. Finally, we prove that all the third order integrals for separable potentials in parabolic coordinates in the Euclidean space of dimension two are reducible. In the conclusion of this article, we analyze the differences between the separable potentials in Cartesian and polar coordinates and the separable potentials in parabolic coordinates. Keywords: integrability, superintegrability, classical mechanics, quantum mechanics, Hamiltonian, separation of variables, commutation.
18

Path probability and an extension of least action principle to random motion / L'étude du principe de moindre action pour systèmes mécaniques dissipatifs, et la probabilité de chemins du mouvement mécanique aléatoire

Lin, Tongling 19 February 2013 (has links)
La présente thèse est consacrée à l’étude de la probabilité du chemin d’un mouvement aléatoire sur la base d’une extension de la mécanique Hamiltonienne/Lagrangienne à la dynamique stochastique. La probabilité d’un chemin est d’abord étudiée par simulation numérique dans le cas du mouvement stochastique Gaussien des systèmes non dissipatifs. Ce modèle dynamique idéal implique que, outre les forces aléatoires Gaussiennes, le système est seulement soumis à des forces conservatrices. Ce modèle peut être appliqué à un mouvement aléatoire réel de régime pseudo-périodique en présence d’une force de frottement lorsque l’énergie dissipée est négligeable par rapport à la variation de l’énergie potentielle. Nous constatons que la probabilité de chemin décroît exponentiellement lorsque le son action augmente, c’est à dire, P(A) ~ eˉγA, où γ est une constante caractérisant la sensibilité de la dépendance de l’action à la probabilité de chemin, l’action est calculée par la formule A = ∫T0 Ldt, intégrale temporelle du Lagrangien. L = K–V sur une période de temps fixe T, K est l’énergie cinétique et V est l’énergie potentielle. Ce résultat est une confirmation de l’existence d’un analogue classique du facteur de Feynman eiA/ħ pour le formalisme intégral de chemin de la mécanique quantique des systèmes Hamiltoniens. Le résultat ci-dessus est ensuite étendu au mouvement aléatoire réel avec dissipation. A cet effet, le principe de moindre action doit être généralisé au mouvement amorti de systèmes mécaniques ayant une fonction unique de Lagrange bien définie qui doit avoir la simple connexion habituelle au Hamiltonien. Cela a été fait avec l’aide du Lagrangien suivant L = K − V − Ed, où Ed est l’énergie dissipée. Par le calcul variationnel et la simulation numérique, nous avons prouvé que l’action A = ∫T0 Ldt est stationnaire pour les chemins optimaux déterminés par l’équation newtonienne. Plus précisément, la stationnarité est un minimum pour les mouvements de régime pseudo-périodique, un maximum pour les mouvements d’amortissement apériodique et une inflexion dans le cas intermédiaire. Sur cette base, nous avons étudié la probabilité du chemin du mouvement stochastique Gaussien des systèmes dissipatifs. On constate que la probabilité du chemin dépend toujours de façon exponentielle de l’action Lagrangien pour les mouvements de régime pseudo-périodique, mais dépend toujours de façon exponentielle de l’action cinétique A = ∫T0 Kdt pour régime apériodique. / The present thesis is devoted to the study of path probability of random motion on the basis of an extension of Hamiltonian/Lagrangian mechanics to stochastic dynamics. The path probability is first investigated by numerical simulation for Gaussian stochastic motion of non dissipative systems. This ideal dynamical model implies that, apart from the Gaussian random forces, the system is only subject to conservative forces. This model can be applied to underdamped real random motion in the presence of friction force when the dissipated energy is negligible with respect to the variation of the potential energy. We find that the path probability decreases exponentially with increasing action, i.e., P(A) ~ eˉγA, where γ is a constant characterizing the sensitivity of the action dependence of the path probability, the action is given by A = ∫T0 Ldt, a time integral of the Lagrangian L = K–V over a fixed time period T, K is the kinetic energy and V is the potential energy. This result is a confirmation of the existence of a classical analogue of the Feynman factor eiA/ħ for the path integral formalism of quantum mechanics of Hamiltonian systems. The above result is then extended to real random motion with dissipation. For this purpose, the least action principle has to be generalized to damped motion of mechanical systems with a unique well defined Lagrangian function which must have the usual simple connection to Hamiltonian. This has been done with the help of the following Lagrangian L = K – V – Ed, where Ed is the dissipated energy. By variational calculus and numerical simulation, we proved that the action A = ∫T0 Ldt is stationary for the optimal paths determined by Newtonian equation. More precisely, the stationarity is a minimum for underdamped motion, a maximum for overdamped motion and an inflexion for the intermediate case. On this basis, we studied the path probability of Gaussian stochastic motion of dissipative systems. It is found that the path probability still depends exponentially on Lagrangian action for the underdamped motion, but depends exponentially on kinetic action A = ∫T0 Kdt for the overdamped motion.
19

Hamilton-Jacobi Theory and Superintegrable Systems

Armstrong, Craig Keith January 2007 (has links)
Hamilton-Jacobi theory provides a powerful method for extracting the equations of motion out of some given systems in classical mechanics. On occasion it allows some systems to be solved by the method of separation of variables. If a system with n degrees of freedom has 2n - 1 constants of the motion that are polynomial in the momenta, then that system is called superintegrable. Such a system can usually be solved in multiple coordinate systems if the constants of the motion are quadratic in the momenta. All superintegrable two dimensional Hamiltonians of the form H = (p_x)sup2 + (p_y)sup2 + V(x,y), with constants that are quadratic in the momenta were classified by Kalnins et al [5], and the coordinate systems in which they separate were found. We discuss Hamilton-Jacobi theory and its development from a classical viewpoint, as well as superintegrability. We then proceed to use the theory to find equations of motion for some of the superintegrable Hamiltonians from Kalnins et al [5]. We also discuss some of the properties of the Poisson algebra of those systems, and examine the orbits.
20

Ευστάθεια και χάος Χαμιλτώνιων συστημάτων πολλών βαθμών ελευθερίας: από την κλασική στη στατιστική μηχανική

Αντωνόπουλος, Χρήστος 20 February 2008 (has links)
Το κύριο μέρος της διατριβής αρχίζει στο Κεφάλαιο 4 όπου παρουσιάζονται πρωτότυπα ερευνητικά αποτελέσματα της διατριβής που αφορούν στην κανονική και χαοτική δυναμική Χαμιλτώνιων συστημάτων λίγων βαθμών ελευθερίας. Περιγράφονται αποτελέσματα πάνω στη συμπεριφορά δεικτών διάκρισης οργανωμένης και χαοτικής δυναμικής στα συστήματα αυτά και γίνεται σύγκριση με τα αντίστοιχα της διεθνούς βιβλιογραφίας. Τέλος, αναφέρονται αποτελέσματα από τη θεωρία και την εφαρμογή της μεθόδου του Γενικευμένου Δείκτη Ευθυγράμμισης GALI, που αποτελεί ένα από τα πιο βασικά νέα στοιχεία της διατριβής, σε μη ολοκληρώσιμα Χαμιλτώνια συστήματα δύο και τριών βαθμών ελευθερίας. Το Κεφάλαιο 5 ασχολείται με την παρουσίαση πρωτότυπων ερευνητικών αποτελεσμάτων σε Χαμιλτώνια δυναμικά συστήματα πολλών βαθμών ελευθερίας. Εδώ, εισάγονται νέες μέθοδοι για την μελέτη των περιοχών κανονικής και χαοτικής συμπεριφοράς συστημάτων πολλών βαθμών ελευθερίας με σκοπό να κατανοηθεί η συμπεριφορά των συστημάτων αυτών στο θερμοδυναμικό όριο και να δοθεί μια απάντηση στο καίριο ερώτημα αν οι νόμοι της Στατιστικής Μηχανικής ισχύουν στην περίπτωση των πολυδιάστατων Χαμιλτώνιων συστημάτων που εξετάζονται εδώ. Ελέγχεται πως αυξάνουν οι χαοτικές περιοχές γύρω από ασταθείς Απλές Περιοδικές Λύσεις (ΑΠΛ) στον χώρο φάσεων, μετά από μία κρίσιμη τιμή της ολικής ενέργειας, η δε μετάβαση από περιορισμένο σε εκτεταμένο χάος, προκύπτει από το ότι συχνά σε περιοχές διαφορετικών ασταθών ΑΠΛ συγκλίνουν τα αντίστοιχα φάσματα Lyapunov στην ίδια εκθετική συνάρτηση. Υπολογίζοντας κατόπιν το άθροισμα των θετικών εκθετών Lyapunov, που αντιστοιχεί στην εντροπία Kolmogorov - Sinai και διαπιστώνεται ότι για τα συστήματα που εξετάζονται στη διατριβή αυτή, η εντροπία KS αυξάνει γραμμικά, συναρτήσει των βαθμών ελευθερίας N, επιβεβαιώνοντας έτσι ότι είναι εκτεταμένη ποσότητα της Στατιστικής Μηχανικής. Τέλος εισάγεται η νέα μέθοδος του Δείκτη Γραμμικής Εξάρτησης (LDI) για τον διαχωρισμό χαοτικών και οργανωμένων τροχιών και αναφέρονται τα συγκριτικά της πλεονεκτήματα σε σχέση με τις μεθόδους των Κεφαλαίων 3 και 4. Αξίζει επίσης να αναφερθεί ότι πολλά αποτελέσματα της διατριβής μπορούν να εφαρμοσθούν για τη μελέτη της δυναμικής συμπλεκτικών απεικονίσεων, για τις οποίες ο κ .Αντωνόπουλος ανέπτυξε μια νέα μέθοδο που συνδυάζει τη χρήση δικών του μεθόδων και των λεγόμενων Διαφοροεξελικτικών Αλγορίθμων, για την εύρεση της δυναμικής ακτίνας ευστάθειας συμπλεκτικών απεικονίσεων που περιγράφουν επιταχυντές σωματιδίων υψηλών ενεργειών. / The main part of the thesis begins with Chapter 3, where new research results are presented which concern the regular and chaotic dynamics of Hamiltonian systems of few degrees of freedom. Results are described on the behavior of indices distinguishing organized from chaotic motion in these systems and a comparison is made with corresponding results in the international literature. Then, new findings are reported on the theory and application of the method of the Generalized Alignment Index GALI, which is one of the most basic discoveries of the thesis in nonintegrable Hamiltonian systems of 2 and 3 degrees of freedom. Chapter 5 deals with the presentation of original research results in Hamiltonian systems of many degrees of freedom. Here new methods are introduced for the study of regions of regular and chaotic behavior of multi degree of freedom systems with the primary aim of understanding the behavior of these systems in the thermodynamic limit to give an answer to the crucial question of whether the laws of Statistical mechanics hold in the case of multi dimensional Hamiltonian systems. The author studies how chaotic regions increase in size around unstable Simple Periodic Orbits (SPOs) in phase space, beyond a critical value of the energy, while the transition from limited to widespread chaos is indicated by the fact that in regions of different unstable SPOs the corresponding Lyapunov spectra converge to the same exponential – like function. Computing then the sum of the positive Lyapunov exponents, which corresponds to the so called Kolmogorov – Sinai entropy, it is shown that the systems that are studied in this thesis the KS entropy increases linearly as a function of the number of degrees of freedom N, thus confirming that it is an extensive quantity of Statistical Mechanics. Finally, the new method of the Linear Dependence Index (LDI) is introduced for distinguishing between regular and chaotic orbits and its advantages are described when compared with the methods of Chapters 3 and 4. It is worth mentioning also that many of the results of this thesis can be applied to the study of the dynamics of symplectic mappings, for which Mr. Antonopoulos developed a new method which combines his techniques with those of Evolutionary Algorithms, for determining the dynamical aperture radius for the stability of symplectic maps which describe the dynamics of high energy particle accelerators.

Page generated in 0.0637 seconds