Spelling suggestions: "subject:"classification supervisé""
21 |
Evaluation formative du savoir-faire des apprenants à l'aide d'algorithmes de classification : application à l'électronique numérique / Formative evaluation of the learners' know-how using classification algorithms : application to th digital electronicsTanana, Mariam 19 November 2009 (has links)
Lorsqu'un enseignant veut évaluer le savoir-faire des apprenants à l'aide d'un logiciel, il utilise souvent les systèmes Tutoriels Intelligents (STI). Or, les STI sont difficiles à développer et destinés à un domaine pédagogique très ciblé. Depuis plusieurs années, l'utilisation d'algorithmes de classification par apprentissage supervisé a été proposée pour évaluer le savoir des apprenants. Notre hypothèse est que ces mêmes algorithmes vont aussi nous permettre d'évaluer leur savoir-faire. Notre domaine d'application étant l'électronique numérique, nous proposons une mesure de similarité entre schémas électroniques et une bas d'apprentissage générée automatiquement. cette base d'apprentissage est composées de schémas électroniques pédagogiquement étiquetés "bons" ou "mauvais" avec des informations concernant le degré de simplification des erreurs commises. Finalement, l'utilisation d'un algorithme de classification simple (les k plus proches voisins) nous a permis de faire une évaluation des schémas électroniques dans la majorité des cas. / When a teacher wants to evaluate the know-how of the learners using a software, he often uses Intelligent Tutorial Systems (ITS). However, those systems are difficult to develop and intended for a very targeted educational domain. For several years, the used of supervised classification algorithms was proposed to estimate the learners' knowledge. From this fact, we assume that the same kinf of algorithms can help to adress the learners' know-how evaluation. Our application field being digital system design, we propose a similarity measure between digital circuits and instances issued from an automatically generated database. This database consists of electronic circuits pedagogically labelled "good" or "bad" with information concerning the simplification degrees or made mistakes. Finally, the use of a simple classification algorithm (namely k-nearest neighbours classifier) allowed us to achieve a circuit's evaluation in most cases.
|
22 |
Interaction robot/environnement dans le cadre de la psychologie éco logique. Implémentation des affordancesHazan, Aurélien 11 December 2007 (has links) (PDF)
Comment un robot peut-il estimer si une tâche est réalisable ou pas dans un envi ronnement donné ? De nombreux travaux en robotique s'appuient pour répondre sur les affordances de la psychologie écologique. Apprendre quelles sont les actions permises nécessite selon nous d'apprendre les relations de dépendances locales et globales entre capteurs et effecteurs au cours de l'action.<br />Pour cela nous assimilons le robot à un réseau sensorimoteur aléatoire, et pour représenter son activité nous introduisons des mesures de dépendance probabilist es et statistiques. Celles-ci nous permettent de construire des matrices, graphes et complexes simpliciaux aléatoires dont nous étudions les propriétés spectrales, topologiques et homologiques.<br />Puis nous vérifions expérimentalement l'intérêt des outils proposés à l'aide d'un robot mobile simulé, autour de la capacité de pousser les objets de l'environnement, dans le cadre de tâches de classification supervisée et non supervisée.
|
23 |
Aide au diagnostic de cancers cutanés et de la leucémie lymphoïde chronique par microspectroscopies vibrationnelles couplées à des analyses numériques multivariées / Vibrational spectroscopies coupled with numerical multivariate analyzes as an aid to diagnose skin cancers and chronic lymphocytic leukemiaHappillon, Teddy 12 December 2013 (has links)
La spectroscopie vibrationnelle est une technologie permettant de générer une grande quantité de données très informatives quant à la composition moléculaire des échantillons analysés. Lorsqu'elle est couplée à des méthodes chimiométriques de traitement et de classification de données, elle devient un outil très performant pour l'identification de structures et sous-structures des échantillons. Appliqué dans le domaine du biomédical, cet outil présente alors un fort potentiel pour le diagnostic de maladie. C'est dans ce cadre qu'ont été réalisés les travaux de ce manuscrit. Dans une première étude relevant du développement algorithmique, un algorithme automatique de classification non supervisée (basé sur les Fuzzy C-Means) et récemment implémenté au sein du laboratoire pour apporter une aide au diagnostic de cancers cutanés par imagerie infrarouge, a été amélioré afin de i) considérablement réduire le temps nécessaire à son exécution ii) augmenter la qualité des résultats obtenus sur les données infrarouge et iii) étendre son champs d'application à des données réelles et simulées, habituellement employées dans la littérature. Cet outil a été testé sur des données infrarouge acquises sur 16 échantillons de cancers cutanés (BCC, SCC, maladie de Bowen et mélanomes), et sur 49 jeux de données réels et simulés. Les résultats obtenus ont montré la capacité de ce nouvel algorithme à estimer des partitions proches de la réalité quelque soit le type de données étudié. La seconde étude de ce manuscrit avait pour but de mettre au point un outil chimiométrique autonome d'aide au diagnostic de la leucémie lymphoïde chronique par spectroscopie Raman. Dans ce travail, des traitements numériques et l'algorithme de classification supervisée Support Vector Machines, ont été appliqués à des données acquises sur des cellules sanguine de 27 témoins et 49 patients présentant une leucémie lymphoïde chronique. Les résultats de classification obtenus ont montré une sensibilité de 80% et une spécificité de 100% dans la détection de la maladie. / Vibrational spectroscopy is a technology able to record a large amount of molecular information from studied samples. Coupled with chemometrics and classification methods, vibrational spectroscopy is an efficient tool to identify sample structures and substructures. When applied to the biomedical field, this tool shows a high potential for disease diagnosis. It is in this context that the works presented in this thesis have been realized. In a first study, dealing with algorithmic development, an automatic and unsupervised classification algorithm (based on the Fuzzy C-Means) and developed by our laboratory in order to help for skin cancer diagnosis using IR spectroscopy, was improved in order to i) reduce the computational time needed to realize clustering, ii) increase results quality obtained on infrared data, iii) and extend its application fields to simulated and real datasets, commonly used in the literature. This tool has been tested on 16 infrared spectral images of skin cancers (BCC, SCC, Bowen's disease and melanoma), and 49 real and simulated datasets. The obtained results showed the ability of this new algorithm to estimate realistic data partitions regardless the considered dataset. The second study of this work aimed at developing an independent chemometric tool to assist for chronic lymphocytic leukemia diagnosis by Raman spectroscopy. In this second work, different numerical preprocessing steps and a supervised classification algorithm, Support Vector Machines, have been applied on data recorded on blood cells coming from 27 healthy persons and 49 patients with chronic lymphocytic leukemia. The classification results showed a sensitivity of 80% and a specificity of 100% in the disease diagnosis.
|
24 |
Apprentissage de vote de majorité pour la classification supervisée et l'adaptation de domaine : Approches PAC Bayésiennes et combinaison de similaritésMorvant, Emilie 18 September 2013 (has links)
De nombreuses applications font appel à des méthodes d'apprentissage capables de considérer différentes sources d'information (e.g. images, son, texte) en combinant plusieurs modèles ou descriptions. Cette thèse propose des contributions théoriquement fondées permettant de répondre à deux problématiques importantes pour ces méthodes :(i) Comment intégrer de la connaissance a priori sur des informations ?(ii) Comment adapter un modèle sur des données ne suivant pas la distribution des données d'apprentissage ?Une 1ère série de résultats en classification supervisée s'intéresse à l'apprentissage de votes de majorité sur des classifieurs dans un contexte PAC-Bayésien prenant en compte un a priori sur ces classifieurs. Le 1er apport étend un algorithme de minimisation de l'erreur du vote en classification binaire en permettant l'utilisation d'a priori sous la forme de distributions alignées sur les votants. Notre 2ème contribution analyse théoriquement l'intérêt de la minimisation de la norme opérateur de la matrice de confusion de votes dans un contexte de données multiclasses. La 2nde série de résultats concerne l'AD en classification binaire : le 3ème apport combine des fonctions similarités (epsilon,gamma,tau)-Bonnes pour inférer un espace rapprochant les distributions des données d'apprentissage et de test à l'aide de la minimisation d'une borne. Notre 4ème contribution propose une analyse PAC-Bayésienne de l'AD basée sur une divergence entre distributions. Nous en dérivons des garanties théoriques pour les votes de majorité et un algorithme adapté aux classifieurs linéaires minimisant cette borne. / Many applications make use of machine learning methods able to take into account different information sources (e.g. sounds, image, text) by combining different descriptors or models. This thesis proposes a series of contributions theoretically founded dealing with two mainissues for such methods:(i) How to embed some a priori information available?(ii) How to adapt a model on new data following a distribution different from the learning data distribution? This last issue is known as domain adaptation (DA).A 1st series of contributions studies the problem of learning a majority vote over a set of voters for supervised classification in the PAC-Bayesian context allowing one to consider an a priori on the voters. Our 1st contribution extends an algorithm minimizing the error of the majority vote in binary classification by allowing the use of an a priori expressed as an aligned distribution. The 2nd analyses theoretically the interest of the minimization of the operator norm of the confusion matrix of the votes in the multiclass setting. Our 2nd series of contributions deals with DA for binary classification. The 3rd result combines (epsilon,gamma,tau)-Good similarity functions to infer a new projection space allowing us to move closer the learning and test distributions by means of the minimization of a DA bound. Finally, we propose a PAC-Bayesian analysis for DA based on a divergence between distributions. This analysis allows us to derive guarantees for learning majority votes in a DA context, and to design an algorithm specialized to linear classifiers minimizing our bound.
|
25 |
An XML document representation method based on structure and content : application in technical document classification / An XML document representation method based on structure and content : application in technical document classificationChagheri, Samaneh 27 September 2012 (has links)
L’amélioration rapide du nombre de documents stockés électroniquement représente un défi pour la classification automatique de documents. Les systèmes de classification traditionnels traitent les documents en tant que texte plat, mais les documents sont de plus en plus structurés. Par exemple, XML est la norme plus connue et plus utilisée pour la représentation de documents structurés. Ce type des documents comprend des informations complémentaires sur l'organisation du contenu représentées par différents éléments comme les titres, les sections, les légendes etc. Pour tenir compte des informations stockées dans la structure logique, nous proposons une approche de représentation des documents structurés basée à la fois sur la structure logique du document et son contenu textuel. Notre approche étend le modèle traditionnel de représentation du document appelé modèle vectoriel. Nous avons essayé d'utiliser d'information structurelle dans toutes les phases de la représentation du document: -procédure d'extraction de caractéristiques, -La sélection des caractéristiques, -Pondération des caractéristiques. Notre deuxième contribution concerne d’appliquer notre approche générique à un domaine réel : classification des documents techniques. Nous désirons mettre en œuvre notre proposition sur une collection de documents techniques sauvegardés électroniquement dans la société CONTINEW spécialisée dans l'audit de documents techniques. Ces documents sont en format représentations où la structure logique est non accessible. Nous proposons une solution d’interprétation de documents pour détecter la structure logique des documents à partir de leur présentation physique. Ainsi une collection hétérogène en différents formats de stockage est transformée en une collection homogène de documents XML contenant le même schéma logique. Cette contribution est basée sur un apprentissage supervisé. En conclusion, notre proposition prend en charge l'ensemble de flux de traitements des documents partant du format original jusqu’à la détermination de la ses classe Dans notre système l’algorithme de classification utilisé est SVM. / Rapid improvement in the number of documents stored electronically presents a challenge for automatic classification of documents. Traditional classification systems consider documents as a plain text; however documents are becoming more and more structured. For example, XML is the most known and used standard for structured document representation. These documents include supplementary information on content organization represented by different elements such as title, section, caption etc. We propose an approach on structured document classification based on both document logical structure and its content in order to take into account the information present in logical structure. Our approach extends the traditional document representation model called Vector Space Model (VSM). We have tried to integrate structural information in all phases of document representation construction: -Feature extraction procedure, -Feature selection, -Feature weighting. Our second contribution concerns to apply our generic approach to a real domain of technical documentation. We desire to use our proposition for classifying technical documents electronically saved in CONTINEW; society specialized in technical document audit. These documents are in legacy format in which logical structure is inaccessible. Then we propose an approach for document understanding in order to extract documents logical structure from their presentation layout. Thus a collection of heterogeneous documents in different physical presentations and formats is transformed to a homogenous XML collection sharing the same logical structure. Our contribution is based on learning approach where each logical element is described by its physical characteristics. Therefore, our proposal supports whole document transformation workflow from document’s original format to being classified. In our system SVM has been used as classification algorithm.
|
26 |
Analyse du capitalisme social sur Twitter / Social capitalism on Twitter : a surveyDugué, Nicolas 29 June 2015 (has links)
Le sociologue Bourdieu définit le capital social comme : "L’ensemble des ressources actuelles ou potentielles qui sont liées à la possession d’un réseau durable de relations". Sur Twitter, les abonnements, mentions et retweets créent un réseau de relations pour chaque utilisateur dont les ressources sont l’obtention d’informations pertinentes, la possibilité d’être lu, d’assouvir un besoin narcissique, de diffuser efficacement des messages.Certains utilisateurs Twitter -appelés capitalistes sociaux - cherchent à maximiser leur nombre d’abonnements pour maximiser leur capital social. Nous introduisons leurs techniques, basées sur l’échange d’abonnements et l’utilisation de hashtags dédiés. Afin de mieux les étudier, nous détaillons tout d’abord une méthode pour détecter à l’échelle du réseau ces utilisateurs en se basant sur leurs abonnements et abonnés. Puis, nous montrons avec un compte Twitter automatisé que ces techniques permettent de gagner efficacement des abonnés et de se faire beaucoup retweeter. Nous établissons ensuite que ces dernières permettent également aux capitalistes sociaux d’occuper des positions qui leur accordent une bonne visibilité dans le réseau. De plus, ces méthodes rendent ces utilisateurs influents aux yeux des principaux outils de mesure. Nous mettons en place une méthode de classification supervisée pour détecter avec précision ces utilisateurs et ainsi produire un nouveau score d’influence. / Bourdieu, a sociologist, defines social capital as : "The set of current or potential ressources linked to the possession of a lasting relationships network". On Twitter,the friends, followers, users mentionned and retweeted are considered as the relationships network of each user, which ressources are the chance to get relevant information, to beread, to satisfy a narcissist need, to spread information or advertisements. We observethat some Twitter users that we call social capitalists aim to maximize their follower numbers to maximize their social capital. We introduce their methods, based on mutual subscriptions and dedicated hashtags. In order to study them, we first describe a large scaledetection method based on their set of followers and followees. Then, we show with an automated Twitter account that their methods allow to gain followers and to be retweeted efficiently. Afterwards, we bring to light that social capitalists methods allows these users to occupy specific positions in the network allowing them a high visibility.Furthermore, these methods make these users influent according to the major tools. Wethus set up a classification method to detect accurately these user and produce a newinfluence score.
|
27 |
Contribution à la reconnaissance non-intrusive d'activités humaines / Contribution to the non-intrusive gratitude of human activitiesTrabelsi, Dorra 25 June 2013 (has links)
La reconnaissance d’activités humaines est un sujet de recherche d’actualité comme en témoignent les nombreux travaux de recherche sur le sujet. Dans ce cadre, la reconnaissance des activités physiques humaines est un domaine émergent avec de nombreuses retombées attendues dans la gestion de l’état de santé des personnes et de certaines maladies, les systèmes de rééducation, etc.Cette thèse vise la proposition d’une approche pour la reconnaissance automatique et non-intrusive d’activités physiques quotidiennes, à travers des capteurs inertiels de type accéléromètres, placés au niveau de certains points clés du corps humain. Les approches de reconnaissance d’activités physiques étudiées dans cette thèse, sont catégorisées en deux parties : la première traite des approches supervisées et la seconde étudie les approches non-supervisées. L’accent est mis plus particulièrement sur les approches non-supervisées ne nécessitant aucune labellisation des données. Ainsi, nous proposons une approche probabiliste pour la modélisation des séries temporelles associées aux données accélérométriques, basée sur un modèle de régression dynamique régi par une chaine de Markov cachée. En considérant les séquences d’accélérations issues de plusieurs capteurs comme des séries temporelles multidimensionnelles, la reconnaissance d’activités humaines se ramène à un problème de segmentation jointe de séries temporelles multidimensionnelles où chaque segment est associé à une activité. L’approche proposée prend en compte l’aspect séquentiel et l’évolution temporelle des données. Les résultats obtenus montrent clairement la supériorité de l’approche proposée par rapport aux autres approches en termes de précision de classification aussi bien des activités statiques et dynamiques, que des transitions entre activités. / Human activity recognition is currently a challengeable research topic as it can be witnessed by the extensive research works that has been conducted recently on this subject. In this context, recognition of physical human activities is an emerging domain with expected impacts in the monitoring of some pathologies and people health status, rehabilitation procedures, etc. In this thesis, we propose a new approach for the automatic recognition of human activity from raw acceleration data measured using inertial wearable sensors placed at key points of the human body. Approaches studied in this thesis are categorized into two parts : the first one deals with supervised-based approaches while the second one treats the unsupervised-based ones. The proposed unsupervised approach is based upon joint segmentation of multidimensional time series using a Hidden Markov Model (HMM) in a multiple regression context where each segment is associated with an activity. The model is learned in an unsupervised framework where no activity labels are needed. The proposed approach takes into account the sequential appearance and temporal evolution of data. The results clearly show the satisfactory results of the proposed approach with respect to other approaches in terms of classification accuracy for static, dynamic and transitional human activities
|
28 |
Caractérisation de tissus cutanés superficiels hypertrophiques par spectroscopie multimodalité in vivo : instrumentation, extraction et classification de données multidimensionnelle / Characterization of hypertrophic scar tissues by multimodal spectroscopy in vivo : Instrumentation, Extraction and Classification of multidimensional datasLiu, Honghui 18 April 2012 (has links)
L'objectif de ce travail de recherche est le développement, la mise au point et la validation d'une méthode de spectroscopie multi-modalités en diffusion élastique et autofluorescence pour caractériser des tissus cutanés cicatriciels hypertrophiques in vivo. Ces travaux sont reposés sur trois axes. La première partie des travaux présente l'instrumentation : développement d'un système spectroscopique qui permet de réaliser des mesures de multimodalités in vivo de manière automatique et efficace. Des procédures métrologiques sont mise en place pour caractériser le système développé et assurer la repétabilité les résultats de mesure. La deuxième partie présente une étude préclinique. Un modèle animal et un protocole expérimental ont été mises en place pour créer des cicatrices hypertrophiques sur lesquelles nous pouvons recueillir des spectres à analyser. La troisième partie porte sur la classification des spectres obtenus. Elle propose des méthodes algorithmiques pour débruiter et corriger les spectres mesurés, pour extraire automatiquement des caractéristiques spectrales interprétables et pour sélectionner un sous-ensemble de caractéristiques "optimales" en vue d'une classification efficace. Les résultats de classification réalisée respectivement par trois méthodes (k-ppv, ADL et RNA) montrent que la faisabilité d'utiliser la spectroscopie bimodale pour la caractérisation de ce type de lésion cutané. Par ailleurs, les caractéristiques sélectionnées par notre méthode montrent que la cicatrisation hypertrophique implique un changement de structure tissulaire et une variation de concentration de porphyrine / This research activity aims at developing and validating a multimodal system combining diffuse reflectance spectroscopy and autofluorescence spectroscopy in characterizing hypertrophic scar tissues in vivo. The work relies on three axes. The first part concerns the development of an automatic system which is suitable for multimodal spectroscopic measurement. A series of calibration procedures are carried out for ensuring the reliability of the measurement result. The second part presents a preclinical study on an animal model (rabbit ear). An experimental protocol was implemented in order to create hypertrophic scars on which we can collect spectra to analyze. The third part deals with the classification problem on the spectra obtained. It provides a series of algorithmic methods for denoising and correcting the measured spectra, for automatically extracting some interpretable spectral features and for selecting an optimal subset for classification. The classification results arched using respectively 3 different classifiers (knn, LDA and ANN) show the ability of bimodal spectroscopy in characterization of the topic skin lesion. Furthermore, the features selected my selection method indicate that the hypertrophic scarring may involve a change in tissue structure and in the concentration of porphyrins embedded in the epidermis
|
29 |
Contribution à la détection et à l'analyse des signaux EEG épileptiques : débruitage et séparation de sources / Contribution to the detection and analysis of epileptic EEG signals : denoising and source separationRomo Vazquez, Rebeca del Carmen 24 February 2010 (has links)
L'objectif principal de cette thèse est le pré-traitement des signaux d'électroencéphalographie (EEG). En particulier, elle vise à développer une méthodologie pour obtenir un EEG dit "propre" à travers l'identification et l'élimination des artéfacts extra-cérébraux (mouvements oculaires, clignements, activité cardiaque et musculaire) et du bruit. Après identification, les artéfacts et le bruit doivent être éliminés avec une perte minimale d'information, car dans le cas d'EEG, il est de grande importance de ne pas perdre d'information potentiellement utile à l'analyse (visuelle ou automatique) et donc au diagnostic médical. Plusieurs étapes sont nécessaires pour atteindre cet objectif : séparation et identification des sources d'artéfacts, élimination du bruit de mesure et reconstruction de l'EEG "propre". A travers une approche de type séparation aveugle de sources (SAS), la première partie vise donc à séparer les signaux EEG dans des sources informatives cérébrales et des sources d'artéfacts extra-cérébraux à éliminer. Une deuxième partie vise à classifier et éliminer les sources d'artéfacts et elle consiste en une étape de classification supervisée. Le bruit de mesure, quant à lui, il est éliminé par une approche de type débruitage par ondelettes. La mise en place d'une méthodologie intégrant d'une manière optimale ces trois techniques (séparation de sources, classification supervisée et débruitage par ondelettes) constitue l'apport principal de cette thèse. La méthodologie développée, ainsi que les résultats obtenus sur une base de signaux d'EEG réels (critiques et inter-critiques) importante, sont soumis à une expertise médicale approfondie, qui valide l'approche proposée / The goal of this research is the electroencephalographic (EEG) signals preprocessing. More precisely, we aim to develop a methodology to obtain a "clean" EEG through the extra- cerebral artefacts (ocular movements, eye blinks, high frequency and cardiac activity) and noise identification and elimination. After identification, the artefacts and noise must be eliminated with a minimal loss of cerebral activity information, as this information is potentially useful to the analysis (visual or automatic) and therefore to the medial diagnosis. To accomplish this objective, several pre-processing steps are needed: separation and identification of the artefact sources, noise elimination and "clean" EEG reconstruction. Through a blind source separation (BSS) approach, the first step aims to separate the EEG signals into informative and artefact sources. Once the sources are separated, the second step is to classify and to eliminate the identified artefacts sources. This step implies a supervised classification. The EEG is reconstructed only from informative sources. The noise is finally eliminated using a wavelet denoising approach. A methodology ensuring an optimal interaction of these three techniques (BSS, classification and wavelet denoising) is the main contribution of this thesis. The methodology developed here, as well the obtained results from an important real EEG data base (ictal and inter-ictal) is subjected to a detailed analysis by medical expertise, which validates the proposed approach
|
30 |
Apprentissage automatique pour la détection de relations d'affaireCapo-Chichi, Grâce Prudencia 04 1900 (has links)
No description available.
|
Page generated in 0.144 seconds