• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 88
  • 17
  • 17
  • 17
  • 13
  • 11
  • 8
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 355
  • 50
  • 43
  • 39
  • 29
  • 25
  • 24
  • 24
  • 22
  • 21
  • 19
  • 18
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Facilitating higher-fidelity simulations of axial compressor instability and other turbomachinery flow conditions

Herrick, Gregory Paul 03 May 2008 (has links)
The quest to accurately capture flow phenomena with length-scales both short and long and to accurately represent complex flow phenomena within disparately sized geometry inspires a need for an efficient, highidelity, multi-block structured computational fluid dynamics (CFD) parallel computational scheme. This research presents and demonstrates a more efficient computational method by which to perform multi-block structured CFD parallel computational simulations, thus facilitating higheridelity solutions of complicated geometries (due to the inclusion of grids for "small" flow areas which are often merely modeled) and their associated flows. This computational framework offers greater flexibility and user-control in allocating the resource balance between process count and wallclock computation time. The principal modifications implemented in this revision consist of a "multiple grid-block per processing core" software infrastructure and an analytic computation of viscous flux Jacobians. The development of this scheme is largely motivated by the desire to simulate axial compressor stall inception with more complete gridding of the flow passages (including rotor tip clearance regions) than has been previously done while maintaining high computational efficiency (i.e., minimal consumption of computational resources), and thus this paradigm shall be demonstrated with an examination of instability in a transonic axial compressor. However, the paradigm presented herein facilitates CFD simulation of myriad previously impractical geometries and flows and is not limited to detailed analyses of axial compressor flows. While the simulations presented herein were technically possible under the previous structure of the subject software, they were much less computationally efficient and thus not pragmatically feasible; the previous research using this software to perform three-dimensional, full-annulus, timeurate, unsteady, full-stage (with sliding-interface) simulations of rotating stall inception in axial compressors utilized tip clearance periodic models, while the scheme here is demonstrated by a simulation of axial compressor stall inception utilizing gridded rotor tip clearance regions. As will be discussed, much previous research --- experimental, theoretical, and computational --- has suggested that understanding clearance flow behavior is critical to understanding stall inception, and previous computational research efforts which have used tip clearance models have begged the question, "What about the clearance flows?". This research begins to address that question.
162

Elevated Clearance of Immune Checkpoint Inhibitors in Animal Models of Cancer Cachexia

Vu, Trang Thu January 2022 (has links)
No description available.
163

A Role for Interleukin-10 in the Murine Model of Lyme Disease

Lazarus, John J. 27 December 2007 (has links)
No description available.
164

CEACAM1: A Link Between Insulin and Lipid Metabolism

DeAngelis, Anthony Michael 14 July 2009 (has links)
No description available.
165

Hepatic CEACAM1 Protects Against Metabolic Abnormalities Associated with Metabolic Syndrome

Bowman, Thomas A. 19 May 2010 (has links)
No description available.
166

Novel Urinary Biomarkers of Acute Kidney Injury to Detect Toxicity and Predict Clearance in Pediatric Oncology Patients Treated with High Dose Methotrexate

Bukowinski, Andrew 19 June 2015 (has links)
No description available.
167

Analysis of Clearance Non-linearities and Vibro-impacts in Torsional Systems

Kim, Tae-Chung 06 August 2003 (has links)
No description available.
168

Influenza A Virus Inhibits Alveolar Fluid Clearance in BALB/c Mice

Wolk, Kendra E. 22 June 2012 (has links)
No description available.
169

Evaluating the use of Cryopreserved Hepatocytes for the Prediction of In Vivo Hepatic Clearance

Eng, Heather S. 25 August 2004 (has links)
No description available.
170

Improved Flutter Prediction for Turbomachinery Blades with Tip Clearance Flows

Sun, Tianrui January 2018 (has links)
Recent design trends in steam turbines strive for high aerodynamic loading and high aspect ratio to meet the demand of higher efficiency. These design trends together with the low structural frequency in last stage steam turbines increase the susceptibility of the turbine blades to flutter. Flutter is the self-excited and self-sustained aeroelastic instability phenomenon, which can result in rapid growth of blade vibration amplitude and eventually blade failure in a short period of time unless adequately damped. To prevent the occurrences of flutter before the operation of new steam turbines, a compromise between aeroelastic stability and stage efficiency has to be made in the steam turbine design process. Due to the high uncertainty in present flutter prediction methods, engineers use large safety margins in predicting flutter which can rule out designs with higher efficiency. The ability to predict flutter more accurately will allow engineers to push the design envelope with greater confidence and possibly create more efficient steam turbines. The present work aims to investigate the influence of tip clearance flow on the prediction of steam turbine flutter characteristics. Tip clearance flow effect is one of the critical factors in flutter analysis for the majority of aerodynamic work is done near the blade tip. Analysis of the impact of tip clearance flow on steam turbine flutter characteristics is therefore needed to formulate a more accurate aeroelastic stability prediction method in the design phase.Besides the tip leakage vortex, the induced vortices in the tip clearance flow can also influence blade flutter characteristics. However, the spatial distribution of the induced vortices cannot be resolved by URANS method for the limitation of turbulence models. The Detached-Eddy Simulation (DES) calculation is thus applied on a realistic-scale last stage steam turbine model to analyze the structure of induced vortices in the tip region. The influence of the tip leakage vortex and the induced vortices on flutter prediction are analyzed separately. The KTH Steam Turbine Flutter Test Case is used in the flutter analysis as a typical realistic-scale last stage steam turbine model. The energy method based on 3D unsteady CFD calculation is applied in the flutter analysis. Two CFD solvers, an in-house code LUFT and a commercial software ANSYS CFX, are used in the flutter analysis as verification of each other. The influence of tip leakage vortex on the steam turbine flutter prediction is analyzed by comparing the aeroelastic stability of two models: one with the tip gap and the other without the tip gap. Comparison between the flutter characteristics predicted by URANS and DES approaches is analyzed to investigate the influence of the induced vortices on blade flutter characteristics. The multiple induced vortices and their relative rotation around the tip leakage vortex in the KTH Steam Turbine Flutter Test Case are resolved by DES but not by URANS simulations. Both tip leakage vortex and induced vortices have an influence on blade loading on the rear half of the suction side near the blade tip. The flutter analysis results suggest that the tip clearance flow has a significant influence on blade aerodynamic damping at the least stable interblade phase angle (IBPA), while its influence on the overall shape of the damping curve is minor. At the least stable IBPA, the tip leakage vortex shows a stabilization effect on rotor aeroelastic stabilities while the induced vortices show a destabilization effect on it. Meanwhile, a non-linear unsteady flow behavior is observed due to the streamwise motion of induced vortices during blade oscillation, which phenomenon is only resolved in DES results.

Page generated in 0.0558 seconds