• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Solid Fuel Blend Pyrolysis-Combustion Behavior and Fluidized Bed Hydrodynamics

Agarwal, Gaurav 16 October 2013 (has links)
As a carbon neutral and renewable source of energy, biomass carries a high potential to help sustain the future energy demand. The co-firing of coal and biomass mixtures is an alternative fuel route for the existing coal based reactors. The main challenges associated with co-firing involves proper understanding of the co-firing behavior of blended coal-biomass fuels, and proper understanding of advanced gasification systems used for converting such blended fuels to energy. The pyrolysis and combustion behavior of coal-biomass mixtures was quantified by devising laboratory experiments and mathematical models. The pyrolysis-combustion behavior of blended fuels was quantified on the basis of their physicochemical, kinetic, energetic and evolved gas behavior during pyrolysis/combustion. The energetic behavior of fuels was quantified by applying mathematical models onto the experimental data to obtain heat of pyrolysis and heat of combustion. Fuel performance models were developed to compare the pyrolysis and combustion performance of non-blended and blended fuels. The effect of blended fuel briquetting was also analyzed to find solutions related to coal and biomass co-firing by developing a bench scale fuel combustion setup. The collected data was analyzed to identify the effects of fuel blending and briquetting on fuel combustion performance, ignitability, flammability and evolved pollutant gases. A further effort was made in this research to develop the understanding of fluidized bed hydrodynamics. A lab scale cold-flow fluidized bed setup was developed and novel non-intrusive techniques were applied to quantify the hydrodynamics behavior. Particle Image Velocimetry and Digital Image Analysis algorithms were used to investigate the evolution of multiple inlet gas jets located at its distributor base. Results were used to develop a comprehensive grid-zone phenomenological model and determine hydrodynamics parameters such as jet particle entrainment velocities and void fraction among others. The results were further used to study the effect of fluidization velocity, particle diameter, particle density, distributor orifice diameter and orifice pitch on the solid circulation in fluidized beds. / Ph. D.
12

Influences on durability and leaching behaviour of concrete : new technologies in fly ash production

Yakub, H. I. January 2016 (has links)
This report describes a 3 year study carried out to determine the effects of modern coal power generation technologies on the properties of fly ash and how these may affect the use of the material in concrete. A total of 18 fly ashes, from 11 different sources, produced under a range of conditions and technologies were investigated. These primarily included co-combustion, low NOx, supercritical and oxy-fuel technologies, although other available materials (run-of-station, air-classified, processed and stockpiled fly ashes) were included for comparison. The initial experimental work involved physical and chemical characterization of the fly ash samples. Thereafter, tests covering fresh properties, strength development and durability were carried out on selected concretes. A fly ash level of 30% was used with w/c ratios covering the practical range considered (0.35 to 0.65). Equal strength comparisons were also made where appropriate. Finally, granular (unbound fly ash) and monolithic (fly ash concrete) leaching tests were carried out to assess the environmental implications of using the fly ashes. The results from the physical and chemical characterization tests suggest that modern technologies used for coal fired power generation can have an influence on the properties of fly ash produced. The co-combustion, oxy-fuel and in-combustion low NOx fly ashes had reduced fineness and greater LOI, which had a negative effect on foam index and water requirement of the materials. However reactivity was largely unaffected. The post-combustion low NOx and supercritical fly ashes appeared to be unaffected by their production methods compared to that produced by conventional/establish means. Tests on fresh concrete properties showed that fly ashes with high LOI and low fineness required higher SP doses than the reference PC concrete. However, fly ashes with high fineness and low surface area were found to require a lower SP dose than the PC concrete. The concrete compressive strength tests indicate that, in general, finer fly ash concretes tended to have higher strengths than those containing coarser material. However, there did not appear to be any significant difference in performance between fly ash concretes, which suggests that, although modern technologies can have an impact on fly ash properties, if account is taken of these they should not have any significant influence on strength development. Comparison with an earlier study from the 1990s considering BS EN 450-1 fly ashes showed general agreement between the data. The durability study showed that finer, low LOI fly ashes had higher chloride resistance and at equal strength fly ash concretes performed better than those with PC. Equal strength fly ash concretes covering the modern technologies were found to have similar levels of durability for sulfate attack, abrasion and carbonation. High alkali concrete (following the BS 812-123 method) gave similar expansion levels and good resistance with respect to AAR. With air-entrainment, it was found that the fly ash concretes required high doses of AEA (relative to the PC concrete), with high LOI/BET fly ashes requiring greatest quantities. At equal strength, the fly ash concretes had poorer freeze-thaw scaling resistance than PC concrete. However, the majority of the fly ashes did manage to achieve acceptable scaling resistance according to the Swedish criteria. In general, the findings of the durability study are in agreement with the earlier study from the 1990s. Overall, no effect of production technology on the durability of concrete was observed. The leaching studies showed that, in general, in both granular and concrete form, modern fly ashes met the non-hazardous waste requirements in the WAC for all components tested except chromium. For the granular test, there were instances where elevated chromium levels were observed. Similarly, the fly ash concretes failed to meet the non-hazardous limit for chromium. However, chromium from the cement may have contributed to this, since the PC reference also failed to meet this requirement. Based on the results, there is no effect of production technology on the leaching characteristics of fly ash or concrete and the materials do not appear to pose a significant environmental risk. The practical implications of the study have been considered and overall, it has been shown that modern fly ashes behave in much the same way as traditional materials, and therefore, if these materials meet the requirements of BS EN 450-1, and their properties are taken into account in the proportioning of concrete, they should give satisfactory performance.
13

Co-combustion Of Coal And Olive Cake In A Fluidized Bed With Limestone Addition And Freeboard Extension

Akpulat, Onur 01 October 2009 (has links) (PDF)
In this study, flue gas emissions and combustion efficiencies during combustion and co-combustion of olive cake and coal are investigated in a bubbling fluidized bed with an inside diameter of 102 mm and a height of 900 mm and 1900 mm. Tun&ccedil / bilek lignite coal and Edremit olive cake were used in the experiments as fuels. Temperature distributions along the combustion column were continuously measured. Flue gas concentrations of O2, CO, SO2 and NOx were measured during combustion experiments. Four sets of experiments were performed in order to examine the effect of fuel composition, excess air ratio, freeboard extension and limestone addition on flue gas emissions and combustion efficiency. The olive cake addition to coal were 25, 50, 75 % by wt. The bed temperature on the average was 850 oC. The results of the experiments showed that coal combustion occurs at lower parts of the combustion column whereas olive cake combustion takes place more in the freeboard region. As olive cake percentage in the fuel mixture increased, CO emissions increased, SO2 and NOx emissions decreased. The reason for the decrease of NOx emissions with increasing percentage of olive cake in the fuel mixture was due to a reducing atmosphere created in the combustion column. Mostly combustion losses resulted mainly from the unburnt carbon in the fly ash. With the freeboard extension, noticeable decrease in CO emissions and slight increase in combustion efficiencies were observed. Among the limestones tested, &Ccedil / an limestone gave the best result with Ca/S = 3 at an optimum bed temperature of 850 oC. The SO2 reduction was 87% at this Ca/S ratio. For co-combustion experiments, it was observed that SO2 adsorption efficiency of limestone increased with the addition of olive cake to the fuel mixture.
14

Combustion And Co-combustion Of Olive Cake And Coal In A Fluidized Bed

Varol, Murat 01 June 2006 (has links) (PDF)
In this study, combustion performances and emission characteristics of olive cake and olive cake+coal mixture are investigated in a bubbling fluidized bed of 102 mm inside diameter and 900 mm height. The average particle sizes of coal and olive cake used in the experiments were 1.57 mm and 1.52 mm, respectively. Flue gas concentrations of O2, CO, SO2, NOx, and total hydrocarbons (CmHn) were measured during combustion experiments. Operational parameters (excess air ratio, secondary air injection) were changed and variation of pollutant concentrations and combustion efficiency with these operational parameters were studied. The temperature profiles measured along the combustor column was found higher in the freeboard for olive cake than coal due to combustion of hydrocarbons mostly in the freeboard. The location of the maximum temperature in the freeboard shifted to the upper part of the column, as the volatile matter content in the fuel mixture increased. Combustion efficiencies in the range of 83.6-90.1% were obtained for olive cake with the excess air ratio of 1.12-2.30. The corresponding combustion efficiency for coal was 98.4-99.7% under the same conditions. As the CO and hydrocarbon concentration in the flue gas increased, the combustion efficiency decreased. Also co-combustion experiments of olive cake and coal for various mixing ratios were carried out. As the amount of olive cake in the fuel mixture increased, SO2 emissions decreased because of the very low sulfur content of olive cake. In order to increase the combustion efficiency, secondary air was injected into the freeboard which was a good solution to decrease the CO and hydrocarbon emissions, and to increase the combustion efficiency. For the setup used in this study, the optimum operating conditions with respect to NOx and SO2 emissions were found as 1.35 for excess air ratio, and 30 L/min for secondary air flowrate for the combustion of 75 wt% olive cake and 25 wt% coal mixture. Highest combustion efficiency of 99.8% was obtained with an excess air ratio of 1.7, secondary air flow rate of 40 L/min for the combustion of 25 wt% olive cake and 75 wt% coal mixture.
15

Mineral Matter Behavior During the Combustion of Biomass and Coal Blends and its Effect on Particulate Matter Emission, Ash Deposition, and Sulfur Dioxide Emission

Roy, Rajarshi 23 April 2024 (has links) (PDF)
Combustion of coal is one of the primary sources of electricity generation worldwide today. Coal contains different chemicals that cause particulate matter(PM) and sulfur dioxide (SO2) emissions. These are health hazards and are responsible for deteriorating the ambient air quality. Particulate matter also forms ash deposits inside the coal combustor, which in turn decreases the energy efficiency of the power plants. Using biomass as a fuel in these utility boilers can potentially reduce the problems of particulate matter emissions and ash deposition, and can significantly reduce the SO2 emissions. However, biomass needs to be pretreated to make its properties similar to coal in terms of energy density, grindability, and durability before it can be fired in utility boilers. Steam explosion is one of the leading biomass pretreatment methods that enhances the physicochemical properties of biomass. A comprehensive review of the steam explosion process, its product properties, its comparison with other treatment processes, as well as its economic analysis and lifecycle assessment, have been explored in this work. Steam-exploded biomass has been co-combusted with bituminous coal in a 1500 kWth combustor to analyze the ash aerosol particle size distribution, composition, and deposition behavior. The primary results of these tests showed that both particulate matter emissions and ash deposition amount reduced significantly as more biomass was co-fired with coal. The submicron-sized particulate matter concentration showed a high correlation with the final mass of ash deposits (R2 > 0.96). Predicting ash deposition rates is important during the combustion of solid fuels. A Machine Learning tool was applied and trained with a fuel composition database of 92 fuels obtained from a thermodynamic equilibrium software (FactSage). When fully operational, this model should be integrated with an existing ash deposition model, which should make it self-sufficient in terms of generating equilibrium composition data. SO2 emissions were analyzed during the co-combustion of biomass and coal, and a synergistic decrease in SO2 emissions was observed with higher biomass blends. Experiments were conducted in a full-scale 471 MWe furnace to analyze the SO2 emissions, and an 85%-15% blend of coal and biomass was responsible for a 28.1% reduction in emissions and 22.1% reduction in the lime slurry utilization in the flue gas desulfurization (FGD) towers compared to pure coal combustion. Ash deposit characterizations by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) combined with thermodynamic equilibrium simulations revealed that calcium and potassium were responsible for this synergistic reduction as these metals captured the SO2 from the flue gases and retained them in the ash phase. The SO2 research was important since the current literature is deficient in research conducted at suspension-fired full-scale utility boilers to reduce SO2 emissions by co-firing coal and biomass blends. The research in this dissertation should provide valuable insights to the energy industries that are considering a transformation of fuel portfolio from coal to biomass and explore how the mineral matter present in pretreated biomass would behave inside a utility boiler. The primary conclusions are that during the co-combustion of coal and biomass, ash deposition mass and particulate matter ash load decreased, and SO2 emission saw a synergistic reduction in emissions due to higher calcium and potassium content in biomass compared to pure coal combustion.
16

Co-firing animal waste, sludge, residue wood, peat and forest fuels in a 50MWth CFB boiler : ash transformation, availability and process improvements

Hagman, Henrik January 2014 (has links)
The direct variable costs for heat and electricity production based on solid biomass fuel combustion is approximately 3-5 times lower than the costs in a fossil fuel-oil based boiler in Sweden. In addition waste derived biomass fuels are typically much cheaper than biomass not classified as waste. The introduction of the waste derived fuels; wastewater treatment sludge, demolition wood, and animal waste in a 50MWth circulating fluidized bed (CFB) biomass boiler located in Perstorp, Sweden, led to rapid deposit buildup in superheaters, heavy ash accumulation in economizers and failing boiler tubes and vortex finders that forced frequent boiler shutdowns. This in turn increased the use of expensive oil (fossil fuel) in backup boilers and the CO2 footprint of the on-site energy conversion system. This work aims to increase the general mechanistic understanding of combustion systems using complex fuels, and includes: A mapping of the boiler failure and preventive maintenance statistics; elemental composition analysis of ash, deposits and fuel fractions; flue-gas composition measurements; chemical speciation analysis; an attempt to describe the overall ash transformation reactions and mass balance throughout the combustion process. Scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) was used to analyze the elemental composition of ash and deposits. The SEM-EDS results were used together with data from X-ray powder diffraction (XRD) analysis, thermodynamic phase data, and equilibrium calculations in an attempt to quantify the crystalline phases and the overall ash transformation of the process. Based on the findings concerning ash transformation and the failure statistics, it has been possible to identify generic key parameters regarding boiler design and process parameters, enabling major improvements of the CFB boiler availability, a lower overall energy conversion cost and a reduced CO2 footprint. / Den direkta rörliga kostnaden för värme-och elproduktion baserad på fast biobränsle är ungefär 3-5 gånger lägre än kostnaden för fossiloljebaserad produktion. Avfallsklassade fasta biobränslen är vidare oftast betydligt billigare än fasta biobränslen som inte är klassade som avfall. Införandet av de avfallsklassade bränslena; reningsslam, rivningsvirke, och animaliskt avfall i en 50MWth cirkulerande fluidiserad bädd (CFB) -panna, ledde till kraftig beläggningstillväxt i överhettare och ackumulering av aska i ekonomisers, samt haveri av panntuber och centrumrör i cyklonerna, som tvingade fram frekventa pannstopp. Detta ökade i sin tur användningen aveldningsolja (fossilt bränsle) i reservkrafts-pannor vilket resulterade i ett större CO2 utsläpp och en högre kostnad för energiomvandlingen på siten. Detta arbete syftar till att öka den allmänna mekanistiska förståelsen av förbränningssystem som använder komplexa bränslen, och omfattar; haveri- och underhållsstatistik, elementarsammansättningsanalys av aska, beläggningar och bränslefraktioner, rökgasens sammansättning, kemisk specificering av askor och beläggningar, ett försök att beskriva de övergripande askomvandlingsreaktionerna, samt en massbalans för förbränningsprocessen. Svepelektronmikroskop (SEM) utrustat med energidispersiv röntgenspektroskopi (EDS) användes för att analysera den elementära sammansättningen av aska och beläggningar. SEM-EDS-resultaten användes tillsammans med pulverröntgendiffraktionsanalys (XRD), termodynamiska fasdata, och jämviktsberäkningar i ett försök att kvantifiera de kristallina faserna och de övergripande askomvandlingsreaktionerna i processen. Baserat på resultaten rörande askomvandling och haveristatistik, har det varit möjligt att identifiera generiska nyckelparametrar gällande panndesign och processparametrar, som möjliggjort stora förbättringar av CFB pannans tillgänglighet, en lägre totalkostnad för energiomvandlingen på siten samt ett minskat CO2-utsläpp.

Page generated in 0.0962 seconds