• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 16
  • 16
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Morphological instabilities in drying colloids

Kiatkirakajorn, Pree-cha 10 September 2018 (has links)
No description available.
12

Preparação de emulsões complexas a partir de dispositivos de microfluídica / Production of complex emulsions using microfluidics devices

Arcanjo, Samuel Arruda 29 July 2009 (has links)
Made available in DSpace on 2015-03-26T13:35:12Z (GMT). No. of bitstreams: 1 texto completo.pdf: 4700435 bytes, checksum: bac9eb5b4507aab56d5ee90842c50c1a (MD5) Previous issue date: 2009-07-29 / Emulsions are colloidal systems where one liquid is dispersed in another liquid where the two liquids are immiscible. The control of these dispersions can bring important contributions to science and society since this kind of colloidal system has many and important applications in the food and pharmaceutic area and also in the material science. This work has the main purpose to develop and improve monodisperse emulsions production techniques using simple and low-cost devices. It is shown the production of simple emulsions using devices built from glass capillary tubes. Besides, the drops diameter dependence with the phases flow rate is verified. Solid particles were made from droplets of poly(styrene) dispersed in chloroform, followed by the evaporation of the chloroform, using these devices. Although the glass capillary tube devices show good results, we have made emulsions, for instance, of (80±1) μm with standard deviation of 1,3 μm (σ/dm = 1, 6%), they have limitations concerning the configuration of the tubes. Another kind of device built was made basically from microchannels produced in glass microscope slides using hydrofluoric acid to attack the slide surfaces. The slides were sealed using epoxy glue and the final result were channels with controlled values of depth and width. The dependence of the drops diameter with the continuous and disperse phases flow rate were made to test the devices quality. High quality emulsions were obtained with tipical values for diameter and standar deviation about 100 μm and 2%. Four different channel configurations were tested and the configuration where the channels were built as a cross (one channel carrying the disperse phase and two channels carrying the continuous phase) shown better results then the devices with only two channels (one channel carrying each phase). / Emulsões são sistemas coloidais onde um líquido é disperso em outro líquido imiscível. O controle dessa dispersão pode trazer importantes contribuições para a ciência e para a sociedade, já que este tipo de sistema coloidal apresenta variadas e importantes aplicações nas áreas alimentícia, farmacêutica e de materiais. Este trabalho tem como objetivo principal desenvolver e aperfeiçoar técnicas de produção de emulsões com baixa dispersão de tamanhos utilizando dispositivos simples e de baixo custo. Apresenta-se, assim, a técnica de produção de emulsões simples através da utilização de dispositivos construídos a partir de tubos capilares de vidro. Além disso, verifica-se a dependência do diâmetro das gotas das emulsões produzidas com a vazão da fase contínua e dispersa. Utilizando este dispositivo, produzem-se também partículas sólidas a partir da preparação de gotas de poliestireno dissolvido em clorofórmio e posterior evaporação do clorofórmio. Embora esse tipo de dispositivo apresente bons resultados, sendo possível produzir emulsões, por exemplo, com diâmetro médio das gotas igual a (80±1) μm e desvio padrão de 1,3 μm (σ/dm = 1, 6%), ele tem limitações quanto ao número de configurações dos fluxos possíveis de se trabalhar. Outro dispositivo produzido constitui-se basicamente de microcanais produzidos em lâminas de microscópio por ataque controlado de ácido fluorídrico. A vedação superior dos canais é feita utilizando cola epóxi (araldite) tendo-se, assim, canais de largura e profundidades controladas. Para testar a qualidade deste tipo de dispositivo, fez-se também a verificação do diâmetro das gotas de emulsão produzidas com a vazão da fase contínua ou dispersa, tendo sido possível a produção de emulsão com baixa dispersão de tamanhos, produzindo para dada condição, emulsões com diâmetro médio das gotas da ordem de (100±1) μm com desvio padrão típicos de 2%. Foram testadas quatro diferentes configurações de canais, onde as configurações em cruz (um canal contendo a fase dispersa e dois canais com a fase contínua) mostraram melhores resultados que configurações com apenas dois canais (um por fase).
13

Dispersions de nanoparticules magnétiques de type coeur-coquille MFe2O4@g-Fe2O3 dans des solvants polaires : réactivité électrochimique et rôle de l'interface oxyde/solution sur les propriétés colloïdales / Dispersões de Nanopartículas Magnéticas do tipo Core-Shell MFe2O4@g- Fe2O3 em Solventes Polares : Reatividade Eletroquímica e o papel da Interface Óxido/Solução nas Propriedades Coloidais

Lopes Filomeno, Cleber 14 December 2015 (has links)
Les dispersions de nanoparticules magnétiques (NPs) dans les solvants polaires sont utilisées dans de nombreuses applications dans des domaines variés, du biomédical à l'environnement ou à l'énergie. Aussi appelés ferrofluides (FFs), ces systèmes sont des dispersions de ferrites spinelle magnétiques pouvant être stabilisées par des répulsions électrostatiques. Cela nécessite une bonne compréhension de l'interface NPs/solvant porteur, qui contrôle les interactions entre NPs, la nanostructure et de nombreuses autres propriétés. Nous étudions ici en milieu aqueux la réactivité électrochimique de particules c¿ur/couronne de type MFe2O4@ Fe2O3 (M = Fe,Co,Mn,Cu,Zn), espèces électroactives non conventionnelles. La voltammétrie à signaux carrés et la coulométrie à potentiel contrôlé permettent d'étudier la coquille de maghémite ( Fe2O3), dont le rôle est la protection de l'oxyde mixte du c¿ur en milieu acide. D'autre part, un nouveau procédé d'élaboration de dispersions dans les solvants polaires, testé dans l'eau, est appliqué au diméthylsulfoxide (DMSO). A partir du point de charge nulle des NPs, un ajout connu d'acide ou de base permet de contrôler la charge des NPs, la nature des contreions et la quantité d'électrolyte libre. Des dispersions stabilisées par des répulsions électrostatiques sont obtenues dans le DMSO. La diffusion de rayons X aux petits angles et la diffusion dynamique de la lumière sont utilisées pour comprendre la nanostructure et quantifier les interactions entre particules. De forts effets spécifiques liés aux ions sont mis en évidence ainsi que le rôle de l'interface solide liquide, en particulier sur les propriétés de thermodiffusion. / Dispersions of magnetic nanoparticles (NPs) in polar solvents have been inspiring many applications, to cite a few, biomedical, industrial and thermoelectrical ones. Also called ferrofluids (FFs), they are usually colloidal dispersions of magnetic spinel ferrite NPs, which can be stabilized thanks to electrostatic repulsion. A good understanding of the interface between NPs and the carrier solvent is thus a key point, which governs the interparticle interactions, the nanostructure and many other applicative properties. We study here the electrochemical reactivity of core-shell ferrite MFe2O4@ Fe2O3 (M=Fe,Co,Mn,Cu,Zn) NPs in aqueous medium. Square-wave voltammetry and potential controlled coulometry techniques are used on these non-conventional electroactive systems in order to evidence the shell of maghemite ( Fe2O3), the main function of which is to ensure the thermodynamical stability of NPs in acidic medium. We also present a new process for the elaboration of maghemite based FF in polar solvents, tested in water and applied to dimethyl sulfoxide (DMSO). Departing from the point of zero charge, the NPs are charged in a controlled way by adding acid or base, which enables us to better control the charge and the counter-ions nature, as well as the amount of free electrolyte in the dispersion. Stable dispersions are obtained thanks to electrostatic repulsion, also in DMSO. Small Angle X-ray scattering and Dynamic Light Scattering are used to understand the nanostructure and quantify the interparticle interactions. Specific ionic effects are evidenced as well as the strong influence of the solid/liquid interface on the migration of the NPs in a thermal gradient.
14

Colloidal chemical potential in attractive nanoparticle-polymer mixtures: simulation and membrane osmometry

Quant, Carlos Arturo 17 August 2004 (has links)
The potential applications of dispersed and self-assembled nanoparticles depend critically on accurate control and prediction of their phase behavior. The chemical potential is essential in describing the equilibrium distribution of all components present in every phase of a system and is useful as a building block for constructing phase diagrams. Furthermore, the chemical potential is a sensitive indicator of the local environment of a molecule or particle and is defined in a mathematically rigorous manner in both classical and statistical thermodynamics. The goal of this research is to use simulations and experiments to understand how particle size and composition affect the particle chemical potential of attractive nanoparticle-polymer mixtures. The expanded ensemble Monte Carlo (EEMC) simulation method for the calculation of the particle chemical potential for a nanocolloid in a freely adsorbing polymer solution is extended to concentrated polymer mixtures. The dependence of the particle chemical potential and polymer adsorption on the polymer concentration and particle diameter are presented. The perturbed Lennard-Jones chain (PLJC) equation of state (EOS) for polymer chains1 is adapted to calculate the particle chemical potential of nanocolloid-polymer mixtures. The adapted PLJC equation is able to predict the EEMC simulation results of the particle chemical potential by introducing an additional parameter that reduces the effects of polymer adsorption and the effective size of the colloidal particle. Osmotic pressure measurements are used to calculate the chemical potential of nanocolloidal silica in an aqueous poly(ethylene oxide) (PEO) solution at different silica and PEO concentrations. The experimental data was compared with results calculated from Expanded Ensemble Monte Carlo (EEMC) simulations. The results agree qualitatively with the experimentally observed chemical potential trends and illustrate the experimentally-observed dependence of the chemical potential on the composition. Furthermore, as is the case with the EEMC simulations, polymer adsorption was found to play the most significant role in determining the chemical potential trends. The simulation and experimental results illustrate the relative importance of the particles size and composition as well as the polymer concentration on the particle chemical potential. Furthermore, a method for using osmometry to measure chemical potential of nanoparticles in a nanocolloid-mixture is presented that could be combined with simulation and theoretical efforts to develop accurate equations of state and phase behavior predictions. Finally, an equation of state originally developed for polymer liquid-liquid equilibria (LLE) was demonstrated to be effective in predicting nanoparticle chemical potential behavior observed in the EEMC simulations of particle-polymer mixtures.
15

Development of an inhalational formulation of Coenzyme Q₁₀ to treat lung malignancies

Carvalho, Thiago Cardoso 14 October 2013 (has links)
Cancer is the second leading cause of death in the United States and its onset is highly incident in the lungs, with very low long-term survival rates. Chemotherapy plays a significant role for lung cancer treatment, and pulmonary delivery may be a potential route for anticancer drug delivery to treat lung tumors. Coenzyme Q₁₀ (CoQ₁₀) is a poorly-water soluble compound that is being investigated for the treatment of carcinomas. In this work, we hypothesize that formulations of CoQ10 may be developed for pulmonary delivery with a satisfactory pharmacokinetic profile that will have the potential to improve a pharmacodynamic response when treating lung malignancies. The formulation design was to use a vibrating-mesh nebulizer to aerosolize aqueous dispersions of CoQ₁₀ stabilized by phospholipids physiologically found in the lungs. In the first study, a method was developed to measure the surface tension of liquids, a physicochemical property that has been shown to influence the aerosol output characteristics from vibrating-mesh nebulizers. Subsequently, this method was used, together with analysis of particle size distribution, zeta potential, and rheology, to further evaluate the factors influencing the capability of this nebulizer system to continuously and steadily aerosolize formulations of CoQ₁₀ prepared with high pressure homogenization. The aerosolization profile (nebulization performance and in vitro drug deposition of nebulized droplets) of formulations prepared with soybean lecithin, dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC) were evaluated. The rheological behavior of these dispersions was found to be the factor that may be indicative of the aerosolization output profile. Finally, the pulmonary deposition and systemic distribution of CoQ₁₀ prepared as DMPC, DPPC, and DSPC dispersions were investigated in vivo in mice. It was found that high drug amounts were deposited and retained in the mouse lungs for at least 48 hours post nebulization. Systemic distribution was not observed and deposition in the nasal cavity occurred at a lower scale than in the lungs. This body of work provides evidence that CoQ₁₀ may be successfully formulated as dispersions to be aerosolized using vibrating-mesh nebulizers and achieve high drug deposition in the lungs during inhalation. / text
16

Development of an inhalational formulation of Coenzyme Q₁₀ to treat lung malignancies

Carvalho, Thiago Cardoso 14 February 2012 (has links)
Cancer is the second leading cause of death in the United States and its onset is highly incident in the lungs, with very low long-term survival rates. Chemotherapy plays a significant role for lung cancer treatment, and pulmonary delivery may be a potential route for anticancer drug delivery to treat lung tumors. Coenzyme Q₁₀ (CoQ₁₀) is a poorly-water soluble compound that is being investigated for the treatment of carcinomas. In this work, we hypothesize that formulations of CoQ10 may be developed for pulmonary delivery with a satisfactory pharmacokinetic profile that will have the potential to improve a pharmacodynamic response when treating lung malignancies. The formulation design was to use a vibrating-mesh nebulizer to aerosolize aqueous dispersions of CoQ₁₀ stabilized by phospholipids physiologically found in the lungs. In the first study, a method was developed to measure the surface tension of liquids, a physicochemical property that has been shown to influence the aerosol output characteristics from vibrating-mesh nebulizers. Subsequently, this method was used, together with analysis of particle size distribution, zeta potential, and rheology, to further evaluate the factors influencing the capability of this nebulizer system to continuously and steadily aerosolize formulations of CoQ₁₀ prepared with high pressure homogenization. The aerosolization profile (nebulization performance and in vitro drug deposition of nebulized droplets) of formulations prepared with soybean lecithin, dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC) were evaluated. The rheological behavior of these dispersions was found to be the factor that may be indicative of the aerosolization output profile. Finally, the pulmonary deposition and systemic distribution of CoQ₁₀ prepared as DMPC, DPPC, and DSPC dispersions were investigated in vivo in mice. It was found that high drug amounts were deposited and retained in the mouse lungs for at least 48 hours post nebulization. Systemic distribution was not observed and deposition in the nasal cavity occurred at a lower scale than in the lungs. This body of work provides evidence that CoQ₁₀ may be successfully formulated as dispersions to be aerosolized using vibrating-mesh nebulizers and achieve high drug deposition in the lungs during inhalation.

Page generated in 0.1038 seconds