• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 356
  • 136
  • 86
  • 28
  • 16
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 626
  • 262
  • 259
  • 171
  • 117
  • 106
  • 85
  • 65
  • 53
  • 45
  • 44
  • 43
  • 40
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Gestion énergétique et dimensionnement des systèmes hybrides multi-pile à combustible et batterie pour application au transport automobile / Energy management and sizing for hybrid multistack fuel cell - battery systems used in transportation applications

Marx, Neigel 12 July 2017 (has links)
L’essor de l’électrification du secteur du transport facilite le développement de nouvelles technologies. La pile à combustible n’est pas une technologie récemment développée mais elle en profite également. Toutefois, malgré les efforts entrepris jusqu’à présent, elle reste trop couteuse et peu durable par rapport aux exigences du marché. Pour cela, augmenter le rendement du système, réduire le nombre d’auxiliaire et obtenir une meilleure compréhension des phénomènes de dégradation semblent être les pistes les plus pertinentes. Les thématiques, non centrés sur les matériaux, étudiées dans le but de pallier ces différentes barrières technologiques sont principalement orientées sur la gestion du système et la définition et le pilotage d’auxiliaires ad-hoc. En parallèle, une part grandissante de la communauté scientifique s’intéresse également aux systèmes composés de plusieurs piles à combustible, lesquels pourraient permettre de lever également ces barrières technologiques. Dans le cadre de cette thèse, c’est la gestion et le dimensionnement de systèmes multipiles hybridés avec une batterie qui sera étudié. Premièrement, nous comparerons les performances des systèmes multipiles à celles des systèmes monopiles conventionnels. Pour cela, une étude basée sur l'optimisation de la gestion énergétique du système en fonction du dimensionnement est effectuée en utilisant la programmation dynamique. La variable optimisé est le coût d’exploitation. Il prend en compte le coût du carburant et de la dégradation du système. Les résultats obtenus indiquent une nette augmentation des performances au niveau de la consommation et de la durée de vie du système en faveur des systèmes multipiles et ce quel que soit le dimensionnement envisagé. Ensuite, nous concevrons une stratégie de gestion en ligne basée sur la théorie de décision bayésienne. Cette stratégie a pour but d’optimiser la consommation et la durée de vie en se basant sur la connaissance du comportement du conducteur. Trois modules la composent. Le premier module identifie les similarités du parcours en cours à ceux déjà effectués par le conducteur. Le deuxième se sert de cette connaissance pour déterminer le nombre de systèmes piles à combustible à démarrer. Finalement, la dernière partie détermine le niveau de puissance pour chacune des sources composant le système. L’approche proposée a été comparée à d’autres méthodes de gestion énergétique et permet d’obtenir un gain de performance au niveau de la consommation et de la durée de vie du système multipile dans la plupart des cas d’utilisation. / The electrification of the transportation industry is on the rise. This rise drives the development of new technologies. Although the fuel cell is not a recently developed technology, it benefits from it. However, it is still too expensive and not durable enough compared to the market's expectations. Scientific research has been focused primarily on their management and its ancillaries. Nevertheless, the interest in multistack fuel cell systems has been rising in the community.The energy management and the sizing of multistack system hybrized with a battery is the focus of this thesis. First, the performances of such systems is compared to that of single stack systems. To that end, a study based on the determination of the optimal management strategy depending on the sizing has been completed. The main tool used in this study was optimization through dynamic programming. Results show a significant increase in performance in favor of multistack systems. Then, an online energy management strategy is designed based on Bayesian decision theory. Its goal is to optimize consumption and lifetime by using driver behavior knowledge. This approach has been compared to other energy management strategies and enables performances gains in consumption and lifetime for the multistack system.
462

Optimisation d’architecture d’électrode poreuse pour pile à combustible à oxyde solide / Optimal microstructure architecture design of porous electrodes for solid oxide fuel cells

Roussel, Denis 29 January 2015 (has links)
Ce projet se place dans le cadre du développement des nouvelles technologies de l'énergie respectueuses de l'environnement. Les piles à combustibles à oxydes solides (SOFC) permettent, pour les applications stationnaires, la génération de puissance de 1kW à 2MW avec un rendement électrique pouvant atteindre 70%. Elles fonctionnent à très hautes températures, typiquement entre 700-1000°C. La cellule d'une SOFC est constituée d'un électrolyte dense pris en sandwich entre deux électrodes poreuses (anode et cathode). Les électrodes poreuses, élaborées à partir de poudres céramiques, représentent un élément critique de l'assemblage. En effet, elles doivent être suffisamment poreuses pour optimiser à la fois la diffusion des gaz et les réactions électrochimiques. Cette nécessité est en contradiction avec l'exigence d'une bonne tenue mécanique. Cette contradiction doit pouvoir être résolue en proposant des microstructures d'électrodes poreuses hiérarchisées ou anisotropes. L'objectif de cette thèse est de montrer différentes voies possibles pour optimiser l'électrode en s'appuyant en particulier sur des simulations numériques et sur des caractérisations tomographiques. Les électrodes sont élaborées en utilisant deux protocoles différents conduisant à des porosités isotropes et anisotropes. Les échantillons anisotropes sont préparés en utilisant la méthode de moulage par congélation à partir de poudres YSZ/LSM, typiques de matériaux d'électrode. Cette méthode de fabrication conduit à une porosité hiérarchisée. La porosité totale est définie par le taux de chargement dans la barbotine initiale. La microporosité diminue avec la température de frittage et la taille des macropores est fonction de la vitesse de solidification. Les échantillons isotropes sont préparés en utilisant des agents porogènes avec des caractéristiques identiques aux échantillons anisotropes. Ces électrodes sont caractérisées par la technique d'Archimède pour déterminer les taux de porosités (macro et micro) et par microscopie à balayage pour connaître la taille des macroporosités. Des images tridimensionnelles des microstructures sont obtenues par FIB-SEM (Focused Ion Beam, 15µm³) et par nanotomographie-X (75µm³), avec des résolutions de 10nm et 75nm, respectivement. Le rendement énergétique d'une électrode dépend de différents paramètres : composition YSZ/LSM, taux de porosité, taille des particules, conductivités électronique/ionique et résistance électrochimique. Ces paramètres sont étudiés en utilisant des microstructures numériques associées à un réseau de résistance. Les simulations permettent de déterminer les facteurs qui contrôlent la conductivité effective. Ces microstructures numériques sont élaborées à l'échelle de la taille des particules en utilisant le code dp3D basé sur la méthode des éléments discrets (DEM) et développé au sein du laboratoire SIMaP. Nous montrons par exemple qu'en dessous d'une certaine épaisseur, la composition YSZ/LSM a très peu d'influence sur la conductivité effective. Une méthode a également été développée pour calculer cette conductivité effective à partir d'une image de FIB prenant en compte la résistance électrochimique aux points triples (gaz, YSZ, LSM). La tenue mécanique des différentes microstructures est testée en compression jusqu'à la rupture. En parallèle, des calculs sur image, couplés à la DEM sont effectués pour simuler les propriétés mécaniques. Nous comparons le comportement des microstructures homogènes (obtenues avec des agents porogènes) et celui des microstructures anisotropes. Les modules et les contraintes à rupture sont surestimés par les simulations. Qualitativement, les résultats expérimentaux et de simulation montrent des mécanismes de rupture cohérents entre eux. Par ailleurs, les modules et les contraintes à rupture sont différents entre les deux types d'échantillon (anisotrope et isotrope). Cette anisotropie peut être utilisée pour optimiser les propriétés mécaniques suivant une direction. / This project is involved in the development of new green power sources. Solid Oxide Fuel Cells (SOFCs) can achieve an output power of 1kW to 2MW and an energy conversion of up to 70%. Temperatures between 700 and 1000°C are required. A typical cell is made of an electrolyte sandwiched between two porous electrodes (anode and cathode). Porous electrodes are elaborated from ceramic powders and are critical components of the whole structure. These electrodes need to be porous enough to optimize gaz diffusion and electrochemical reactions. This requirement is antagonist to the need of a good mechanical strength. This conflict could be solved using hierarchical or anisotropic electrode microstructures. The aim of this thesis is to investigate possible ways to optimize an electrode. Numerical simulations and nanotomography characterizations are used for this purpose. Electrodes are elaborated using two different protocoles leading to anisotropic and isotropic porosities. Anisotropic samples are prepared by freeze-casting from a slurry of YSZ and LSM, which are typical materials for SOFCs. Freze-casting leads to a hierarchical porosity. The overall porosity is controlled by the loading of the slurry. The microporosity decreases with sintering temperature and the macropore size is function of the freezing rate. Isotropic samples are processed using pore formers. The size and the amount of pore formers are selected to match the characteristics of the anisotropic samples. These electrodes are characterized with Archimedes technique to determine the porosity, and with scanning electron microscope (SEM) to obtain the size of macropores. Three dimensional images of the microstructures are captured using focused ion beam (FIB-SEM tomography) technique (10nm} resolution) and using X-ray nanotomography (75nm} resolution). The overpotentials in an electrode depend on different parameters: composition of YSZ/LSM, porosity, particle sizes, electronic/ionic conductivities and electrochemical resistance. These parameters are studied on numerical microstructures coupled with a resistor network. These numerical microstructures have been generated at th scale of particles, using a numerical code based on the discrete element method (DEM). Simulations can be used to determine the limiting factor on the effective conductivity. For example, we show that the composition of YSZ/LSM in a sample matters little for electrodes below a certain thickness. A new method has also been developed to compute the effective conductivity from a FIB-SEM image taking into account the electrochemical resistance at the triple point boundaries between gaz, YSZ and LSM. The mechanical response of the elaborated microstructures are tested in compression up to the fracture. In parallel, DEM simulations are performed to simulate mechanical properties based on 3D images. The mechanical behaviours of homogeneous samples (with pore formers) and anisotropic samples are compared. The yield strength and stiffness are overestimated by simulations. Qualitatively, experimental results and simulations show consistent failure mecanisms. Moreover, the yield strength and stiffness are different in the two types of sample (anisotropic and isotropic). Such an anisotropy could be used to optimize mechanical properties in one direction.
463

Développement de méthodes de domaines fictifs au second ordre / Development of a second order penalty method

Etcheverlepo, Adrien 30 January 2013 (has links)
La simulation d'écoulements dans des géométries complexes nécessite la création de maillages parfois difficile à réaliser. La méthode de pénalisation proposée dans ce travail permet de simplifier cette étape. En effet, la résolution des équations qui gouvernent l'écoulement se fait sur un maillage plus simple mais non-adapté à la géométrie du problème. Les conditions aux limites sur les parties du domaine physique immergées dans le maillage sont prises en compte à travers l'ajout d'un terme de pénalisation dans les équations. Nous nous sommes intéressés à l'approximation du terme de pénalisation pour une discrétisation par volumes finis sur maillages décalés et colocatifs. Les cas tests de vérification réalisés attestent d'un ordre de convergence spatial égal à 2 pour la méthode de pénalisation appliquée à la résolution d'une équation de type Poisson ou des équations de Navier-Stokes. Enfin, on présente les résultats obtenus pour la simulation d'écoulements turbulents autour d'un cylindre à Re=3900 et à l'intérieur d'une partie d'un assemblage combustible à Re=9500. / The simulations of fluid flows in complex geometries require the generation of body-fitted meshes which are difficult to create.The penalty method developed in this work is useful to simplify the mesh generation task.The governing equations of fluid flow are discretized using a finite volume method on an unfitted mesh.The immersed boundary conditions are taken into account through a penalty term added to the governing equations.We are interested in the approximation of the penalty term using a finite volume discretization with collocated and staggered grid.The penalty method is second-order spatial accurate for Poisson and Navier-Stokes equations.Finally, simulations of turbulent flows around a cylinder at Re=3900 and turbulent motions in a rod bundle at Re=9500 are performed.
464

Simulations of one and two-phase flows in porous microstructures, from tomographic images of gas diffusion layers of proton exchange membrane fuel cells / Simulations des transports monophasiques et diphasiques dans des microstructures poreuses, à partir d’images tomographiques de couches de diffusion des gaz de piles à combustible à membrane échangeuse de protons

Agaesse, Tristan 10 November 2016 (has links)
L’hydrogène comme vecteur énergétique est une solution prometteuse pour réduire les émissions de gaz à effet de serre. En effet, l’hydrogène permet de stocker de grandes quantités d’énergie de façon totalement décarbonée. Pour favoriser l’utilisation à grande échelle de l’énergie hydrogène, il est essentiel de réduire le coût des piles à combustible et d‘augmenter leur durabilité et leurs performances. Les matériaux situés au coeur des piles à combustible ont un impact fort sur leurs performances et leur durabilité. Dans ce contexte, optimiser les matériaux est crucial. Nous développons dans cette thèse une démarche de modélisation des matériaux poreux des piles à combustible à membrane échangeuse de protons. Nous nous concentrons sur un matériau en particulier, celui intervenant dans les couches de diffusion des gaz (GDL). Les GDL ont de multiples fonctions, notamment de permettre en leur sein des transports simultanés de gaz, d’électrons, de chaleur et d’eau sous forme vapeur et liquide. Pour permettre ces transports, les GDL sont composées d’une phase fluide et d’une phase solide, elle-même constituée de plusieurs matériaux. La microstructure des GDL joue un rôle crucial sur les compromis entre les fonctions des GDL et l’efficacité des transports. Nous utilisons la tomographie aux rayons X pour imager la structure interne des GDL à l’échelle micrométrique, et développons des outils numériques pour simuler les transports sur les microstructures. Nous montrons que des simulations sur des images de grandes tailles sont réalisables en temps raisonnables. Nous validons les simulations de transports dans les GDL numériquement et expérimentalement. Le premier chapitre est consacré à la modélisation d’une expérience ex-situ d’injection d’eau dans les GDL. Nous développons un modèle réseau de pores extrait d’images tomographiques, pour simuler les écoulements d’eau dans les GDL en présence de forces capillaires. Nous validons les simulations réseaux de pores en utilisant des images tomographiques montrant l’eau liquide dans une GDL lors d’une expérience d’injection d’eau. Nous montrons que les courbes de pression capillaire peuvent être déterminées par simulations réseau de pores ou par simulations full morphology sur des images tomographiques. Le deuxième chapitre est consacré à la simulation des transports de gaz et d’électrons dans les GDL. Nous développons une méthode de simulation réseau de pores, consistant à décomposer l’image en régions de formes simples et à calibrer des modèles physiques sur ces régions. Cette approche à deux échelles est économe en temps de calcul. Nous comparons ces simulations à des simulations directes et à des formules analytiques. Une seconde partie concerne la comparaison des simulations directes à des mesures expérimentales. Nous montrons que les transports dans la phase fluide peuvent être déterminés avec fiabilité par simulation directe sur les images tomographiques, tandis que la simulation des transports dans la phase solide nécessite des informations non fournies par la tomographie aux rayons X. Le troisième chapitre est consacré à la modélisation de la condensation de l’eau dans les GDL. La vapeur d’eau produite par la réaction du dihydrogène avec le dioxygène traverse les GDL et condense dans les zones froides des GDL. Un modèle réseau de pores couplant diffusion de la vapeur d’eau, changement de phase et forces capillaires est développé. Nous étudions ce modèle sur des réseaux de pores générés virtuellement. Le dernier chapitre est consacré à l’étude de microstructures conçues virtuellement. Nous montrons qu’il est possible de produire virtuellement des microstructures proches de celles de matériaux réels, de chercher des microstructures optimales, et d’étudier des effets physiques par simulation sur matériaux virtuels. / Hydrogen as an energy carrier is a promising solution for reducing emissions of greenhouse gases. Indeed, hydrogen can be used to store large amounts of energy in a completely carbon-free way. To promote the widespread use of hydrogen energy, it is essential to reduce the cost of fuel cells and increase their durability and performance. The materials in the heart of fuel cells have a strong impact on their performance and durability. In this context, opti-mizing the materials is crucial. We develop in this thesis a modeling approach of porous materials in proton exchange membrane fuel cells. We focus on a specific material that takes part in the gas diffusion layers (GDL). The gas diffusion layers are crossed by gas, electron, heat and water fluxes. To allow such multiple transports, GDL are composed of a fluid phase and a solid phase, itself consisting of several materials. The microstructure of the GDL plays an essential role on the tradeoffs between transports. To model these tradeoffs, we use X-ray tomography to image the microstructure at micrometer scales, and develop digital tools to simulate the transport on tomographic images. We validate the simulations with experimental characterizations and tomographic images of GDL. Great care has been taken in the computer performance of the numerical tools, because tomographic images in three dimensions are a challenge because of the size of the data. The first chapter of this thesis is devoted to modeling of an ex-situ water injection experiment in a GDL. We develop a pore network model extracted from tomographic images, to simulate liquid water flows in GDL in the presence of ca-pillary forces. We validate pore networks simulations using tomographic images showing the liquid water in a GDL dur-ing a water injection experiment. We show that the capillary pressure curves can be determined reliably by pore net-work simulations or full morphology simulations on tomographic images. The second chapter is devoted to one-phase transport simulations in GDL. The first part of this chapter is devoted to the development of pore networks simulations for the diffusivity and the electrical conductivities of the GDL. We de-velop a two-scale simulation methodology, which consists of decomposing the image into elements having simple shapes, and to calibrate physical models on these elements. This method considers the effect of the microstructure on the physical transfers in an economical way, reducing the computing time. We compare the pore network simulations to direct simulation on microstructures and to analytical formulas. The second part is devoted to the comparison of transport simulations with experimental measurements. We show that the transports in the fluid phase can be deter-mined reliably by direct simulations on the tomographic images, while transports in the solid phase require additional information not provided by X-ray tomography. The third chapter is devoted to modeling of the condensation of water in the GDL. The steam produced by the reaction of the hydrogen with the oxygen passes through the GDL and condenses in the cold areas of the GDL. A pore network model coupling diffusion of steam, phase change and capillary forces is developed. We study this model on virtually generated pore networks. The last chapter is devoted to the study of virtually designed microstructures. Virtually exploring new materials designs has advantages over the experimental approach, in terms of speed, cost and control over the microstructures. We show that it is possible to virtually produce microstructures close to those of real materials, to seek optimal microstructures, and control the microstructure to better study some physical effects using simulation.
465

Modélisation mixte continue-réseau de pores des transferts diphasiques cathodiques d'une pile à combustible PEMFC / Mixed continuum-pore network modelling of the cathodic diphasic transfers of a fuel cell PEMFC

Belgacem, Najib 14 April 2016 (has links)
Cette thèse présente une contribution à l’étude des transferts d’eau au sein des piles à combustible de type PEMFC, un aspect clé de cette technologie. Une approche de simulation numérique est développée en couplant un modèle de type réseau de pores dans la couche de diffusion (DM), une approche mixte continue –réseau de pore dans la couche microporeuse (MPL) et une modélisation par compartiments dans la couche active. L’approche développée prend en compte les transferts couplés de chaleur et d’eau via notamment la modélisation des phénomènes de changement de phase dans la DM et la MPL (évaporation et condensation). Dans une première partie, nous étudions le cas où l’eau migre dans l’assemblage MPL-DM directement en phase liquide. L’impact de la variation de pression dans la phase gazeuse sur la distribution de la phase liquide est étudié. L’épaisseur optimale de la MPL est également étudiée. Dans une seconde partie, nous étudions des situations où l’eau se forme par condensation dans la couche de diffusion. Nous étudions tout d’abord l’impact des propriétés de la couche de diffusion et de la MPL sur le diagramme de condensation. Ensuite nous analysons l’impact de la formation de l’eau liquide sur la distribution de courant locale. Enfin, l’impact de la mouillabilité sur les figures de condensation est étudié. Cette dernière étude est vue comme un premier pas vers l’étude des mécanismes de dégradation dans le régime de condensation. / This thesis is a contribution to the study water transfers within PEM fuel cell, a key element of this technology. A numerical simulation tool is developed coupling a pore network model in the gas diffusion layer (DM), a mixed continuum – pore network approach in the microporous layer (MPL) and a model by compartments in the catalyst layer. The developed approach takes into account the coupled heat and water transfers through the modeling of phase change phenomena (evaporation – condensation) in the DM and in the MPL. In the first part, we study the case where water migrates into the MPL-DM assembly directly in liquid phase. The impact of gas pressure variation on liquid phase distribution is studied. The optimal thickness of MPL is studied too. In the second part we study situations where liquid water essentially formed by condensation in the diffusion layer. We first study the impact of DM and MPL properties on the condensation diagram. Then we analyze the impact of liquid water formation on the local current density distribution. Finally the impact of wettability modifications on the liquid water patterns is studied. This last study is considered as a first step toward the study of degradation mechanisms in the condensation regime.
466

Hybridation d'une pile à combustible par des supercondensateurs : vers une solution passive et directe / Hybridization of a fuel cell with ultracapacitors : towards a passive and direct solution

Morin, Benoît 13 February 2013 (has links)
La faisabilité des applications à piles à combustible (PAC) a été largement démontrée à travers le monde. Les efforts de recherche portent actuellement sur l'amélioration de la durée de vie des PAC et la diminution de leur coût. A ce jour, une PAC ne tolère pas les variations rapides de charges qui entraînent très souvent son vieillissement prématuré. Pour pallier cette faiblesse, une hybridation avec un composant électrochimique de stockage (typiquement des supercondensateurs) est généralement proposée via un ou deux convertisseurs statiques, nécessitant l'implantation d'une gestion énergétique. Une partie de ces travaux se situe dans le contexte aéronautique et fait suite au projet européen CELINA piloté par AIRBUS. Le projet européen CELINA (2005-2008) a posé la problématique du remplacement de l'éolienne (RAT) actuelle par une pile à combustible pour le réseau électrique de dernier secours sollicité en cas de perte totale des moteurs ou de la génération électrique. Il alimente les charges essentielles : auxiliaires de puissances presque constantes (calculateurs de bord, …) et les actionneurs de vol (EHA, EMA) qui constituent les principaux consommateurs à caractères très intermittents. Cette étude a permis une classification de trois architectures, dont la validation expérimentale se situant dans le cadre du projet français ISS ayant débuté en 2010 sera exposée. L'hybridation directe entre une PAC et des supercondensateurs présente les avantages de ne pas mettre en jeu de convertisseur statique et d'une autogestion énergétique naturelle. Partant du constat que toutes les applications embarquées utilisant des PAC sont hybridées et qu'un développement d'architecture et de stratégies est effectué pour chaque cas (mise au point de convertisseurs, lois de commande, etc.). Ceci représente un travail considérable et systématique, ce qui freine l'implantation des systèmes PAC dans les applications embarquées. L'objectif est alors d'étudier la faisabilité d'un composant hybride unique jouant le rôle de source de puissance et d'énergie dont la gestion énergétique est transparente pour l'utilisateur et ne nécessitant pas l'ajout d'une hybridation supplémentaire pour ces applications. Cette thématique fait l'objet de ces travaux de thèse en collaboration avec la société française HELION Hydrogen Power. Après une présentation de l'introduction des systèmes PAC en aéronautique centrée autour de l'hybridation directe, la suite des travaux regroupe deux grandes thématiques : la première concerne l'étude des interactions entre PAC et supercondensateurs lors d'une association directe selon trois approches : théorique, expérimentale et par simulation. La seconde concerne la validation expérimentale de trois architectures d'hybridation d'un système PAC retenues pour un contexte aéronautique lors d'études précédentes au laboratoire : une architecture indirecte pour laquelle le stockage possède son convertisseur, une architecture indirecte avec stockage sur le bus DC et une architecture directe. L'objectif de ces travaux étant d'augmenter le niveau de maturité technologique de ces concepts, ainsi que de comparer les différents moyens retenus pour parvenir à l'hybridation d'un système PAC suivant des critères précis. / The feasibility of fuel cell (FC) applications has been demonstrated throughout the world. Research efforts are currently focused on improving the lifetime of the FC and reducing their cost. Until today, a FC does not tolerate rapid variations of load that cause in most cases lifetime reducing. To reduce this defect, hybridization with electrochemical storage component (typically ultracapacitors) is generally suggested via one or two static converters, requiring the implementation of an energy management. Aeronautic applications constitute the framework of these studies. They are the prolongation of studies initiated within the European project CELINA piloted by AIRBUS. The CELINA project (2005-2008) dealt with the replacement of the Ram Air Turbine (RAT) which is currently used for the last emergency electrical network in the case of total losses of engines or electrical generation. This emergency network has to supply the essential loads: the piloting auxiliaries (calculators…) consume a quasi-constant power, and the flight actuators (EHA, EMA) which are the main loads whose consumption is very intermittent. This study resulted in a classification of three architectures for which experimental validation in the framework of the French ISS project started since 2010 will be exposed. The direct hybridization between a FC and ultracapacitors has the advantages of not involving static converter and provide a natural energy management. The statement of facts is that all embedded applications using FC are hybridized, architecture and strategies development is performed for each case (development of converters, control laws, etc.). This represents a significant and systematic work, which limits the implementation of FC in embedded applications. In this work, the objective is to study the feasibility of a single hybrid component acting as a power and energy source for which energy management is transparent to the user and does not require the addition of another hybridization. This work is part of collaboration with the French company HELION Hydrogen Power. After a presentation of the insertion of FC in aeronautics centered on the direct hybridization, two major themes are approached: The first concerns the study of interactions between FC and ultracapacitors in a direct association according to three approaches: theoretical, experimental and simulation. The second concerns the experimental validation of three hybridization architectures for FC considered in previous studies in the laboratory: an architecture for which the indirect storage has its converter, an architecture with indirect storage on the DC bus and a direct hybridization architecture. The objective of this work is to increase the level of technological Readiness level of these concepts, and to compare the different ways considered to achieve the hybridization of a fuel cell system according to specific standards.
467

Bio-ingénierie pour les piles à combustible microbiennes / Bio-engineering for microbial fuel cells

Oliot, Manon 30 May 2017 (has links)
Une Pile à Combustible Microbienne (PCM) convertit l’énergie chimique issue de l’oxydation de la matière organique directement en énergie électrique. L’oxydation du combustible est assurée par un biofilm dit « électroactif » se développant à la surface de l’anode et jouant le rôle de catalyseur microbien. L’anode microbienne formée à partir d’un consortium bactérien, issu dans cette étude de terreau de jardin, est associée à une cathode à air abiotique à la surface de laquelle se produit la réduction de l’oxygène. L’assemblage d’une anode microbienne et d’une cathode à air abiotique pour construire une PCM est un réel challenge tant les conditions optimales de chacune sont différentes. Ces travaux de thèse ont donc pour objectif d'anticiper le fonctionnement global de la PCM pour concevoir une anode microbienne et une cathode abiotique capables de fonctionner ensemble de façon optimale. Une partie expérimentale conséquente vise à concevoir une PCM optimale en menant des essais sur différents designs de réacteur. Un modèle numérique, basé sur l’expérimentation et calculant les distributions secondaires de courant et de potentiel au sein de la PCM, vient compléter l’étude expérimentale afin d’optimiser l’architecture de la PCM et maximiser les performances délivrées. La configuration « Assemblage Séparateur-Electrodes » consiste à intercaler le séparateur entre la bioanode et la cathode à air dans le but de diminuer la résistance interne du système. Ce design a permis de concevoir des PCMs délivrant d’excellentes performances jusqu’à 6.42 W.m-2. In fine, le prototype « Bioelec », utilisé comme modèle de démonstration, est réalisé à l’échelle du laboratoire avec un assemblage en série et en parallèle de plusieurs PCMs élaborées avec cette configuration « ASE ». / A Microbial Fuel Cell (MFC) can convert the chemical energy contained in low-cost organic matter directly into electrical energy. The oxidation of organic matter is performed by a biofilm known as “electroactive” that develops on the anode surface and acts as a microbial catalyst. The microbial anode, formed from indigenous bacteria of compost leachate, is combined with an abiotic air-cathode catalyzing the reduction of oxygen. The association of a bioanode and an abiotic air-cathode in an MFC is a major challenge as their optimal conditions are so divergent. The purpose of this PhD work is to anticipate the global mechanisms of an MFC in order to develop a microbial anode and an abiotic air-cathode able to operate together in an optimal way. A consequent experimental part aims to develop an optimal MFC by carrying out tests on several reactor designs. A numerical model, based on the experimental results, calculates the secondary distributions of current and potential in the cell. The model supports the experimental study and is used to optimize the MFC architecture and maximize the delivered performances. The configuration “Separator-Electrodes Assembly” consists of sandwiching the separator between the bioanode and the air-cathode in order to decrease the internal resistance of the system. This design provided excellent results as MFCs delivered great power densities up to 6.42 W.m-2. Finally, a prototype “Bioelec”, used as a demonstrative model, was built with several MFCs connected in series or in parallel, each of them designed with the “ASE” configuration.
468

Influence des conditions de fonctionnement de la pile à combustible sur les performances du dispositif et la durabilité de la membrane / Influence of operating conditions on fuel cell performance and membrane durability

Legrand, Pauline 06 April 2012 (has links)
La pile à combustible comme moyen de production d'énergie propre et durable participera à la protection de l'écosystème en permettant à la filière hydrogène d'offrir une alternative aux énergies fossiles avant leur total épuisement. Cependant une baisse des coûts et une plus grande durabilité sont indispensables pour ces systèmes et notamment le cœur de pile, constitué d'un assemblage membrane-électrodes (AME). Cette étude a été menée sur une membrane alternative poly-aromatique sulfonée : le PolyEtherEtherCétone sulfoné, ou sPEEK. Cette membrane, qui n'offre qu'une stabilité chimique médiocre, a l'avantage d'offrir une bien meilleure tenue thermomécanique que la membrane de référence Nafion®. Le but de cette étude fut donc d'évaluer l'influence des conditions de fonctionnement sur les performances de la pile utilisant une membrane sPEEK, dans le but de les améliorer, mais aussi de mieux comprendre l'impact du vieillissement chimique de cette membrane sur ses propriétés physicochimiques et sur ses performances en pile. Ce travail fut réalisé en deux temps. Tout d'abord l'étude du comportement de la membrane sPEEK en pile pour différentes conditions d'utilisation a montré que le transport de l'eau dans l'AME est un point déterminant des performances de la pile. En effet une très forte hétérogénéité de fonctionnement imputable à la mauvaise répartition de l'eau dans la membrane sPEEK a été observé, aboutissant à des performances fortement dégradées par rapport à celles du Nafion®. Le diagnostic in situ de la dégradation de la membrane étant difficile et le système particulièrement complexe, il fut ensuite décidé d'étudier « ex situ » le vieillissement chimique de la membrane (dans des conditions de laboratoire). Les membranes vieillies sous l'action de H2O2 (oxydant responsable du vieillissement chimique des membranes en pile) ont ensuite été caractérisées et enfin testées en pile. Il apparaît que le vieillissement chimique résulte en des coupures des chaînes polymère, qui induisent une augmentation du gonflement de la membrane. Pour de forts vieillissements, ces coupures de chaînes entraînent une perte de la tenue mécanique de la membrane, incompatible avec une utilisation en pile. Cependant, pour des vieillissements contrôlés (très faible degré d'avancement), les modifications chimiques induites permettent un meilleur gonflement de la membrane qui résulte en une augmentation de sa conductivité ainsi qu'un meilleur transport de l'eau en pile, permettant d'obtenir des performances comparables à celles du Nafion®. / Fuel cells as production system of clean and sustainable energy will help to protect our ecosystem by providing an alternative to fossil fuels before their total exhaustion. However, lower costs and a greater durability are needed for these systems and more particularly the center of the cell, naming the membrane-electrodes assembly (MEA). This study was performed on a sulfonated poly-aromatic membrane: sulfonated polyetheretherketone, or sPEEK. This alternative membrane, which possesses only poor chemical stability, offers a much better thermomechanical behavior than Nafion®, the reference membrane. Aim of this study was first to understand the impact of operating conditions on fuel cell performance, for a sPEEK membrane, in order to improve performance, but also to better understand the impact of the membrane chemical aging onto its physicochemical properties and the resulting fuel cell performance. First the behavior of sPEEK in fuel cell for different operating conditions showed that water transport in the MEA is critical for fuel cell performance. Indeed a very high heterogeneity of operation due to slow water transport in the sPEEK membrane was observed, resulting in a major drop of fuel cell performance compared with what observed using Nafion®. As in situ diagnosis of membrane degradation is difficult and the system particularly complex, it was then decided to study "ex situ" the chemical aging of the membrane (laboratory conditions). Aged membranes under the action of H2O2 (oxidative responsible for the in situ chemical aging of the membranes) were characterized and finally tested in fuel cell. It appears that the chemical aging results in chains scissions, which induce an increase of the membrane swelling. For too much aging, these chains scissions result in the membrane loss of mechanical strength, incompatible with their use in fuel cell. However, for controlled aging (very low degradation), the induced chemical changes allow better swelling of the membrane resulting in an increase of the conductivity and better water transport in the MEA, making it possible to reach, with sPEEK, as good performance as with the use of Nafion®.
469

Etude expérimentale et par modélisation de l'impact d'impuretés de l'hydrogène sur le fonctionnement des piles à combustible à membrane échangeuse de protons (PEMFC) / Impact of impurities in hydrogen on the operation of proton exchange membrane fuel cells (PEMFC)

Passot, Sylvain 09 October 2012 (has links)
Les piles à combustible à membrane échangeuse de protons (PEMFC) sont sensibles aux polluantsde l’hydrogène et de l’air. Cette étude s’est focalisée sur l’impact du monoxyde de carbone (CO) et dusulfure d’hydrogène (H2S), deux polluants majeurs dans l’hydrogène (H2), suivant une approchecombinant expériences et modélisation.Le volet expérimental a consisté à étudier l’effet de la concentration des polluants individuels et enmélange et des chargements en catalyseurs, pour différents modes de fonctionnement. Cette étude amis en lumière un impact sur les deux électrodes (anode et cathode) dû à la distribution hétérogènedes polluants à la surface de l’anode et à la désactivation de la partie de la cathode en regard. Deplus, dans le cas d’un empoisonnement par H2S, cette étude a montré que la tension de cellule atteintun état quasi-stationnaire, en mode galvanostatique, ce qui n’avait jamais été mis en évidence dans lalittérature.Dans l’approche de modélisation multi-échelles, le couplage de l’électrochimie et de la fluidique ainsique le développement de différentes « briques » du modèle ont permis de perfectionner la descriptiondes phénomènes physico-chimiques. Le modèle permet maintenant de simuler le fonctionnementd’une cellule de pile à combustible dans les conditions opératoires réelles, en intégrant les cinétiquesd’empoisonnement du platine par CO et H2S.Enfin, la comparaison des données expérimentales et des simulations a montré des résultats trèssatisfaisants appuyant certains arguments pour l’interprétation de l’impact des impuretés de H2. / Protons exchange membrane fuel cells (PEMFC) are sensitive to hydrogen and air pollutants. Thisstudy is focused on the impact of carbon monoxide (CO) and hydrogen sulfide (H2S) which are twomajor impurities of hydrogen. A combined experimental and modeling approach has been followed.The experimental part consisted in studying the effect of the concentration of individual pollutants andmixtures, and the effect of catalyst loading, for different operating modes. This work has highlighted animpact on both electrodes (anode and cathode) due to a heterogeneous distribution of the pollutantson the anodic surface area and to a deactivation of the opposite cathodic surface area. Furthermore,in the case of H2S poisoning, this study has shown that the cell voltage can reach a quasi-steadystate, in galvanostatic mode, which had never been highlighted in the literature.In the multi-scales modeling approach, a coupling of the electrochemistry and fluidics as well as thedevelopment of new modules of the model have allowed improving the description of the physicochemicalphenomena. As a consequence, the model simulates a fuel cell in real operating conditions,including the kinetics of platinum poisoning by CO and H2S.Finally, experimental data and simulated data were compared and they showed satisfactory anduseful results for the understanding of the impact of H2 impurities.
470

Synthèse et caractérisation de matériaux polymères conducteurs protoniques pour membranes de pile à combustible / Synthesis of proton conducting polymer materials for fuel cell mambranes

Thiry, Xavier 05 February 2013 (has links)
Le travail reporté dans ce manuscrit concerne l’élaboration de matériaux conducteurs protoniques destinés à une application en tant que membrane de PEMFC. L’approche considérée, relativement récente dans ce domaine, consiste à élaborer des réseaux seminterpénétrés(semi-IPN). Pour ce faire, un polymère linéaire conducteur protonique (unPEEK sulfoné) a été associé à un réseau réticulé fluoré de type poly(aryl étherperfluorocyclobutane) (PFCB). Ces macromolécules sont obtenues par cyclodimérisationthermique de monomères bis et tris-trifluorovinyléther (TFVE). Différentes séries de semi-IPN ont été élaborées en faisant varier la nature du PFCB, le taux de réticulation, le procédéde mise en oeuvre et le taux de réseau incorporé au sPEEK. L’ensemble des résultats montrequ’il existe une composition pour laquelle les propriétés de conductivité, de gonflement et detenue mécanique sont optimales. Une membrane ayant une conductivité de 155 mS.cm-1 et ungonflement à l’eau deux fois inférieur à celui du sPEEK (dont la conductivité s’élève à127 mS.cm-1) a été obtenue grâce à un ajout de 10 % en masse en réseau fluoré. Par ailleurs,l’incorporation dans le réseau PFCB de monomères contenant des fonctions sulfoniques a étéenvisagée. Un travail important de chimie organique a permis d’obtenir des molécules bis-TFVE comportant des fonctions sulfonées protégées sous forme d’ester sulfonique. Lapolycondensation directe de ces molécules a permis la synthèse de polymères PFCB linéairesconducteurs protoniques d’une CEI préalablement déterminée. / This thesis deals with the conception of proton conducting materials used as PEMFCmembrane. The proposed approach is quite new in this application field and is based on thedevelopment of semi-interpenetrating networks (semi-IPN). A linear conducting polymer(sulfonated PEEK) was combined with a crosslinked fluorinated network, a poly(aryl etherperfluorocyclobutane) (PFCB). These macromolecules are obtained by thermalcyclodimerization of bis and tris trifluorovinylether monomers (TFVE). Different series ofsemi-IPN were prepared by changing the PFCB nature, the crosslinking degree, the synthesisprocess and the proportion of the network added to the sPEEK. The overall results show aspecific semi-IPN composition for which the conductivity, the swelling and mechanicalstrength properties are optimal. A membrane with a proton conductivity of 155 mS.cm-1 and alimited water swelling (50 % lower than for a sPEEK membrane which exhibits a protonconductivity of 127 mS.cm-1) is obtained by adding 10 wt-% of fluorinated network. Inaddition, the incorporation of sulfonated TFVE monomers into the network PFCB has beenconsidered. A significant effort in organic chemistry enabled the synthesis of bis-TFVEmolecules containing protected sulfonated functions in a sulfonate ester form. Linearconducting PFCB polymers with a predeterminated IEC were obtained by directcopolycondensation of these monomers.

Page generated in 0.0435 seconds