• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparative life cycle assessment of organic building materials

Yossef, Delav, Hot, Dino January 2021 (has links)
The ever-increasing awareness of global warming has made the building industry startlooking for alternative building solutions in order to meet the changing demands. Thesechallenges have given rise to organization which aim to go further and construct moresustainable alternatives in the form of Ecovillages. This thesis is conducted in collaborationwith Bysjöstrans Ekoby and aims to investigate what type of organic alternatives exist andhow they perform in building elements.The study was carried out through a comparative LCA where a base case construction forboth roof and wall was established. Followed by comparing different organic materials toeach other and the base case materials in order to determine low-impact materials. The goalwas to replaces as many layers within the structure such as insulation, structure, roofcladding, façade, wind and vapor barrier.This was later followed by combing the materials together in order to identify whichalternative construction options would perform the best in regard to greenhouse gasemissions (CO2 eq kg) and primary energy use (MJ).The results of the study show that the performance or organic materials vary significantly.Whit a lot of materials being better but also worse than traditional materials. It showed thatfor internal wall and roof surface adding clay plater can reduce the GHG emission with 68%, timber frame with 98 %, façade with 43 %, roof cladding with 93 %, vapor barrier with76 % and insulation with 79 %. The best preforming construction option could reduce thebase case emission with 68 %.
2

Comparative LCA of Wood from Conventional Forestry and Wood from Short Rotation Coppice

Kunstmann, Martin 08 May 2014 (has links) (PDF)
Worldwide there is an increasing demand of natural resources. In future, non renewable resources get substituted by renewable resources in the energetic sector as well as in the material sector. That implies a stronger usage of renewable resources especially - wood. In 2009 there was a usage of 77 million cubic meters of wood for material applications and a quantity of 55 million cubic meters for energetic applications in Germany alone. Furthermore, there is an increasing demand on wood for energetic purposes. In 2007 this problematic development led to the first supply bottlenecks. To meet the increasing demands of the future, Short Rotation Coppices (SRC) can help to improve the wood provision. An SRC is a planting of fast growing coppice on agricultural areas, which is managed more intensively than usual forestry practices for a quicker production of wooden biomass. With a comparative LCA of conventional wood and wood from SRC the present study evaluates if wood from SRC is reasonable to cover the increasing demand of wood for material and energetic purposes in an environmental friendly way. A comprehensive literature research regarding LCAs of wood and wooden products shows that there are no previous studies comparing the two types of wood. Hence, the present study examines a particleboard production as the material scenario and the combustion of woodchips in a firing system as the energetic scenario to compare the ecological advantages and disadvantages of wood from SRC and conventional wood. The LCA is implemented with the Gabi software designed by PE International. Data is obtained from previous LCA studies evaluating the production of wood, the particleboard production and the combustion of wood. Additionally, data from the Ecoinvent database is used. Functional units are the production of 1m3 particleboard and the production of 1 MJ of thermal energy. The LCIA is implemented with the “Ecoindicator” as endpoint- and “CML 2001” as midpoint approach to cover broad range of environmental issues. Moreover a sensitivity analyses shows the impact of decisive variables on the results of “Ecoindicator” and “CML 2001”. Results reveal that outcomes of the LCIA are dependent of the assessment method and the processed part of trees from conventional forestry. The present study shows, that with an efficient land use, wood from SRC can help to cover the increasing demand of wood for material and energetic purposes in a sustainable way. However, an immediate usage of wood for energetic purposes has to be seen critical. Instead, a cascaded and sustainable utilization of wood is recommendable to counteract climate change and to improve the efficient use of the renew-able resource - “wood”.
3

Comparative LCA of Wood from Conventional Forestry and Wood from Short Rotation Coppice

Kunstmann, Martin January 2012 (has links)
Worldwide there is an increasing demand of natural resources. In future, non renewable resources get substituted by renewable resources in the energetic sector as well as in the material sector. That implies a stronger usage of renewable resources especially - wood. In 2009 there was a usage of 77 million cubic meters of wood for material applications and a quantity of 55 million cubic meters for energetic applications in Germany alone. Furthermore, there is an increasing demand on wood for energetic purposes. In 2007 this problematic development led to the first supply bottlenecks. To meet the increasing demands of the future, Short Rotation Coppices (SRC) can help to improve the wood provision. An SRC is a planting of fast growing coppice on agricultural areas, which is managed more intensively than usual forestry practices for a quicker production of wooden biomass. With a comparative LCA of conventional wood and wood from SRC the present study evaluates if wood from SRC is reasonable to cover the increasing demand of wood for material and energetic purposes in an environmental friendly way. A comprehensive literature research regarding LCAs of wood and wooden products shows that there are no previous studies comparing the two types of wood. Hence, the present study examines a particleboard production as the material scenario and the combustion of woodchips in a firing system as the energetic scenario to compare the ecological advantages and disadvantages of wood from SRC and conventional wood. The LCA is implemented with the Gabi software designed by PE International. Data is obtained from previous LCA studies evaluating the production of wood, the particleboard production and the combustion of wood. Additionally, data from the Ecoinvent database is used. Functional units are the production of 1m3 particleboard and the production of 1 MJ of thermal energy. The LCIA is implemented with the “Ecoindicator” as endpoint- and “CML 2001” as midpoint approach to cover broad range of environmental issues. Moreover a sensitivity analyses shows the impact of decisive variables on the results of “Ecoindicator” and “CML 2001”. Results reveal that outcomes of the LCIA are dependent of the assessment method and the processed part of trees from conventional forestry. The present study shows, that with an efficient land use, wood from SRC can help to cover the increasing demand of wood for material and energetic purposes in a sustainable way. However, an immediate usage of wood for energetic purposes has to be seen critical. Instead, a cascaded and sustainable utilization of wood is recommendable to counteract climate change and to improve the efficient use of the renew-able resource - “wood”.
4

Comparative Life CycleAssessment of Two Single Family Dwellings

Istiqamah, Istiqamah, Shahraki, Sina Soleimani January 2022 (has links)
This study compared the Global Warming Potential (GWP) impact of two single-family dwellings situated in Halmstad and Norrköping. The aim of this thesis work is to investigate how building materials types, material quantities, and geographical boundaries affect the Life Cycle Assessment (LCA) results. This study focuses on climate declaration (A1-A5) LCA stages and was conducted in collaboration with Fiskarhedenvillan. The study uses a comparative LCA of various building components and materials. One Click LCA student license was used to calculate the CO2e emissions from the GWP impact category. The study found that the building in Halmstad generated 6,3% lower CO2e emissions compared to the building in Norrköping. The reason mainly was affected by the use of roofing materials. The building in Halmstad used reinforced bitumen while the building in Norrköping used concrete tile roofing. The study investigates that reinforced bitumen generates lower emissions in A1-A4 stages compared to concrete. The geographical boundaries affect the A4 stage. The building in Halmstad generated higher CO2e emissions compared to the building in Norrköping as it has long distances to the building materials suppliers. The research verifies that the A1-A3 stages considerably generate most of the emissions (70-80%) compared to A4 and A5. The A5 stage results remain the same per meter square of both dwellings considering the use of generic data from One Click LCA.
5

Livscykelanalys och livscykelkostnadsanalys av nyckelfärdiga flerbostadshus : En jämförelse mellan betong- och träkonstruktion / Life Cycle Assessment and Life Cycle Cost Analysis of Prefabricated Multi-Residential Buildings : A Comparative Analysis Between Concrete and Wood Construction

Larsson, Emelie, Lydell, Anton January 2018 (has links)
I Sverige står bostadssektorn för mer än en tredjedel av landets energianvändning. Byggnader måste minska sin energianvändning för att således kunna uppfylla framtida lagkrav om maximal tillåten energianvändning, men också för att minska påverkan till global uppvärmning. Ytterligare en problematik som råder, däribland i Sverige, är bostadsbrist. Kommunala bostadsbolag står inför utmaningen att kunna bygga bostäder snabbt, billigt och miljövänligt för att minska bostadsbristen i landet. Ett sätt att studera två av tre hållbarhetsaspekter vid val av framtida bostadsbyggande är att utföra en livscykelanalys (LCA) och livscykelkostnadsanalys (LCC) kring de tilltänkta husen. LCA:er indikerar vilken miljöpåverkan en produkt förorsakar under dess livslängd. LCC:er avser att studera vilka kostnader produkter ger upphov till under en given analysperiod. Det svenska kommunala bostadsbolaget Stångåstaden AB står inför utmaningen kring bostadsbrist och vill bygga hållbara bostäder. Bostadsbolaget har önskat en jämförande LCA och LCC av två verkliga flerbostadshus som de genom ramavtal kan upphandla, detta är utgångspunkten för denna studie. Den ena byggnaden har stomme av betong, den andra har stomme av trä. Husen är tänkta att placeras i utkanten av Linköping, Sverige. Studien har valt att analysera miljöpåverkan från husens olika livscykelfaser samt kostnader över analysperioden 50 år. Utöver detta studeras även vilka energieffektiviseringsåtgärder (EEÅ) till byggnaderna som är optimala att genomföra för att öka den termiska prestandan hos huskonstruktionerna. Från litteraturen finns det relativt få studier som kombinerar både LCA och LCC för vanligt förekommande hustyper i städer. I dess standardfall påvisade resultatet från LCA:n att huset med betongkonstruktion hade något lägre påverkan i sex av sju studerade miljöpåverkanskategorier, jämfört med flerbostadshuset i trä. Resultatet skilde sig lite åt då annan typ av indata användes. Vad gäller kostnader under husens livslängd var huset i trä ungefär 20 % dyrare jämfört med huset med betongkonstruktion. Trots annan typ av indata var träkonstruktionen dyrare än betongkonstruktionen. Med en kalkylränta på 7,5 % var det inte lönsamt att genomföra EEÅ för husen, med halverad kalkylränta blev det dock lönsamt att tilläggsisolera krypgrunden i huset med trästomme. Fler studier behöver utföras för att generalla slutsatser ska kunna dras kring vilket konstruktionsmaterial som är mest hållbart. Denna studie baseras på två specifika fall. Samma resultat kan eventuellt inte förväntas för andra byggnader med stomme i betong och trä. / The residential sector accounts for more than a third of the energy use in Sweden. To reduce the energy use of buildings is a necessity in order to meet future regulationof maximum allowable energy, but also important to reduce the impact on global warming. Another complexity arising in Sweden is the shortage of accommodation. Municipal housing corporations face the challenge of constructing residences fast, cheap and with concern of environmental effects in order to reduce the shortage of accommodation. One way of assessing two of the three aspects of sustainability when looking at future construction of residential buildings is to carry out a Life Cycle Assessment (LCA) and a Life Cycle Cost Assessment (LCCA). An LCA can indicate what kind of environmental impact a product causes over its lifetime and the LCC allows for assessing what types of costs are associated with the product. For the municipal housing corporation Stångåstaden AB the shortage of accommodation is a reality and their mindset is sustainable construction of residences. This study was conducted upon request from Stångåstaden who wanted a comparative LCA and LCCA between two prefabricated multi-residential buildings that are available to them through a framework agreement. The first building has a concrete foundation and the second one is made of wood. The houses are planned to be placed at the outskirts of Linköping, Sweden. The focus of this study has been to comparatively assess the environmental impact from the different life cycle phases and the economic costs of the two buildings during a time period of 50 years. Moreover, the thesis also analyze the optimal retrofit strategy for the buildings in order to find the optimal (lowest) life cycle cost. Furthermore, the current literature has conveyed relatively few studies that combine both LCA and LCC methodology for house types that are common in most towns. The result from the LCA indicated that the house with concrete construction had a little less impact in six of the seven studied environmental impact categories compared to the house made of wood. The result differed slightly when the input data were changed. Regarding the LCCA the house made of wood was roughly 20 % more expensive than its concrete counterpart. Changing the input data revealed no difference in the result. With an interest rate of 7,5 % no retrofits were profitable for either building, however reducing the interest rate to half its original value made it cost optimal to increase the floor insulation for the house made of wood. More studies should be conducted to be able to draw general conclusions regarding which construction material that is the most sustainable. This thesis is based on two specific and real cases. The same result could possibly not be expected from other studies comparing buildings with concrete and wood construction.

Page generated in 0.0986 seconds