• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developing an Improved Understanding of the Biophysical and Physiological Determinants of Steady-State Sweating During Exercise in the Heat

Ravanelli, Nicholas Morris 16 January 2019 (has links)
Four studies were performed to evaluate the independent influence of core temperature and heat acclimation on sweating responses when exercise is fixed for a given evaporative heat balance requirement (Ereq) during compensable and uncompensable heat stress. By using circadian rhythm to modulate absolute core temperature, study 1 investigated whether absolute core temperature altered the steady-state sweat rate during compensable heat stress at a fixed Ereq. Study 2 compared the influence of partial and complete heat acclimation on core temperature and sweating responses between a compensable and uncompensable heat stress condition. Study 3 quantified how maximum skin wettedness is altered with partial or complete heat acclimation. Study 4 determined whether aerobic fitness (i.e. maximum rate of oxygen consumption; VO2max) per se independently alters the sweating and core temperature responses to uncompensable heat stress or if the frequent bouts of exercise-induced heat stress that accompany aerobic training are required to augment thermoregulatory capacity. Study 1 demonstrated that when absolute core temperature is different between AM and PM by ~0.2°C, steady-state sweat rates were the same for a fixed Ereq. Only when a different level of Ereq was attained, were differences in steady-state sweating observed. Moreover, steady-state sweat rates were similar despite differences in skin and core temperature when exercise intensity was matched to elicit a fixed Ereq in two different ambient temperatures (23°C and 33°C). In study 2, neither partial nor complete heat acclimation altered the core temperature response to compensable heat stress despite a marginally greater sweat rate compared to an unacclimated state. However, the sudomotor adaptations associated with heat acclimation were evident during uncompensable heat stress and mitigated the rise in core temperature during 60 minutes of exercise compared to an unacclimated state. Study 3 determined that the biophysical parameter that defines the upper limit for evaporative heat loss, that is the maximum skin wettedness achievable, increased following partial (0.84±0.08) and complete heat acclimation (0.95±0.05) compared to unacclimated (0.72±0.06) which directly explains the reduced change in core temperature reported in study 2 during uncompensable heat stress. Lastly, study 4 demonstrated that VO2max per se does not alter the sudomotor responses to uncompensable heat stress. Rather, it is the repetitive exercise-induced heat stress experienced during aerobic training that induces a partial heat acclimation thereby mitigating the rise in core temperature during uncompensable heat stress. Taken together, when exercise is prescribed in a compensable environment, the steady-state sweat rate observed will be primarily determined by Ereq independent of absolute core temperature, while heat acclimation will slightly increase the sweat rate despite providing no additional reduction in the change in core temperature. However, progressive heat acclimation increases the upper limit of compensability via a greater maximum skin wettedness thereby mitigating the rise in core temperature during uncompensable heat stress.
2

Água compensável (ac): definição de um novo indicador ambiental / Compensable water (cw): definition of a new environmental indicator

Soldera, Bruna Camargo [UNESP] 24 October 2017 (has links)
Submitted by Bruna Camargo Soldera (brusoldera@hotmail.com) on 2017-12-21T12:11:59Z No. of bitstreams: 1 TESE_vf_BCS.pdf: 1351235 bytes, checksum: 2430cf24f201bc58baaf6bac22049bd9 (MD5) / Submitted by Bruna Camargo Soldera (brusoldera@hotmail.com) on 2017-12-21T12:31:26Z No. of bitstreams: 1 TESE_vf_BCS.pdf: 1351235 bytes, checksum: 2430cf24f201bc58baaf6bac22049bd9 (MD5) / Approved for entry into archive by Adriana Aparecida Puerta null (dripuerta@rc.unesp.br) on 2017-12-21T13:57:39Z (GMT) No. of bitstreams: 1 soldera_bc_dr_rcla.pdf: 1339538 bytes, checksum: f6e8c82c512ffcd9256c246fffb800fb (MD5) / Made available in DSpace on 2017-12-21T13:57:39Z (GMT). No. of bitstreams: 1 soldera_bc_dr_rcla.pdf: 1339538 bytes, checksum: f6e8c82c512ffcd9256c246fffb800fb (MD5) Previous issue date: 2017-10-24 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Este trabalho apresenta um novo conceito, denominado Água Compensável (AC), que permite mensurar o uso da água a partir da alteração de sua qualidade e quantidade, abrindo as portas para a criação de instrumentos econômicos para sua gestão. O conceito baseia-se em um princípio simples, inovador e abrangente, para que possa ser utilizado de forma ampla por governos, empresas e cidadãos para quaisquer atividades humanas que envolvam o uso de água. A AC é um conceito ao qual pode ser atribuído valores obtidos por uma equação proposta e seguindo uma metodologia também proposta. A AC apoia-se no conceito denominado Pegada Hídrica Cinza ou Água Cinza, que por sua vez está inserido dentro do conceito Pegada Hídrica (Water Footprint). Para exemplificação do uso do conceito, utilizou-se a área de estudo das Bacias Hidrográficas dos rios Piracicaba, Capivari e Jundiaí (PCJ). Esta escolha deveu-se ao fato desta ser uma área que apresenta importante desenvolvimento econômico, muitas vezes com urbanização mal planejada e indústrias de grande porte estabelecidas, gerando impactos na qualidade e quantidade dos recursos hídricos, que indicam a necessidade de melhores planejamento e gestão do uso da água. O trabalho consistiu em levantamentos, compilações, elaboração de bancos de dados, interpretações e análises para determinação da AC para uma gama de solutos potencialmente contaminantes, oriundos de atividades antrópicas. Os solutos selecionados foram: nitrogênio, fósforo, Demanda Bioquímica de Oxigênio (DBO), Demanda Química de Oxigênio (DQO) e gorduras totais. Foram efetuados os cálculos e análises das AC para solutos gerados por diversas atividades realizadas nas Bacias PCJ e por dois estudos de casos específicos, indústria de bebidas (cerveja e refrigerante) e indústria de alimentos (laticínios e abate animal). É importante salientar que o conceito AC deve ser estimado mesmo para valores de concentrações para solutos que estejam abaixo do padrão de lançamento em corpos d’água, cujo efluente ao qual se incorporam tenha sido previamente tratado. Este raciocínio é suportado pela lógica de que, para alcançar um padrão sustentável a responsabilidade sobre qualquer alteração da qualidade da água, pela adição de massa de soluto, deve ser extensiva à sua remoção ou pela compensação por esta remoção, quer ela venha a ser realizada natural ou artificialmente, quer por diluição ou eventual degradação natural, ou por tratamento da água. Em todos os cálculos realizados neste trabalho pôde-se verificar o elevado volume de AC e o quanto isto pode colocar em risco a qualidade e quantidade da água. É evidente que massas de solutos sempre serão lançadas nos corpos hídricos, porém pode-se fazer com que estas massas não sejam suficientes para elevar a AC e contribuir com a má qualidade do rio. O conceito de AC é simples e poderoso, permite a mensuração do impacto antrópico ao recurso hídrico e abre a possibilidade de valoração da água por meio de compensações realizadas pelos diversos usuários. / This work presents a new method, called Compensable Water (CW), that allows to measure the water use by altering its quality and quantity, opening the doors for the creation of economic instruments for its management. The concept is based on a simple, innovative and comprehensive principle, so it can be widely used by governments, businesses, citizens and any human activities involving the use of water. CW is a concept that can be attributed values obtained by a proposed equation and following a methodology also proposed. The CW concept is based on Water Footprint and Grey Water Footprint concept. To exemplify the use of the SW method, we used the study area of the Piracicaba, Capivari and Jundiaí (PCJ) Hydrographic Basins. The choice of the area was due to the area presents an important economic development, often with poorly planned urbanization and large industries, generating impacts on the quality and quantity of water resources, and these factors indicate the need to improve the water use management. The work consisted of surveys, compilations, databases, interpretations and analyses to determine the SW for a range of potential contaminants from anthropic activities. The selected solutes were: Nitrogen, Phosphorus, Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and total fats. Calculations and analyses were carried out for the CW generated by several human activities in the PCJ Basins and for two case studies, beverage industry (beer and soft drink) and food industry (dairy and animal slaughter). It is important to emphasize that the CW must be estimated even for concentration values of solutes that are below the discharge pattern in water bodies whose effluent to which they are incorporated has been previously treated. This reasoning is supported by the logic that to achieve a sustainable standard, the responsibility for any change in water quality, by the addition of solute mass, must extend to its removal or compensation, whether it comes to be carried out naturally or artificially, either by dilution or eventual natural degradation, or by treatment of the water. The results show there is a high volume of CW and it is posing in risk the quality and quantity of water. It is evident that masses of solutes will always be released into the water body, but these masses cannot be enough to raise the CW volumes and contribute to the poor quality of the river. The CW concept is a simple and powerful tool for the measurement of the anthropic impact on water resource and allows the valuation of the water through compensations made by water users. / 165799/2014-5
3

承包商對營建工程工期遲延及阻擾(Disruption)之索賠

李昇蓉 Unknown Date (has links)
關於展延後所增加之費用是否得以索賠,亦影響業主成本支出與承包商利潤,於是關於工期之「時間」與「金錢」兩者,成為工程契約雙方最關心的議題。故從遲延索賠之目的,即可分成工期索賠與費用索賠兩方面探討之。 工期之定義從指涉範圍之廣狹可分為三種層次,本文討論主要之範圍係指狹義的工程期限,即業主與個別承包商於營建工程契約中所約定承包商完成工程所需之時間,日曆天為國際工程慣例選用之工期計算方式。工期之始點,應以契約約定之開工(Commencement of Contract Time)日起算,而完工(Contract Completion)則為工期之終點,如何界定完工對於整體施工契約之重要性,在於判斷承包商是否遵守履約期限。事實上分析是工程是否遲延?可歸責於當事人哪一方?國內外工程實務界之看法,皆認為工程遲延係以用盡浮時而影響「要徑」為要件,故產生以要徑為基礎以判斷工程遲延之方法,此亦突顯要徑法所欲表彰之基本功能。本文認為承包商須先以網狀圖證明「主要徑」之工作受外來因素(即不可歸責於承攬人)之施工障礙影響,則定作人才應展延工期,亦才有後續展延期間增加費用索賠之問題。 阻擾(Disruption)事件之產生,承包商有時同樣會遭受延後整體工程進度而可能逾期完工,或支出比預定計畫更多額外費用,以趕上原本進度之損害。阻擾之定義,依據英國SCL議定書第1.19.1條規定,為對於承包商正常工作之打擾、阻礙及干擾,導致較低之工率。如阻擾為業主所引起,可能會給予承包商依據契約或依據違約條款請求賠償之權利。但應特別區分者,乃阻擾與遲延仍為不同概念,遲延為延後完工,而阻擾則著重於生產力下降( Productivity Loss)及對於進度之打擾、阻礙、干擾,因此發生阻擾事件,僅「可能」發生逾期完工但並非絕對延後工期。故阻擾損害方面,與遲延損害相同,承包商必須證明阻擾可歸責於業主,且因業主阻擾承包商施工,導致其工率降低受有損害,但阻擾不限於要徑工作之干擾,縱使對非要徑工作之干擾亦得請求賠償損害,所以無須審視是否具備逾期完工之事實。因此當僅有阻擾事件發生卻未影響完工日時,承包商不會主張工作工期展延,但必定向業主請求可歸責於業主之阻擾造成工作效率降低( Reduced Efficiency of Workforce)之損失。 於遲延事件中,僅有不可歸責並可補償承攬人之遲延(Excusable and Compensable Delays),承包商一方面得請求展延工期,一方面得請求補償展延期間增加之費用。費用方面,因非可歸責於承包商之事由導致工程遲延,而業主指示承包商投入更多資源以提早完工,則屬於英美工程界所謂Acceleration(以下簡稱加速施工)之情況,此時業主亦應負擔補償承包商因加速施工產生之費用。於聯邦工程採購實務中,大部份涉及擬制加速施工之案例,皆為發生不可歸責且可補償承攬人遲延之情形,例如:實際為不可歸責於承攬人之遲延,定作人誤以為係可歸責於承攬人,而促使承攬人趕工以符合原定契約完工期限等情況。依據可歸責於哪一方之遲延來處理加速施工問題時,應掌握不可歸責於承攬人遲延之加速施工,原則上皆應支付額外費用,反之,若定作人就不可歸責於承攬人之遲延,已經准許展延足夠之工期,則不須支付加速施工之費用。至於得以展延多少時間,應以遲延分析技術判斷之,例如英國SCL議定書中介紹四種屬完工後處理展延工期問題之遲延分析技術,包括以下:1.The as-planned versus as-built method比較原規畫時程與竣工時程遲延分析法;2.The impacted as-planned method(What if analysis)原規劃時程影響後分析技術 ;3.The collapsed as-built method(But for as built analysis)重疊竣工時程分析技術; 4.The Protocol’s own TIA method(Retrospective TIA)英國SCL議定書之回復式時間影響分析法。 遲延事件造成工期展延,而工期展延通常亦產生額外之增加費用(Increased Cost)。惟業主准許展延工期之主張,不必然表示承包商即得請求展延期間相關費用。若遲延可歸責於承包商,則承包商顯然必須自行承擔遲延之相關費用;若為可歸責於業主之遲延事件,相關之補償即包含承包商於展延期間所動用與時間相關之資源(Time-related Resources)。惟工程實務上承包商於證明工期展延期間所增加之費用及所受損害時,常因為工期時間過久、各種紀錄成本與保管費用等錯綜複雜因素,對於損害數額無法達到嚴格證明之舉證程度,能夠確實提出每筆支出費用單據之紀錄者較少見,特別是當承包商請求「一式計價」之項目時更遭遇此種難題。如果無法證明費用的支出,則整個索賠都付諸流水,在很多案例中,承包商雖然成功證明遲延為可補償的,卻因提出不適當證明使最後獲得之補償較索賠預期額度減少許多,例如:實務對於工率降低(Efficiency Loss)損害之計算與證明,目前仍無統一見解,因工率難以數量化,縱使承包商以其工地記錄資料提出某工率降低係數,工程師亦針對監控報表提出另一個係數,而兩者皆無法說明哪一個數據之可信度較高,且縱使雙方合意以某一工率降低系數為標準,則雙方對於哪一部份為可歸責於己之責任劃分意見也不同,此亦牽涉舉證責任問題。 傳統訴訟需耗費大量金錢時間,或有部分以新興之非對抗式「替代性紛爭解決機制」( Alternative Dispute Resolution, 以下簡稱ADR),例如仲裁 (Arbitration), 調解(Mediation),調停(Conciliation), 調仲 (Med-Arb).,迷你審 (Mini Trial)等,以輔助傳統紛爭解決手段之不足。現行工程契約中,雙方通常事先約定將來發生工程爭議之解決方法,例如前開仲裁、調解等;而公共工程案件,若機關與廠商因履約爭議未能達成協議者,依據政府採購法第85條之1規定,亦強制不接受調解建議或方案之機關,若日後廠商提付仲裁,其不得拒絕之方式,來促成先行階段 ,即「調解」階段中調解成立之機會,加速爭議之解決。但在一些案例中,仲裁、調解等機制卻依然產生如同傳統訴訟般費用過高、時間較長之相同問題。於雙方無法協商而須透過第三人介入,卻在希望更節省糾紛處理時間,及更貼近雙方各退一步以共同努力解決難題之協商精神之要求下,使另一爭端處理模式:「爭議處理委員會」(Dispute Board)之角色日漸重要。

Page generated in 0.0372 seconds