• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 26
  • 20
  • 7
  • Tagged with
  • 99
  • 99
  • 29
  • 27
  • 26
  • 22
  • 15
  • 14
  • 13
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Rhéologie et écoulement de fluides chargés : application aux réseaux d'assainissement urbains : étude expérimentale et modélisation / Rheology and pipe flow of complex fluids : urban application : experimental study and modeling

Benslimane, Abdelhakim 17 December 2012 (has links)
Ce travail est une contribution expérimentale à l’étude rhéologique et en écoulement de fluides complexes (à seuil et thixotropes) transitant dans un circuit hydraulique. Il s’agit notamment de suspensions de bentonite ainsi que des complexes bentonite/polymère. L’étude porte sur l’évolution des pertes de charge et des champs de vitesse et se situe en régime laminaire, transitoire et turbulent. L’étude a été réalisée en utilisant un vélocimètre ultrasonore Doppler pulsé développé au laboratoire. Dans la première partie expérimentale de la thèse, des mesures rhéologiques et en écoulement ont été effectuées sur des suspensions de bentonite pures (sans additifs) à différentes concentrations. A partir des essais sur boucle hydraulique, une étude détaillée est présentée sur l’évolution des coefficients de frottement et des profils de vitesse pour les différents régimes d’écoulement. Dans une seconde partie, une suspension de bentonite pure et des mélanges bentonite/CMC à différentes concentrations massiques ont été étudiées en termes de comportement rhéologique et hydrodynamique en écoulement en conduite. En ce qui concerne les mesures effectuées en boucle hydraulique, il a été montré que le polymère a des propriétés viscosifiantes en régime laminaire. Par contre, en régime turbulent, le polymère agit comme un réducteur de frottement. La dernière partie de la thèse a été consacrée à l’étude de l’influence de la température sur le comportement rhéologique des solutions de polymère et des mélanges argile/polymère. Les mesures rhéologiques à différents paliers de températures ainsi que les balayages en température ont mis en évidence le caractère thermodépendant des dispersions. / This experimental work is a contribution to the study of rheological and pipe flow proprieties of complex fluids (yield stress and thixotropic). Bentonite suspensions and mixtures containing bentonite and carboxymethyl cellulose were investigated. The axial velocity distribution was determined using ultrasonic pulsed Doppler velocimetry technique. In the first experimental part of the thesis, rheological and pipe flow measurements were performed for pure bentonite suspensions at different concentrations. A detailed study is presented on the evolution of the friction factors and velocity profiles for different flow regimes. In a second part, suspension of bentonite and mixtures of bentonite / CMC at different mass concentrations of polymer were studied in terms of their rheological and hydrodynamic flow behavior. It was shown that the polymer has viscosifying properties in laminar regime. However, in the turbulent regime, the polymer acts as a friction reducer. The last part of the thesis was devoted to the study of the effect of temperature on the rheological behavior of polymer solutions and mixtures of clay / polymer. The rheological measurements at different temperatures showed a thermodependent character of the different fluids.
92

Morphology Control of Copolymer Thin Films by Nanoparticles

Shagolsem, Lenin Singh 11 December 2013 (has links)
Diblock-Copolymers (DBCs), created by covalently joining two chemically distinct polymer blocks, spontaneously form various nanoscale morphologies such as lamellae, cylinders, spheres, etc. due to the chemical incompatibility of its constituent blocks. This effect is called microphase separation in the literature. Because of this self-organizing property DBCs find applications in many areas e.g. in creating selective membranes, and in polymer based modern electronic devices like organic photovoltaics where the internal morphology plays an important role in determining the performance of the device. Many such modern devices are based on thin film technologies and uses copolymer nanocomposites as it exhibits advantageous electrical, optical, and mechanical properties. Also, DBC can direct the spatial distribution of nanoparticles (NPs) in the polymer matrix via microphase separation. Generally, two types of NPs are distinguished with respect to their monomer affinity: selective NPs which prefer one component of DBC, and non-selective NPs which interact equally with both components of DBC. In this work, using molecular dynamics simulations and analytical calculations, we explore the effect of adding both types of NP in the copolymer matrix considering a thin film (or confined) geometry. We consider a cylinder forming DBC melt confined by purely repulsive walls in slit geometry and study the behavior of the system upon adding non-selective NPs. Two models of non-selective interactions between the monomers and NPs are applied, i.e repulsive and weakly attractive interactions (athermal and thermal cases respectively). Spatial distribution of NPs in the copolymer matrix is sensitive to the NP-monomer interaction behavior. We focus on the thermal case and discuss, in particular, the following points: (1) role of diblock and polymer-wall interfaces, (2) spatial distribution of NPs, and (3) NP segregation and uptake behavior by the copolymer film. The uptake of NPs by the copolymer film in the thermal case displays a non-monotonic dependence on temperature which can be explained qualitatively using a mean-field model. In general, addition of non-selective NPs do not affect the copolymer morphology and the NPs are preferentially localized at the interface between microphase domains. Morphological transitions are observed when adding selective NPs to the copolymer matrix. By varying the amount of selective NPs and diblock composition we systematically explore the various structures formed by the nanocomposites under confinement and constructed the corresponding phase diagram in diblock composition and NP concentration. We also discuss the NP induced orientation transition of lamellar structure and study the stability of lamellar phases formed by the nanocomposites. To study the commensurability and wetting transition of horizontally oriented lamellar phase formed by the nanocomposites we have developed a mean field model based on the strong segregation theory. Our model predicts that it is possible to reduce the frustration in a film of fixed thickness by properly tuning the NP-monomer interaction strength. Furthermore, the model predicts a discontinuous transition between the non-wetted phase (where a dense NP layer is present in the polymer-substrate interface) and wetted phase (where the substrate is covered by polymers). Finally, we extend our study to non-equilibrium where we apply a shear flow field to copolymer thin films. Here, we study the flow behavior, lamellae deformation and change of pair-wise interaction energy, and macroscopic response like kinetic friction coefficient and viscosity of the copolymer thin film with and without NPs. / Lösungen von Diblock-Copolymeren (DBC), welche durch die kovalente Bindung zweier chemisch unterschiedlicher linearer Polymerblöcke entstehen, können spontan mikroskopische Strukturen ausbilden, welche je nach dem Grad der chemischen Kompatibiliät der Blöcke beispielsweise lamellen-, zylinder- oder kugelartige Formen zeigen. Dieses Phänomen wird meist als Mikrophasenseparation bezeichnet. Aufgrund dieser selbstorganisierenden Eigenschaft finden DBCs Anwendungen in vielen Bereichen der Forschung und der Industrie. Beispielsweise zur Erzeugung selektiver Membranen oder in moderner polymerbasierter Elektronik, wie organischen Solarzellen, wo die innere Struktur eine wichtige Rolle spielt um die Leistungsfähigkeit zu erhöhen. Viele moderne Geräte basieren auf der Technologie dünner Schichten und nutzen Copolymer-Nanokomposite um elektrische, optische oder mechanische Eigenschaften zu verbessern. In Folge der Mikrophasenseparation kann man mit Hilfe von DBC die räumliche Verteilung von Nanopartikeln (NP) in der Polymermatrix kontrollieren. Man unterscheidet im Allgemeinen zwischen zwei Arten von NP: selektive NP, welche eine der beiden Komponenten der DBC bevorzugen und nicht-selektive NP, welche mit beiden Komponenten gleichartig wechselwirken. In der vorliegenden Arbeit nutzen wir molekulardynamische Simulationen und analytische Rechnungen um den Eigenschaften zu studieren, welche eine Zugabe von selektiven und nicht-selektiven NP auf eine dünnschichtige Copolymermatrix hat. Wir betrachten eine zylinderformende Schmelze aus DBC, welche in einem dünnen Film, zwischen zwei harten Wänden eingeschränkt ist, und untersuchen das Verhalten des Systems unter Zugabe nicht-selektiver NP. Zwei Modelle nicht-selektiver Wechselwirkungen werden angenommen: ausschließlich repulsive (athermische) Wechselwirkungen und schwach anziehende (thermische) Wechselwirkungen. Die räumliche Verteilung der NP ist abhängig von dem jeweiligen Wechselwirkungsverhalten. Wir konzentrieren uns hierbei auf den thermischen Fall und diskutieren speziell folgende Schwerpunkte: (1.) die Rolle der sich ausbildenden Grenzschichten, (2.) die räumliche Verteilung der NP und (3.) die Abscheidung der NP, sowie die Aufnahmefähigkeit derselben durch die Polymermatrix. Im thermische Fall zeigt die Aufnahme der NP durch die Copolymerschicht eine nicht-monotone Abhängigkeit von der Temperatur, was mit Hilfe eines Mean-Field Modells erklärt werden kann. Die Zugabe nicht-selektiver NP hat keinen Einfluss auf die Struktur der Copolymermatrix und die NP werden vorzugsweise an der Grenzschicht der jeweiligen Mikrophasen gefunden. Im Gegensatz dazu kann man durch die Zugabe selektiver NP eine Strukturveränderung in der Copolymermatrix feststellen. Durch Veränderung der Menge der NP und der Zusammensetzung der DBC können wir systematisch unterschiedliche Strukturen des räumlich eingeschränkten Nanokomposits erzeugen und ein entsprechendes Phasendiagram bezüglich der NP Konzentration und der DBC Zusammensetzung erstellen. Wir untersuchen auch die durch NP induzierte Orientierung der Lamellenstruktur und analysieren ihre Stabilität. Um den sogenannten Kommensurabilitäts- und Benetzungsübergang in horizontal orientierten Lamellenstrukturen zu untersuchen haben wir ein Mean-Field Modell entwickelt, welches auf der Annahme der 'starken Segregation' basiert. Unser Modell macht die Vorhersage, dass es möglich ist die Frustration in einem Kompositfilm zu reduzieren, indem man die NP-Monomer-Wechselwirkung entsprechend anpasst. Zusätzlich sagt das Modell einen diskontinuierlichen Übergang zwischen der unbenetzten Phase (Ausbildung einer dichten NP Konzentration an der Polymer-Substrat Grenzschicht) und der benetzten Phase (das Substrat ist ausschließlich vom Polymerkomposit bedeckt) voraus. Abschließend weiten wir unsere Untersuchungen auf Nicht-Gleichgewichtszustände aus und induzieren durch Scherung der Substratwände einen Strömungprofil im Kompositfilm. Dabei analysieren wir das Strömungsverhalten, die Lamellendeformation und die Änderung der paarweisen Wechselwirkungsenergie. Wir untersuchen auch makroskopische Größen, wie den kinetischen Reibungskoeffizienten und die Viskosität, je in An- und Abwesenheit von Nanopartikeln.
93

[pt] ANÁLISE DO PROCESSO DE CIMENTAÇÃO NA PRESENÇA DE PERDA DE FILTRADO / [en] CEMENTING PROCESS IN THE PRESENCE OF FLUID LOSS

SERGIO SANTIAGO RIBEIRO 18 January 2021 (has links)
[pt] O presente estudo tem como objetivo investigar o processo de cimentação de poços de petróleo, na presença de zonas de perda de filtrado. Um aparato experimental foi projetado, construido e operado com o objetivo de simular a cimentação de um poço de petróleo. Com diâmetros característicos dos poços reais, esse simulador permite que o processo de cura da coluna de cimento seja monitorado com condições controladas. O aparato consiste em uma coluna anular concêntrica com 8m de comprimento. A zona de perda de filtrado é modelada por uma parede semi-permeável, e todo poço é equipado com sensores de pressão e temperatura. Isso possibilita a investigação dos mecanismos de cura da pasta de cimento, bem como o impacto da perda de filtrado na evolução do perfil de pressão. Para tentar prever esse comportamento, um modelo numérico 2D de Elementos Finitos foi proposto e implementado em Python, utilizando bibliotecas pré-compiladas de código aberto denominadas FEniCs. As equações de conservação de massa e momento são resolvidas para obter os campos de velocidade e pressão. A mistura da pasta de cimento é considerada um fluido incompressível e composta de duas espécies químicas: a fase aquósa(ou filtrado) e o cimento dissolvido. O transporte de massa é modelado usando a equação de advecção-difusão, e a pasta é modelada como um fluido viscoplástico que sofre redução volumétrica com a cura. Finalmente, os resultados das simulações foram confrontados com os dados experimentais obtidos, e uma boa concordância foi observada. Uma investigação adicional foi realizada no modelo numérico, através de uma análise de sensibilidade individual dos parâmetros de entrada e seu respectivo impacto na queda de pressão. Para o regime de taxas de cisalhamento avaliados, os resultados indicaram uma forte dependência entre a evolução do perfil de pressão e o tempo de cura, a magnitude da vazão de filtrado e o patamar newtoniano da viscosidade. / [en] This thesis aims to investigate the cementing process of an oil well in presence of a filtrate loss zone. An experimental setup was designed, built and operated to simulate an annular well field-like geometry where cement would cure under controlled conditions. This well simulator consisted of an 8m concentric annular column with a section of semi-permeable external wall, equipped with pressure and temperature sensors. It allows the investigation of the cementing cure mechanisms, as well as the impact of the fluid loss zone in the pressure drop behavior. In order to predict this behavior on real oil wells, a 2D transient numerical model is proposed. A finite element model was implemented in Python with the aid of an open source library named FEniCs. Mass and momentum conservation equations are solved to obtain the pressure and velocity fields, and the cement mixture is considered an incompressible single-phase mixture composed of two chemical species: the filtrate and the dissolved cement. Mass transport is modeled with an advection-diffusion equation and dissolved cement species is modeled as a viscoplastic fluid with shrinkage. Finally, the simulation results were confronted with the experimental data, and a good agreement was observed. Further investigation of numerical model parameters was performed, and a sensitivity analysis evaluated individual influence of those parameters in the pressure drop. The results indicate that pressure profile evolution has a strong dependency on thickening time, fluid loss flow rate magnitude and the Newtonian viscosity plateau for the evaluated shear rate regimen.
94

Study of Liquid-Liquid Dispersion of High Viscosity Fluids in SMX Static Mixer in the Laminar Regime

Das, Mainak 10 1900 (has links)
<p>In this research, liquid-liquid dispersion of viscous fluids was studied in an SMX static mixer in the laminar regime. Backlighting technique was used for flow visualization, and the Hough transform for circle detection was used in OpenCV to automatically detect and measure drop diameters for obtaining the size distribution. Silicone oil and an aqueous solution of high fructose corn syrup were used for dispersed and continuous phases respectively, and sodium dodecyl sulfate was used as the surfactant to modify the interfacial tension. Experiments were conducted at varying viscosity ratios and flow rates-each at zero, low (~200 ppm) and high (~1000 ppm) surfactant concentrations. The effect of holdup was explored only for a few cases, but it was found to have a minimal effect on the weighted average diameter D<sub>43</sub>.</p> <p>It was found that the superficial velocity and the continuous phase viscosity had a dominant effect on D<sub>43</sub>. The tail at the higher end of the droplet size distribution decreased with increasing superficial velocity and continuous phase viscosities. It was also found that D<sub>43</sub> decreased with lowering of the interfacial tension. Furthermore, the effect of the dispersed phase viscosity was significant only at non zero surfactant concentrations.</p> <p>An approximate model has been proposed that relates D<sub>43</sub> to the capillary number. It is based on an energy analysis of the work done by the viscous and surface forces on a drop of an initial diameter that is largely determined by the gap distance between the cross bars in the element</p> / Master of Applied Science (MASc)
95

Slow Dynamics In Complex Fluids : Confined Polymers And Soft Colloids

Kandar, Ajoy Kumar 07 1900 (has links) (PDF)
The thesis describes the study of slow dynamics of confined polymers and soft colloids. We study the finite size effect on the dynamics of glassy polymers using newly developed interfacial microrheology technique. Systematic measurement have been performed to address the issue of reduction of glass transition under confinements. Slow and heterogeneous dynamics are the underlined observed behavior for dynamics in confined glassy polymers. The slow relaxation dynamics and dynamical heterogeneity in polymer grafted nanoparticles (PGNPs) systems were studied using advanced X - ray photon correlation spectroscopy (XPCS) techniques. Our studies presented in this thesis on dynamics of polymer grafted nanoparticle systems in melts and solution are the first attempt to study them experimentally. Thus our work shed the light about new technique to study confined system more accurately and explore new soft colloidal system to study fascinating dynamics and interesting phase behavior. In Chapter 1, we provide the theoretical background along with brief review of the literature for understanding the results presented in this thesis. The details of the experimental set up and their operating principle along with the details of the experimental conditions are provided in Chapter 2. In Chapter 3 we present our newly developed technique (interfacial microrhelogy) and its consequences to study the complex fluids at interface. Chapter 4 discusses the concentration and temperature dependent glassy dynamics in confined glassy polymers. In Chapter 5 we provide the structural and dynamical study of polymer grafted nanoparticles in melts and solutions. We provide the summary of our result and the future prospective of the work in Chapter 6. Chapter-1 provides the ground work and theoretical aspects for understanding the results presented in this thesis. It starts with the discussion about the slow dynamics of complex fluids and transit to dynamic behavior of polymer in confinement, glassy dynamics in confinements . This also discusses the basic aspects of studying viscoelastic properties using rheology, interface rheology, microrheology, interface microrheology techinques. In continuation it discusses structure and dynamics of different soft colloids investigated for last decade and then theoretical aspects of XPCS is discussed. Towards the end of this Chapter, we discuss the procedure to explain and understand systems dynamical heterogeneity near glass like phase transition. Chapter-2 contains the details of the experimental techniques which has been used for the study of confined polymers and soft colloids. Brief introduction to basic principles of the measurements followed by details of the material and methods have been provided. Chapter-3 we discuss the interafacial microrheology of different complex fluids and advantages of the techniques is discussed in Chapter 3. This includes discussion about the technique sensitivity at the surface using quantum dots (QDs) as a probe and about the configuration of the QDs at/on monolayer. Later on establishment of the technique has been demonstrated through easurements on arachidic acid, poly(methylmethacrylate) (PMMA), poly(vinylacetate) (PVAc), poly(methylacrylate) (PMA) monolayers. The extracted subdiffusive nature of QDs in on monolayers through mean square displacement has been explained using fractional Brownian motion model. Towards the end of the chapter we discuss about the extraction of real and imaginary elastic modulus from mean square displacement data using generalized Stokes-Einstein relation for the quasi two dimensional systems and explains about the possible viscoelastic transition in the different monolayers. The concentration and temperature dependent glassy dynamics of confined polymers (PMMA) are discussed in Chapter-4. We demonstrate the microscopic nature of spatio-temporal variation of dynamics of glassy polymers confined to a monolayer of 2 3 nm thickness as a function of surface density and temperature. It illustrates the systems dynamical heterogeneity and explain the observed large reduction of glass transition temperature in confined system through finite size effect. In Chapter 5 we discuss the result based on systematic studies of dynamics of PGNPs in melts and solutions. In addition it also illustrates the structural anisotropy and anomalous dynamical transitions in binary mixture of PGNPs and homopolymers in good solvent condition. It provides temperature and wave vector dependent XPCS measurements on polymer grafted nanoparticles with the variation of functionality. The functionality ( f ) dependent nonmonotonic relaxation in melts of PGNPs and solvent quality dependent non monotonic relaxation of PGNPs system have been elaborated in the continuation. We present possible phase behavior of PGNPs system in good solvent with addition of homopolymer of two different molecular weight. Chapter 6 contains the summary and the future perspective of the work presented.
96

Evaporation de gouttes sessiles : des fluides purs aux fluides complexes

Sobac, Benjamin 26 September 2012 (has links)
Cette thèse présente une étude expérimentale sur l'évaporation de gouttes reposant sur un substrat solide. Dans une première partie, nous nous sommes intéressés à la description de l'évaporation d'une goutte liquide en regardant notamment l'influence du substrat. Le problème est approché sous un angle nouveau : en contrôlant avec précision les différentes propriétés du substrat que sont sa rugosité, son énergie de surface et ses propriétés thermiques. Cette méthode a permis de découpler les différentes influences du substrat et d'étudier l'évaporation pour différentes dynamiques de ligne triple et une large gamme d'angles de contact, de conductivités thermiques et de températures de substrat. Les résultats expérimentaux sont comparés au modèle classique d'évaporation. Ce modèle considère l'évaporation comme un processus contrôlé par la diffusion de la vapeur dans l'atmosphère. L'étude révèle les domaines de validité de ce modèle et met en évidence les différents mécanismes additionnels pouvant se développer ainsi que leur contribution. L'utilisation d'une caméra infrarouge dévoile le développement d'un motif hydrodynamique complexe non-axisymétrique. L'origine de cette instabilité, ces dynamiques spatiales et temporelles sont également explorées. Dans une seconde partie, l'étude a été étendue à l'évaporation d'une goutte de suspension biologique : le sang. Le séchage de ce fluide conduit à la formation d'un motif complexe dépendant de la mouillabilité du substrat. Alors qu'une situation mouillante met en évidence un dépôt de type annulaire accompagné de fractures radiales, une situation non-mouillante révèle une forme complexe composée de fractures et de plis. / This thesis presents an experimental study on the evaporation of droplets on a solid substrate. In the first part we describe the evaporation of a liquid droplet, taking a particular interest in the influence of the substrate. The problem is approached from a new angle by ensuring that the various properties of the substrate, such as its roughness, surface energy and thermal properties, are controlled precisely. Thanks to this method it is possible to decouple the different influences of the substrate and to study evaporation in relation to various dynamics of triple lines and a wide range of contact angles, thermal conductivities and temperatures of the substrate. Experimental results are compared with the classic evaporation model, which considers evaporation as a process determined by the diffusion of vapor into the atmosphere. The study reveals the range of validity of this model and highlights the different additional mechanisms which may develop as well as their contribution. The use of an infrared camera reveals the development of a complex hydrodynamic non-axisymmetric pattern. The origin of this instability and its spatial and temporal dynamics are also explored. In the second part, the study is extended to the evaporation of a dropl of a biological suspension: human blood. As this fluid dries a complex pattern is formed which is dependent on the wettability of the substrate. Whereas a wetting situation leads to a ring-like deposit with radial cracks, a non-wetting situation reveals a complex shape composed of cracks and folds. The study focuses on the understanding of the physical mechanisms leading to these patterns and of the role of biology.
97

Etalement de fluides complexes / Spreading of complex fluids

Deblais, Antoine 08 December 2016 (has links)
Ce travail de thèse porte sur l'étalement de fluides complexes. Il met en évidence la riche phénoménologie d'un acte simple : celui d'étaler avec un racloir (rigide ou souple) une émulsion ou une solution de polymères sur un substrat. Pour chacun des fluides modèles étudiés, nous nous sommes focalisés expérimentalement sur l'observation de l'écoulement au cours de l'entraînement de la solution. Dans des conditions données d'étalement, il apparaît qu'une émulsion o/w peut s'inverser via plusieurs mécanismes de déstabilisation, ou encore, dans le cas d'une solution de polymères, exhiber une instabilité de sa ligne de contact, donnant naissance à des filaments de tailles et de longueurs d'ondes spécifiques. Nous montrons que les différents paramètres d'étalement, comme par exemple la hauteur du racloir, la vitesse d'étalement, les propriétés du substrat ou encore la rhéologie des solutions, doivent être pris en compte pour construire des diagrammes de phase d'étalement séparant les domaines d'existence des instabilités observées (régime de recouvrement partiel), des domaines où la solution transite vers le recouvrement total du substrat. D'autre part, nous tirons l'avantage de ces instabilités pour nous permettre de déposer de façon contrôlée des structures variées, offrant d'intéressantes perspectives en termes d'applications. / This study shows the rich phenomenology of a simple act : spreading complex solutions such as emulsion and polymer solution on a plate, by using a rigid and flexible blade respectively. Here, we experimentally study the flow of the solution over the course of its spreading. During the spreading and in certain conditions, different phenomena occur, namely, emulsion inversion in the case of o/w emulsion or a contact line instability in the case of the polymer solution, which gives rise to the formation of polymer filaments with a well-defined wavelength and characteristic sizes. We showed, thanks to spreading phase diagrams, that the the existence of the instability (partial wetting regime) is separated to a domain where the solution cover the substrate. Spreading parameters such as the height of the scraper, spreading velocity or properties of the fluids turns out to be crucial. Finally, we take advantage of the instabilities to print a variety of interesting patterns for further applications.
98

[pt] DESLOCAMENTO DE FLUIDOS NÃO NEWTONIANOS COMPRESSÍVEIS EM ESPAÇOS ANULARES APLICADOS A CIMENTAÇÃO DE POÇOS / [en] DISPLACEMENT FLOW OF COMPRESSIBLE NON-NEWTONIAN FLUIDS IN ANNULAR GEOMETRIES FOR WELL CEMENTING APPLICATIONS

RAFAEL PERALTA MUNIZ MOREIRA 04 January 2024 (has links)
[pt] Esta dissertação investiga escoamentos multifásicos de deslocamento de fluidos em geometrias anulares envolvidas em operações de cimentação de poços com fluidos espumados. A cimentação desempenha um papel relevante na integridade de poços e algumas aplicações requerem pastas leves com alta resistência à compressão, e o cimento espumado atende a este propósito. Para modelar adequadamente a complexidade do escoamento - que compreende comportamento não-newtoniano e elevada compressibilidade - um modelo tridimensional de dinâmica computacional de fluidos (CFD) foi desenvolvido a partir do código aberto OpenFOAM. As equações de conservação da massa, momento e fases são solucionadas em uma geometria anular, considerando o efeito da pressão na densidade e na reologia dos fluidos, e o método Volume of Fluid (VoF) foi usado para capturar a interface entre fluidos. Os modelos foram validados com soluções exatas para escoamento monofásico axissimétrico com fluidos incompressíveis e compressíveis, e com modelos constitutivos newtonianos e não-newtonianos. Além disso, simulações multifásicas estimaram a eficiência de deslocamento do fluido de perfuração pela pasta de cimento em diferentes condições – constraste de densidade e de viscosidade, ecentricidade e vazões de bombeio – e com diferentes correlações para a reologia dos fluidos espumados. Finalmente, simulações de deslocamento com fluidos com densidade e reologia constante (não-espumados) foram utilizadas para comparação. Os resultados indicam que a eficiência no deslocamento com a técnica de cimentação espumada é superior em condições similares e ilustra que as pastas espumadas são menos suceptíveis a gerarem falhas quanto condições desafiadoras estão presentes. / [en] This master dissertation investigates multiphase displacement flow in annular geometries involved in well cementing operations with foamed cement slurries and spacers. Well cementing plays a relevant role in well integrity and some applications require combining a low-density cement slurry with high compressive strength, and foamed cement suits this purpose. To properly model the displacement complexity involving foamed fluids flow - pressure and temperature dependent densities and non-Newtonian rheology - a 3-dimensional computational fluid dynamics (CFD) model was developed from the open-source OpenFOAM toolbox. The mass, momentum and phase conservation equations are solved in an annular geometry, taking the effect of pressure in the fluid density and rheology, and the volume-of-fluid (VoF) method was used to capture the interface between the fluids. The models were validated using exact solutions for axisymmetric single-phase flow with incompressible and compressible fluids, and Newtonian and non-Newtonian constitutive models. Further, multiphase simulations were performed to estimate the removal efficiency of the drilling fluid by the foamed cement slurry/spacer in different conditions – density and viscosity contrast, eccentricities, and flow rate - and with different correlations for the foamed cement rheological behavior. Finally, the displacement simulations with constant density and rheology displacing fluids (unfoamed) were performed and used to compare the results with the foamed displacing fluids. The results indicate that the displacement efficiency with a foamed cement technique outperforms constant density lightweight cement slurries with similar conditions and are much less sensitive to impairment when challenging conditions are present.
99

SHEAR RHEOMETRY PROTOCOLS TO ADVANCE THE DEVELOPMENT OF MICROSTRUCTURED FLUIDS

Eduard Andres Caicedo Casso (6620462) 15 May 2019 (has links)
<p></p><p>This doctoral dissertation takes the reader through a journey where applied shear rheology and flow-velocimetry are used to understand the mesoscopic factors that control the flow behavior of three microstructured fluids. Three individual protocols that measure relative physical and mechanical properties of the flow are developed. Each protocol aims to advance the particular transformation of novel soft materials into a commercial product converging in the demonstration of the real the chemical, physical and thermodynamical factors that could potentially drive their successful transformation. </p> <p> </p> <p>First, this dissertation introduces the use of rotational and oscillatory shear rheometry to quantify the solvent evaporation effect on the flow behavior of polymer solutions used to fabricate isoporous asymmetric membranes. Three different A-B-C triblock copolymer were evaluated: polyisoprene-<i>b</i>-polystyrene-<i>b</i>-poly(4-vinylpyridine) (ISV); polyisoprene-<i>b</i>-polystyrene-<i>b</i>-poly(<i>N</i>,<i>N</i>-dimethylacrylamide) (ISD); and polyisoprene-<i>b</i>-polystyrene-<i>b</i>-poly(<i>tert</i>-butyl methacrylate) (ISB). The resulting evaporation-induced microstructure showed a solution viscosity and film viscoelasticity strongly dependent on the chemical structure of the triblock copolymer molecules. </p> <p> </p> <p>Furthermore, basic shear rheometry, flow birefringence, and advanced flow-velocimetry are used to deconvolute the flow-microstructure relationships of concentrated surfactant solutions. Sodium laureth sulfate in water (SLE<sub>1</sub>S) was used to replicate spherical, worm-like, and hexagonally packed micelles and lamellar structures. Interesting findings demonstrated that regular features of flow curves, such as power-law shear thinning behavior, resulted from a wide variety of experimental artifacts that appeared when measuring microstructured fluids with shear rheometry.</p> <p> </p> <p>Finally, the successful integration of shear rheometry to calculate essential parameters to be used in a cost-effective visualization technique (still in development) used to calculate the dissolution time of polymers is addressed. The use of oscillatory rheometry successfully quantify the viscoelastic response of polyvinyl alcohol (PVA) solutions and identify formulations changes such as additive addition. The flow behavior of PVA solutions was correlated to dissolution behavior proving that the developed protocol has a high potential as a first screening tool.</p><br><p></p>

Page generated in 0.5284 seconds