71 |
Development and Characterization of a tunable ultrafast X-ray source via Inverse Compton ScatteringJochmann, Axel 11 March 2015 (has links)
Ultrashort, nearly monochromatic hard X-ray pulses enrich the understanding of the dynamics and function of matter, e.g., the motion of atomic structures associated with ultrafast phase transitions, structural dynamics and (bio)chemical reactions. Inverse Compton backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright X-ray pulses which can be used in a pumpprobe experiment, but also for the investigation of the electron beam dynamics at the interaction point.
The focus of this PhD work lies on the detailed understanding of the kinematics during the interaction of the relativistic electron bunch and the laser pulse in order to quantify the influence of various experiment parameters on the emitted X-ray radiation.
The experiment was conducted at the ELBE center for high power radiation sources using the ELBE superconducting linear accelerator and the DRACO Ti:sapphire laser system. The combination of both these state-of-the-art apparatuses guaranteed the control and stability of the interacting beam parameters throughout the measurement.
The emitted X-ray spectra were detected with a pixelated detector of 1024 by 256 elements (each 26μm by 26μm) to achieve an unprecedented spatial and energy resolution for a full characterization of the emitted spectrum to reveal parameter influences and correlations of both interacting beams. In this work the influence of the electron beam energy, electron beam emittance, the laser bandwidth and the energy-anglecorrelation on the spectra of the backscattered X-rays is quantified.
A rigorous statistical analysis comparing experimental data to ab-initio 3D simulations enabled, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard X-ray source PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) and potential all optical gamma-ray sources.
The results will serve as a milestone and starting point for the scaling of the Xray flux based on available interaction parameters of an ultrashort bright X-ray source at the ELBE center for high power radiation sources. The knowledge of the spatial and spectral distribution of photons from an inverse Compton scattering source is essential in designing future experiments as well as for tailoring the X-ray spectral properties to an experimental need. / Ultrakurze, quasi-monochromatische harte Röntgenpulse erweitern das Verständnis für die dynamischen Prozesse und funktionalen Zusammenhänge in Materie, beispielsweise die Dynamik in atomaren Strukturen bei ultraschnellen Phasenübergängen, Gitterbewegungen und (bio)chemischen Reaktionen. Compton-Rückstreuung erlaubt die Erzeugung der für ein pump-probe-Experiment benötigten intensiven Röntgenpulse und ermöglicht gleichzeitig einen Einblick in die komplexen kinematischen Prozesse während der Wechselwirkung von Elektronen und Photonen.
Ziel dieser Arbeit ist, ein quantitatives Verständnis der verschiedenen experimentellen Einflüsse auf die emittierte Röntgenstrahlung bei der Streuung von Laserphotonen an relativistischen Elektronen zu entwickeln.
Die Experimente wurden am ELBE - Zentrum für Hochleistungs-Strahlenquellen des Helmholtz-Zentrums Dresden - Rossendorf durchgeführt. Der verwendete supraleitende Linearbschleuniger ELBE und der auf Titan-Saphir basierende Hochleistungslaser DRACO garantieren ein Höchstmaß an Kontrolle und Stabilität der experimentellen Bedingungen. Zur Messung der emittierten Röntgenstrahlung wurde ein Siliziumdetektor mit 1024x256 Pixeln (Pixelgröße 26μm × 26μm) verwendet, welcher für eine bisher nicht erreichte spektrale und räumliche Auflösung sorgt. Die so erfolgte vollständige Charakterisierung der Energie-Winkel-Beziehung erlaubt Rückschlüsse auf Parametereinflüsse und Korrelationen von Elektronen- und Laserstrahl.
Eine umfassende statistische Analyse, bei der ab-initio 3D Simulationen mit den experimentellen Daten verglichen und ausgewertet wurden, ermöglichte u.a. die Bestimmung der Elektronenstrahldivergenz mit einer Genauigkeit von 1.5% und erlaubt Vorhersagen zur zu erwartenden Strahlung der zukünftigen brillianten Röntgenquelle PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) und potentiellen lasergetriebenen Gammastrahlungsquellen. Die Ergebnisse dienen als Fixpunkt für die Skalierung des erwarteten Photonenflusses der Röntgenquelle für die verfügbaren Ausgangsgrößen am Helmholtz-Zentrum Dresden - Rossendorf. Das Wissen um die räumliche und spektrale Verteilung der Röntgenstrahlung ist entscheidend für die Planung zukünftiger Experimente sowie zur Anpassung der Quelle an experimentelle Bedürfnisse.
|
72 |
Probing the proton structure through deep virtual Compton scattering at COMPASS, CERN / Etude de la structure interne du proton par diffusion Compton virtuelle à COMPASS, CERNVidon, Antoine 01 October 2019 (has links)
La diffusion Compton virtuelle (DVCS) est un processus idéal pour étudier la structure interne du proton. Cette réaction exclusive permet d’accéder aux distributions de partons généralisées (GPDs) qui encodent les corrélations entre impulsion longitudinale et position transverse des partons à l’intérieur du proton. Le DVCS consiste à sonder le proton au moyen d’un photon virtuel de grande virtualité pour produire dans l’état final un unique photon réel de grande énergie tout en laissant le proton intact.A COMPASS au CERN, où deux années de données ont été collectées en 2016 et 2017 afin de mesurer la section efficace du processus DVCS, le photon virtuel est issu de la diffusion d’un faisceau de μ⁺ ou de μ⁻ polarisé de 160 GeV sur une cible d’hydrogène liquide. Toutes les particules de la réaction sont détectées dans l’expérience : le muon incident est détecté dans le télescope du faisceau, le muon diffracté et le photon réel sont détectés à l’avant dans le spectromètre et les trois calorimètres tandis que le proton de recul est détecté dans un détecteur de temps de vol placé autour de la cible.Je présente dans cette thèse l’état de l’analyse du processus DVCS sur les données collectées à COMPASS en 2016. Après un rappel du contexte théorique et expérimental, je décris l’expérience COMPASS. Je détaille ensuite mon travail de calibration du détecteur de proton de recul et de détermination de la position exacte de la cible de 2 cm de diamètre et 2.5 m de longueur. J’étudie dans la partie suivante la sélection de différents canaux de physique permettant de contrôler de manière systématique la qualité des détecteurs : la diffusion profondément inélastique (DIS) qui implique le télescope du faisceau et le spectromètre, la production exclusive de ρ⁰ qui inclut aussi le détecteur de temps de vol ; puis je présente la première analyse de la production exclusive de photons uniques qui implique en plus les trois calorimètres. Dans une dernière partie j’évoque les étapes nécessaires à la détermination de la section efficace du DVCS à partir de cette sélection, et je présente les premiers résultats issus de la simulation associée. / Virtual Compton Scattering (DVCS) is an ideal process to study the internal structure of proton. This exclusive reaction provides access to generalised parton distributions (GPDs), which encode the correlations between longitudinal momentum and transverse position of partons inside the proton. DVCS consists in probing a proton with a virtual photon of high virtuality, in order to produce a single high energy real photon while leaving the proton intact in the final state.At COMPASS at CERN, where two years of data were collected in 2016 and 2017 to measure the DVCS cross section, the virtual photon is produced by scattering of a 160 GeV polarised μ⁺ or μ⁻ beam on a liquid hydrogen target. All particles are detected in the experiment: the incident muon is detected in the beam telescope, the diffracted muon and the real photon are detected in the forward spectrometer and the three calorimeters, while the recoil proton is detected in a time-of-flight detector positioned around the target.In this thesis I present the state of the analysis of the DVCS process on the data collected at COMPASS in 2016. After a reminder of the theoretical and experimental context, I describe the COMPASS experiment. I then detail my work on calibrating the recoil proton detector and determining the the exact position of the 2 cm diameter and 2.5 m long target. In the next section, I study the selection of different physics channels used to systematically control detector quality: Deep Inelastic Scattering (DIS) which involves the beam-telescope and spectrometer, exclusive ρ⁰ production which requires the addition of the time-of-flight detector and I follow with the first analysis of the exclusive single photon production which depends as well on the calorimetres quality. In a last part, I discuss the necessary steps needed to extract the DVCS cross-section out of this event selection, and present the first results associated to the Monte-Carlo simulation.
|
73 |
Reconstruction tridimensionnelle des objets plats du patrimoine à partir du signal de diffusion inélastique / Three-dimensional reconstruction of flat heritage objects based on Compton scattering tomography.Guerrero prado, Patricio 05 July 2018 (has links)
La caractérisation tridimensionnelle de matériaux anciens plats est restée une activité non évidente à accomplir par des méthodes classiques de tomographie à rayons X en raison de leur morphologie anisotrope et de leur géométrie aplatie.Pour surmonter les limites de ces méthodologies, une modalité d'imagerie basée sur le rayonnement diffusé Compton est étudiée dans ce travail. La tomographie classique aux rayons X traite les données de diffusion Compton comme du bruit ajouté au processus de formation d'image, tandis que dans la tomographie du rayonnement diffusé, les conditions sont définies de sorte que la diffusion inélastique devienne le phénomène dominant dans la formation d'image. Dans ces conditions, les rotations relatives entre l'échantillon et la configuration d'imagerie ne sont plus nécessaires. Mathématiquement, ce problème est résolu par la transformée de Radon conique. Le problème direct où la sortie du système est l'image spectrale obtenue à partir d'un objet d'entrée est modélisé. Dans le problème inverse une estimation de la distribution tridimensionnelle de la densité électronique de l'objet d'entrée à partir de l'image spectrale est proposée. La faisabilité de cette méthodologie est supportée par des simulations numériques. / Three-dimensional characterization of flat ancient material objects has remained a challenging activity to accomplish by conventional X-ray tomography methods due to their anisotropic morphology and flattened geometry.To overcome the limitations of such methodologies, an imaging modality based on Compton scattering is studied in this work. Classical X-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able to avoid relative rotations between the sample and the imaging setup. Mathematically this problem is addressed by means of the conical Radon transform. A model of the direct problem is presented where the output of the system is the spectral image obtained from an input object. The inverse problem is addressed to estimate the 3D distribution of the electronic density of the input object from the spectral image. The feasibility of this methodology is supported by numerical simulations.
|
74 |
Simulation de l'imagerie à 3γ avec un télescope Compton au xénon liquide / Simulation of the 3γ imaging using liquid xenon Compton telescopeMohamad Hadi, Abdul Fattah 17 June 2013 (has links)
L’imagerie 3γ est une technique innovante d’imagerie médicale nucléaire qui est étudiée au laboratoire SUBATECH. Elle repose sur la localisation tridimensionnelle d’un radioisotope émetteur (β+, γ), le 44Sc, à l’aide d’un télescope Compton au xénon liquide. Le lieu de désintégration de ce radioisotope est obtenu par l’intersection de la ligne de réponse, construite à partir de la détection des deux photons de 511 keV issus de l’annihilation d’un positron, et du cône déterminé à partir du troisième photon. Un prototype de petite dimension XEMIS1 (XEnon Medical Imaging System) a été développé afin de faire la preuve expérimentale de la faisabilité de l’imagerie à 3γ. Les résultats de ce prototype sont très promoteurs en terme de résolution en énergie, de pureté du xénon liquide et de faible bruit électronique. La simulation Monte Carlo est un outil indispensable pour accompagner la R&D et évaluer les performances de la nouvelle technique d’imagerie proposée. Les travaux rapportés dans cette thèse concernent le développement de la simulation du système d’imagerie 3γ avec GATE (Geant4 Application for Tomographic Emission). De nouvelles fonctionnalités ont été implémentées dans GATE afin de simuler un détecteur de type TPC (Time Projection Chamber). Nous avons effectué une simulation du prototype XEMIS1 et obtenu des résultats en bon accord avec nos données expérimentales. La prochaine étape du projet consiste à construire une caméra cylindrique au xénon liquide pour l’imagerie du petit animal. Les résultats des simulations de cette caméra présentés dans cette thèse montrent la possibilité de localiser chaque désintégration le long de la ligne de réponse avec une très bonne précision et une bonne sensibilité de détection. Des premières images de fantômes simples, réalisées évènements par événements, et après reconstruction tomographiques ont également présentées. / Nuclear medical 3γ imaging is an innovative technique which is studied at the SUBATECH laboratory. It isbased on the three-dimensional localization of a (β+, γ) radioisotope emitter, the 44Sc, by using a liquid xenon Compton telescope. The position of the disintegration of this radioisotope is obtained by the intersection of the line of response, built by the detection of two 511 keVphotons from the annihilation of a positron, and the cone determined by the third photon. A small prototype XEMIS1 (XEnon Medical Imaging System) was developed to demonstrate experimentally the feasibility of 3γ imaging. The results of this prototype are quite encouraging in terms of energy resolution, purity of liquid xenon and electronic noise. The Monte Carlo simulation is an indispensable tool to support the R&D and to evaluate the new proposed technique of imaging ; this thesis work is to develop the simulation of 3γ imaging system by using GATE (Geant4 Application for Tomographic Emission). New functionalities have been added to GATE to simulate a TPC (Time Projection Chamber) detector. We performed a simulation of XEMIS1 prototype and obtained results in good agreement with our experimental data. The next step of the project is to build a full liquid xenon cylindrical camera for the small animal imaging. The results presented in this thesis of the simulations of this camera demonstrate the ability to locate every decayalong the line of response with very good accuracy and good detection sensitivity. The first direct images of simple phantoms, realized event by event, and after tomographic reconstruction are also presented.
|
75 |
Polarized positron sources for the future linear colliders / Sources de positrons polarisés pour les futurs collisionneurs linéairesChaikovska, Iryna 10 December 2012 (has links)
Au cours des prochaines années les expériences au grand collisionneur de hadrons (LHC) au CERN vont explorer méticuleusement les lois fondamentales de la physique des hautes énergies à une énergie qui n'a jamais été atteinte auparavant. Afin de compléter les recherches du LHC, plusieurs projets de Collisionneur Linéaire (CL) de lepton de prochaine génération utilisant des collisions e+ – e- ont été proposé pour permettre des études de haute précision. Dans ce cadre il existe deux grands projets: le collisionneur linéaire international (ILC) pour explorer une plage d'énergie dans le centre de masse de s = 0.5 – 1 TeV et le collisionneur linéaire compact (CLIC) qui devrait fonctionner à s = 0.5 – 3 TeV. Le programme de physique du futur CL profitera grandement de collisions où les deux faisceaux seront polarisés. Cette thèse présente la source de positrons polarisés qui est un élément clef du future CL. Dans ce contexte, les différents concepts de source de positrons polarisés sont présentés en mettant en avant les principaux défis technologiques. Plus spécifiquement, le centre d'intérêt principal est sur la source de positrons Compton adoptée par CLIC comme option préférée pour l'amélioration de la future source de positrons. Dans cette source, les rayons gamma de haute énergie produits par diffusion Compton sont envoyés sur une cible où les interactions électromagnétiques produisent des positrons dans des e+ – e- . Pour améliorer l'efficacité de l'étape de production de rayons gamma, une ligne de multiples points de collisions est proposée intégrée à un linac à récupération d'énergie. Les simulations de la production de positrons, de leur capture et de leur accélération initiale permettent d'estimer l'efficacité de production de positrons et de fournir une paramétrisation simple de la source de positrons polarisés basée sur l'interaction Compton dans la perspective des besoins futurs du CL. L'option d'une source Compton basée sur un anneau de stockage appelé anneau Compton est aussi décrite. La principale contrainte de ce concept provient de la dynamique faisceaux à cause de la grande dispersion en énergie et l'augmentation de la longueur du paquet ce qui affecte le taux de production des rayons gamma. Une contribution théorique originale est présentée pour calculer la dispersion en énergie induite par la diffusion Compton. De plus, une expérience pour tester la production de rayons gamma par diffusion Compton en utilisant un système laser au fait de la technologie et développé au LAL est en cours dans le cadre du projet "MightyLaser" à l'ATF, KEK. La configuration expérimentale ainsi que les résultats principaux obtenus sont discutés en détails. Les recherches décrites dans cette thèse montrent que la source de positrons polarisés basée sur la diffusion Compton est un candidat prometteur pour la source de positrons polarisés du futur CL. Pour atteindre les performances requises des travaux supplémentaires et de la R&D sont nécessaires dans le domaine des lasers de puissance, des cavités optiques et des accélérateurs d'électrons à fort courant tels que les linacs à récupération d'énergie. / During the next few years experiments at the Large Hadron Collider (LHC) at CERN will continue to explore carefully fundamental high energy physics principles at a an energy domain which has never been reached before. Possible designs for the next-generation lepton Linear Collider (LC) based on e+–e- collisions have already been proposed to perform high precision studies complementary to the LHC. In this framework, there are two large projects: the International Linear Collider (ILC) exploring a centre-of-mass energy range of de s = 0.5 – 1 TeV and the Compact Linear Collider (CLIC) expected to operate at s = 0.5 – 3 TeV. The physics programme of the future LC will benefit strongly of colliding both polarised electron and positron beams. This thesis introduces the polarized positron source as one of the key element of the future LC. In this context, the different schemes of the polarized positron source are described highlighting the main issues in this technology. In particular, the main focus is on the Compton based positron source adopted by the CLIC as a preferred option for the future positron source upgrade. In this case, the circularly polarized high energy gamma rays resulting from Compton scattering are directed to a production target where an electromagnetic cascade gives rise to the production of positrons by e+–e- pair conversion. To increase the efficiency of the gamma ray production stage, a multiple collision point line integrated in energy recovery linac is proposed. The simulations of the positron production, capture and primary acceleration allow to estimate the positron production efficiency and provide a simple parametrization of the Compton based polarized positron source in the view of the future LC requirements. The storage ring based Compton source option, so-called Compton ring, is also described. The main constraint of this scheme is given by the beam dynamics resulting in the large energy spread and increased bunch length affecting the gamma ray production rate. An original theoretical contribution is shown to calculate the energy spread induced by Compton scattering. Moreover, an experiment to test the gamma ray production by Compton scattering using a state-of-art laser system developed at LAL has been conducted in the framework of the "MightyLaser" project at the ATF, KEK. The experimental layout as well as the main results obtained are discussed in details. The studies carried out in this thesis show that the polarized positron source based on Compton scattering is a promising candidate for the future LC polarized positron source. To attain the required performance, further developments and R&D in field of the high power laser systems, optical cavities and high current electron accelerators such as the energy recovery linacs should be pursued in the future.
|
76 |
Pulsed Laser Injected Enhancement Cavity for Laser-electron Interaction / Cavités optiques en régime impulsionnel pour l'intéraction laser-électronYou, Yan 03 June 2014 (has links)
RésuméLa diffraction et la diffusion de rayons X sont utilisées dans de nombreux domaines de la physique, de la médecine et de la technologie. Des faisceaux de haute brillance sont néanmoins requis pour améliorer les performances de ces techniques. L’utilisation de la diffusion Compton d’un laser sur un faisceau d’électrons présente un grand intérêt pour la production de rayons X. Ce processus permet l’emploi d’un anneau de stockage d’électrons compacts et d’un résonateur optique pour accroître la puissance laser. Avec un tel système, un taux de collision laser-électron supérieur au méga Hertz est envisageable permettant d’atteindre un flux de rayons X de l’ordre de 10¹³ photons/s. Dans le premier chapitre, je décris les motivations pour le développement d’une source de rayons X basée sur la diffusion Compton et utilisant un résonateur optique. Je détermine aussi les performances que l’on peut attendre de ce type de sources ainsi que l’état de l’art actuel dans ce domaine. Dans le deuxième chapitre, je décris le comportement et les propriétés des résonateurs optiques en régime impulsionnel. J’introduis la notion de phase CEP (‘carrier envelope phase’) et je montre la nécessité de contrôler à la fois la fréquence de répétition de l’oscillateur laser et cette phase CEP. Le chapitre 3 est consacré aux oscillateurs fibrés à blocage de mode. Je montre les performances du laser que j’ai construit en utilisant le phénomène de rotation de polarisation non-linéaire.La méthode d’asservissement laser-résonateur optique ‘tilt locking’ est introduite au chapitre 4. Je décris tout d’abord les études de simulations et le montage expérimental qui ont permis de tester la méthode en régime impulsionnel. Je donne ensuite les résultats expérimentaux qui démontrent la faisabilité de la méthode ‘tilt locking’ en régime impulsionnel. J’effectue aussi une comparaison expérimentale des performances de la méthode ‘tilt locking’ avec la méthode classique ‘Pound-Drever-Hall’. Je termine le chapitre en indiquant une difficulté expérimentale de la méthode pour générer plusieurs signaux d’erreurs.Je décris la conception du système optique de la machine Compton TTX de l’université Tsinghua dans le chapitre 5. Les performances attendues pour cette machine sont des flux de rayons X compris entre 10¹º et 10¹³ photons/s. / X-ray diffraction and scattering, X-ray spectroscopy, and X-ray crystallography are widely used in the life sciences, material science, and medical diagnosis. High-quality and high-brightness X-rays are a strong requirement to improve applications. Inverse Compton scattering (ICS) X-ray source has attracted great interests worldwide lately. To significantly enhance the average X-ray photon flux, a compact electron storage-ring combined with a high finesse optical enhancement cavity (OEC) can be utilized. In such a system, the collision rate between the electron beam and the laser pulse is greatly increased to the MHz range, enabling a photon flux up to 10¹³ph/s.In the first chapter, I describe the motivation behind the development of OEC based on ICS X-ray source. The characteristics of this kind of X-ray source are summarized, compared to those of the conventional low-repetition-rate Terawatt laser system based on ICS X-ray source. The latest progress and research status of OEC based on ICS X-ray source are presented. Pulsed-laser injected high-finesse OEC stacking theory and properties are discussed in Chapter 2. Not only does the OEC based on ICS X-ray source require the laser pulse repetition rate to be matched to the free spectral range (FSR) of the cavity, where both also have to match the electron storage-ring circulation frequency. In addition, we have to match the phase shift of the laser repetition rate to the phase offset introduced by the dispersion of the cavity mirrors, since our cavity finesse design value is quite high. The stacking theory is analyzed in the frequency domain. Cavity properties, including cavity mirror dispersion, finesse, and FSR, are discussed in detail. A laser frequency comb and OEC coupling is analyzed also. The laser source development is presented in Chapter 3. We constructed a mode-locked fiber laser based on nonlinear polarization rotation. The locking model, locking techniques, and the theory, simulations and experimental tests of tilt locking (TL) in the pulsed laser injected high-finesse OEC are discussed in Chapter 4. We succeeded in locking a pulsed laser to a high-finesse cavity with the TL technique. The experimental results show that the TL and the Pound–Drever–Hall techniques have the same performance: stable locking, high sensitivity, and the same power coupling rate for picosecond laser pulse case, while the test results for full spectrum TL locking show that it is uneasy to align the split-photodiode to the beam waist.Based on the above experimental study and tests, we design the OEC system for Tsinghua University X-ray project in Chapter 5. The expected X-ray flux is 10¹º to 10¹³ ph/s. We detail every subsystem requirement.
|
77 |
Precise and fast beam energy measurement at the International Linear ColliderViti, Michele 04 February 2010 (has links)
Der International Linear Collider (ILC) ist ein Elektron-Positron-Beschleuniger mit einer Schwerpunktsenergie zwischen 200 und 500 GeV und einer Spitzenluminositaet von $2\cdot 10^{34}\mbox{ cm}^{-2}\mbox{s}^{-1}$. Fuer das Physikprogramm dieser Maschine ist eine exzellente paketweise Messung der Strahlenergie von grundlegender Bedeutung. Um das zu erreichen, sind am ILC verschiedene Techniken vorgesehen. Insbesondere wurden Energiespektrometer vor und nach dem $e^+/e^-$-Wechselwirkungspunkt vorgeschlagen. Die gegenwaertige Standardoption fuer das Spektrometer vor dem Wechselwirkungspunkt ist ein auf Strahllagemonitoren basierendes Magnetspektrometer. In den Jahren 2006/2007 wurde ein Prototyp eines solchen Spektrometers in der End Station A am Stanford Linear Accelerator Center (SLAC) aufgebaut, um die Leistungsfaehigkeit und Zuverlaessigkeit einer derartigen Anlage zu pruefen. Ausserdem wurde eine neue Methode zur Messung der Strahlenergie vorgeschlagen. Diese beruht auf Compton-Streuung von Laserlicht an den Strahlelektronen und erlaubt, die geforderte Energiegenauigkeit von $\Delta E_b / E_b = 10^{-4}$ zu erreichen. Erfahrungen von dem Large Electron-Positron Collider (LEP) und dem Stanford Linear Collider (SLC) zeigten, dass komplementaere Energiemessmethoden notwendig sind, um die Ergebnisse des BPM-Spektrometers zu ueberpruefen. In der vorliegenden Arbeit werden eine Uebersicht ueber das Experiment am SLAC und erste Ergebnisse praesentiert. Des Weiteren wird die neue Methode der Laser-Compton-Streuung beschrieben und wichtige Aspekte detailliert besprochen. / The International Linear Collider (ILC) is an electron-positron collider with a center-of-mass energy between 200 and 500 GeV and a peak luminosity of $2\cdot 10^{34}\mbox{cm}^{-2}\mbox{s}^{-1}$. For the physics program at this machine, an excellent bunch-by-bunch control of the beam energy is mandatory. Several techniques are foreseen to be implemented at the ILC in order to achieve this request. Energy spectrometers upstream and downstream of the electron/positron interaction point were proposed and the present default option for the upstream spectrometer is a beam position monitor based (BPM-based) spectrometer. In 2006/2007, a prototype of such a device was commissioned at the End Station A beam line at the Stanford Linear Accelerator Center (SLAC) in order to study performance and reliability. In addition, a novel method based on laser Compton backscattering has been proposed, since as proved at the Large Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC), complementary methods are necessary to cross-check the results of the BPM-based spectrometer. In this thesis, an overview of the experiment at End Station A is given, with emphasis on the performance of the magnets in the chicane and first energy resolution estimations. Also, the novel Compton backscattering method is discussed in details and found to be very promising. It has the potential to bring the beam energy resolution well below the requirement of $\Delta E_b / E_b = 10^{-4}$.
|
78 |
Étude de la production de rayonnement X par diffusion Compton sur l’installation ELSA / Study of Compton scattering X-rays production on a linear electron accelerator.Chauchat, Anne-Sophie 24 January 2011 (has links)
La diffusion Compton est un moyen de produire des rayons X en réalisant des collisions entre un faisceau d'électrons relativistes et un faisceau laser. Par analogie avec le rayonnement synchrotron, le faisceau laser joue le rôle d'onduleur, ce qui entraîne les électrons dans un mouvement d'oscillation. Le rayonnement émis par les électrons en mouvement, dont certaines caractéristiques sont proches de celle du rayonnement synchrotron, peut être produit sur des machines relativement compactes. L'installation ELSA du CEA DAM DIF dispose d'un accélérateur d'électrons (17 MeV) et d'un laser (532 nm) dont les caractéristiques sont favorables à la réalisation d'une expérience de production de rayonnement X par diffusion Compton. La faible probabilité d'interaction et les petites dimensions des faisceaux (< 100 µm, 30 ps (LTMH)) obligent à optimiser avec soin le recouvrement spatial et temporel des impulsions. La visualisation des deux faisceaux en simultanée se fait grâce à un biseau en aluminium renvoyant les images des deux faisceaux vers les caméras CCD et à balayage de fente. La détection du rayonnement X produit (d'énergie < 11 keV) est réalisée par des écrans radio-luminescents à mémoire. Ces écrans, très sensibles au rayonnement de basse énergie, permettent de visualiser le profil du rayonnement et de réaliser la radiométrie du signal. Ces écrans ont également été utilisés en tant que scintillateurs couplés à un photomultiplicateur pour contrôler en temps réel le rendement de l'interaction. L'analyse des résultats expérimentaux obtenus confirme les résultats des simulations. / Compton scattering by collisions between relativistic electron beam and laser beam is a way to produce X-rays. Laser beam is seen as an undulator which gives electrons a periodic waved motion. This radiation emitted by electrons motion has some characteristics close to those of synchrotron radiation but can be produced by smaller machines. ELSA facility at CEA DAM DIF is a linear electron accelerator (17 MeV) running with a photoinjector and a laser (532 nm). Characteristics of electrons and laser beam are favourable to a Compton scattering X-rays experiment. Small interaction probability and small beam sizes (< 100 µm, 30 ps (LTMH)) require a careful optimization of spatial and temporal pulses covering. An aluminium bevel-edge allows visualizing beams with CCD and streak cameras. Imaging plates are used as < 11 keV X-rays detectors. These detectors are very sensitive to low signal-to-noise ratio at low energy and give the beam profile. The imaging plates were coupled with a photomultiplier to manage the yield in real time. Experimental results are confirmed by simulations.
|
79 |
Etude de la structure partonique de l'héliumPerrin, Yohann 19 October 2012 (has links) (PDF)
La structure des nucléons et des noyaux a été intensivement étudiée au cours duvingtième siècle au travers de la diffusion élastique d'électrons (mesure des facteurs deforme électromagnétique) et de la diffusion profondément inélastique (mesure des distributionsde partons). Le formalisme des distributions généralisées de partons (GPD)a permis d'unifier les facteurs de forme et les distributions de partons. Ce lien procureune source d'information unique sur la dynamique des partons, telle la distribution desforces nucléaires et de moment orbital au sein des hadrons. L'accès expérimental le plussimple aux GPD est la diffusion Compton profondément virtuelle (DVCS), correspondantà l'électroproduction dure d'un photon réel. Tandis que plusieurs expériences sesont déjà focalisées sur la réaction DVCS sur le nucléon, les expériences sur une ciblenucléaire s'avèrent plus rares. Cette thèse se concentre sur l'étude du canal DVCS cohérentsur l'hélium 4, avec pour objectif l'extraction des parties réelle et imaginaire dufacteur de forme Compton via l'asymétrie de spin du faisceau.
|
80 |
Strong-Field QED Processes in Short Laser PulsesSeipt, Daniel 18 February 2013 (has links) (PDF)
The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10^24 W/cm^2 and beyond, with pulse lengths in the order of some femtoseconds.
The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator.
The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton scattering. An enhancement of the two-photon process is found in strong laser pulses as compared to the corresponding weak-field process in perturbative QED.
|
Page generated in 0.0583 seconds