• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 208
  • 78
  • 42
  • 17
  • 15
  • 11
  • 10
  • 7
  • 7
  • 7
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 475
  • 80
  • 80
  • 71
  • 71
  • 62
  • 53
  • 49
  • 49
  • 43
  • 37
  • 35
  • 35
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Hybridization of PolyJet and Direct Write for the Direct Manufacture of Functional Electronics in Additively Manufactured Components

Perez, Kevin Blake 20 January 2014 (has links)
The layer-by-layer nature of additive manufacturing (AM) allows for access to the entire build volume of a component during manufacture including the internal structure. Voids are accessible during the build process and allow for components to be embedded and sealed with subsequently printed layers. This process, in conjunction with direct write (DW) of conductive materials, enables the direct manufacture of parts featuring embedded electronics, including interconnects and sensors. The scope of previous works in which DW and AM processes are combined has been limited to single material AM processes. The PolyJet process is assessed for hybridization with DW because of its multi-material capabilities. The PolyJet process is capable of simultaneously depositing different materials, including rigid and elastomeric photopolymers, which enables the design of flexible features such as membranes and joints. In this work, extrusion-based DW is integrated with PolyJet AM technology to explore opportunities for embedding conductive materials on rigid and elastomeric polymer substrates. Experiments are conducted to broaden the understanding of how silver-loaded conductive inks behave on PolyJet material surfaces. Traces of DuPont 5021 conductive ink as small as 750?m wide and 28?m tall are deposited on VeroWhite+ and TangoBlack+ PolyJet material using a Nordson EFD high-precision fluid dispenser. Heated drying at 55°C is found to accelerate material drying with no significant effect on the conductor's geometry or conductivity. Contact angles of the conductive ink on PolyJet substrates are measured and exhibit a hydrophilic interaction, indicating good adhesion. Encapsulation is found to negatively impact conductivity of directly written conductors when compared to traces deposited on the surface. Strain sensing components are designed to demonstrate potential and future applications. / Master of Science
82

Impact of Electrical Contacting Scheme on Performance of InGaN/GaN Schottky Solar Cells

Jain, Aditya 18 September 2014 (has links)
Realization of low-resistance electrical contacts on both sides of a solar cell is essential for obtaining the best possible performance. A key component of a solar cell is a metal contact on the illuminated side of the cell which should efficiently collect carriers. These contacts can be formed using an opaque metal grid/finger pattern. The metal electrode may be used alone or in combination with a broad-area transparent conductive film. This work aims at investigating the impact of the electrical contacting scheme employed in InGaN/GaN Schottky barrier solar cells on their performance. InGaN is a III-V compound semiconductor and has a tunable direct band-gap (0.7 eV to 3.4 eV) which spans most of the solar spectrum; this fact, along with other beneficial material properties, motivates the study of InGaN photovoltaic devices. A number of groups have recently investigated InGaN-based homo-junction and hetero-junction p-i-n solar cells. However, very few groups have worked on InGaN Schottky solar cells. Compared to p-n junctions, Schottky barrier solar cells are cheaper to grow and fabricate; they are also expected to improve the spectral response because of near surface depletion regions in the shorter wavelength regions. In this particular work on InGaN based solar cells, a Schottky diode structure was used to avoid the issue of highly resistive p-type InGaN. In this study, platinum (Pt) is used to form a Schottky barrier with an InGaN/GaN absorber region. Electrical and optical properties of platinum films are investigated as a function of their thickness. InGaN/GaN Schottky solar cells with platinum as the transparent conductive film are reported and their performance is evaluated as a function of the metal thickness. / Master of Science
83

Φωτοβολταϊκά στοιχεία υψηλής απόδοσης λειτουργούντα μέσω τριπλών καταστάσεων μετάπτωσης (φωσφορισμός) / Photovoltaic cells of high efficiency operating through triplet state transitions (phosphorescence)

Μουγκογιάννης, Παναγιώτης 14 September 2011 (has links)
Στην εργασία αυτή μελετήθηκε η μεταβολή της ειδικής ηλεκτρικής αγωγιμότητας συναρτήσει της θερμοκρασίας για την πολυπυρρόλη, την πολυανιλίνη καθώς και συνθέτων αυτών εμπλουτισμένων με οξείδιο του ψευδαργύρου και ατμούς μεταλλικού ιωδίου με σκοπό την εφαρμογή των παραπάνω υλικών ως υποστρώματα σε φωτοβολταϊκές κυψελίδες (solar cells). Τα παραπάνω υλικά ανήκουν στην κατηγορία των οργανικών ημιαγωγών και αποτελούν τη λεγόμενη "τέταρτη γενιά" πολυμερών. / In this work the thermal aging of conducting polyaniline and polypyrrole and their blends with ZnO : (PPy/ZnO (x% w/w) with x =10, 20, 30, 40),PANI/ZnO (20% w/w) and iodine has been investigated for the application of these materials as substrates in photovoltaic cells. Today, research is focused on the organic solar cells, in which the electrical current flow is due to molecules, which play the role of donors or acceptors of electrical charge. Organic PV cells have the advantages of easy construction, low cost and they are friendly to the environment. Indium tin oxide is used as anode in organic PVs, which is characterized by high concentration of charge carriers and is used for the injection of positive charge carriers (holes) in the organic active layer. For all the samples conductivity followed one of the models: 1. FIT (Fluctuation Induced Tunneling), in the case that we have a granular metal structure, in which conductive grains are separated by insulating barriers. These insulating barriers are narrow enough for the carriers to tunnel through small areas where the grains are closest together and the conductivity is dominated by the thermal fluctuations of the carriers in these areas. The relationship σ=f(T) is given by σ=σ0 exp[-T1/T0+T]. From T1 and T0 the distance s between the grains can be determined. In this work the FIT model applied to the sample of pure polypyrrole throughout the duration of thermal degradation. 2. CELT (Charging Energy Limited Tunneling), in the case that we have a granular metal structure, through which the carriers move by tunneling effect. T0 is related directly to the ratio s/d, where s is the main separation and d is the mean diameter of the grains and can give informations about the shrinking of the grains during aging. The relationship between σ and T is given by: σ=σ0 exp[-(Τ0/Τ)γ] where σ0 and T0 are indepedent factors of the temperature and 0 < γ < 0,25. In this work the CELT model applied for the samples of pure polyaniline, PPy/ZnO (10% w/w), PPy/ZnO (20 %w/w), PANI/ZnO (20% w/w) and PPy/I throughout the duration of thermal degradation. 3. Mott (Variable range hopping model), in the case of heterogeneous structures of amorphous materials. The conductivity takes place by thermally activated electron hopping between localized states near Fermi energy. The localization is due to the randomly distributed atoms or molecules in the material. The relationship describing the change in conductivity with T is similar to that of the CELT model, with the exponent γ is roughly equal to 0,25. In this work the Mott model applied for the samples PPy/ZnO(40% w/w) and PPy/I (sublimation with iodine vapour for 24 h). The degreasing of conductivity σ, with thermal aging time t for a substance with a granular metal structure follows the law: σ=σαρχ exp[-(t/τ)0,5] where τ is the time which characterizes the aging. All our composites followed this relation, ensuring a granular metal structure. It also became apparent that heating greatly reduces the electrical conductivity of our composites. The thermal degradation of PANI at room temperature (300K) gives τ = (350 ± 50) h, though at 120 0C PANI gives τ = (18 ± 4) h, indicating a much faster degradation as it is expected. The characteristic parameter τ has been calculated for all the materials used in this work.
84

Synthèse de polymères aromatiques pour la conception de membranes conductrices ioniques / Synthesis of conducting polymer anionic.

Leray, Ludovic 29 November 2012 (has links)
Le travail reporté dans ce manuscrit concerne l’élaboration de matériaux conducteurs protoniques et anioniques destinés à une application en tant que membrane ou liants d’électrodes. Tout d’abord, la première approche consiste en la formation de polymères pour la conception de membranes anioniques. Pour cela, 2 types de fonctions amine tertiaire ont été greffés le long de la chaîne des polysulfones, puis transformés en ammonium pour leur donner un caractère conducteur anionique. Les fonctions greffées sont de types diméthylamino et N,N diméthylaminométhyle. Différentes séries de polysulfones ont été élaborées en faisant varier le taux de fonctions amine greffées. Pour les polysulfones comportant les fonctions diméthyalmino, les résultats montrent que la stabilité thermique des fonctions ammonium est trop faible pour les utiliser pour la conception de membranes conductrices anioniques. Pour le deuxième type de fonctions amine, des membranes ayant une conductivité maximum de 40 mS.cm-1 pour un taux d’humidité de 95% et une température de 100°C ont été obtenu. Par ailleurs, pour la conception de liants d’électrodes, la synthèse de polyarylènes éthers fluorés conducteurs anioniques a été effectuée. Là encore, une série de polymères a été réalisée en faisant varier le taux de fonctions amine introduit. Les masses molaires ont été controlées pour permettre aux polymères d’être suffisamment soluble pour la mise en solution. Les valeurs de conductivités sont de l’ordre de 35 mS.cm-1. Enfin, pour la conception de membrane protonique, les polymères synthétisés précédemment avec les fonctions diméthylamino ont été utilisés. Ces polymères ont été par la suite dopés à l’aide d’acide phosphorique et la conductivité des membranes obtenues a été testée en condition anhydre. Les résultats obtenus pour ce genre de matériaux est de 160 mS.cm-1 pour un taux de dopage de 50%. En revanche, pour des forts taux de dopage, la conductivité obtenue était plus forte (260 mS.cm-1) mais les membranes perdaient de leurs propriétés mécaniques alors que pour de faibles taux de dopage (environ 18%), les conductivités obtenues étaient faibles. / The work reported in this thesis is the development of proton and anion conducting materials for applications such as membrane or binders electrodes. The first approach is the formation of polymers for the anionic membranes design. To perform it, two types of tertiary amine functions have been grafted along the polysulfones chain, then converted to ammonium rendering data anionic conductive. The grafted functions types are dimethylamino and N, N dimethylaminomethyl. Different series of polysulfones were prepared by varying the rate of amine functions grafted. For polysulfones with dimethyalmino functions, the results show that the thermal stability of ammonium functions is too low to be used in anion conductive membranes design. In the second type of amine, membranes having a maximum conductivity of 40 mS.cm-1 to a moisture content of 95% and a temperature of 100 °C have been obtained. In addition, for the electrodes binders design, the synthesis of fluorinated ethers polyarylenes anionic conductors has been completed. Then, a series of polymers was carried out by varying the rate of amine introduced. The molar masses were controlled to allow polymers to be sufficiently soluble for the dissolution. Conductivity values are around 35 mS.cm-1. Finally, the design of membrane proton polymers synthesized with previously dimethylamino functions has been chosen. These polymers were subsequently doped with phosphoric acid and the conductivity of the resulting membranes has been tested in anhydrous condition. The results obtained for this kind of material is 160 mS.cm-1 for a doping level of 50%. However, for high doping level, conductivity obtained was higher (260 mS.cm-1) but the membranes lost their mechanical properties, while for low doping levels (about 18%), the conductivities obtained were low.
85

Implementing Digital Logic Design Concepts Using Paper Electronics

Sah, Puja 05 1900 (has links)
This thesis presents the implementation of some of the basic concepts of digital logic design in a fun and creative way with the help of paper electronics. This involves circuit building on paper using conductive tape or conductive ink and circuit components as electronics craft materials. Paper electronics toolkit called circuit sticker microcontroller which is deployed by a company named Chibitronics and AT89C51 microcontroller were used for the computational functioning of the circuits built on paper. This can be used to teach the fundamentals of digital logic design to the students in their early stage of studies in an attractive way and can help them them gain a better understanding. This thesis can also be helpful in grabbing the attention of high school students and motivate them towards choosing the engineering discipline for their higher studies.
86

TEMPERATURE AND GAS SENSING CHARACTERISTICS OF GRAPHITE/POLYMER (PEO) BASED COMPOSITE STRUCTURES

BHARGAVA, SUMEET 02 October 2006 (has links)
No description available.
87

A Mathematical Model of a Microbial Fuel Cell

Gaone, Joseph Michael, II 19 September 2013 (has links)
No description available.
88

Investigating the Ability to Preheat and Ignite Energetic Materials Using Electrically Conductive Materials

Marlon D Walls Jr. (9148682) 29 July 2020 (has links)
<div>The work discussed in this document seeks to integrate conductive additives with energetic material systems to offer an alternative source of ignition for the energetic material. By utilizing the conductive properties of the additives, ohmic heating may serve as a method for preheating and igniting an energetic material. This would allow for controlled ignition of the energetic material without the use of a traditional ignition source, and could also result in easier system fabrication.</div><div>For ohmic heating to be a viable method of preheating or igniting these conductive energetic materials, there cannot be significant impact on the energetic properties of the energetic materials. Various mass solids loadings of graphene nanoplatelets (GNPs) were mixed with a reactive mixture of aluminum (Al)/polyvinylidene fluoride (PVDF) to test if ohmic heating ignition was feasible and to inspect the impact that these loadings had on the energetic properties of the Al/PVDF. Results showed that while ohmic heating was a plausible method for igniting the conductive energetic samples, the addition of GNPs degraded the energetic properties of the Al/PVDF. The severity of this degradation was minimized at lower solids loadings of GNPs, but this consequently resulted in larger voltage input requirements to ignite the conductive energetic material. This was attributable to the decreased conductivities of the samples at lower solids loading of GNPs.</div><div>In hopes of conserving the energetic properties of the Al/PVDF while integrating the conductive additives, additive manufacturing techniques, more specifically fused filament fabrication, was used to print two distinct materials, Al/PVDF and a conductive composite, into singular parts. A CraftBot 3 was used to selectively deposit Conductive Graphene PLA (Black Magic) filament with a reactive filament comprised of a PVDF binder with 20% mass solids loadings of aluminum. Various amounts of voltage were applied to these conductive energetic samples to quantify the time to ignition of the Al/PVDF as the applied voltage increased. A negative correlation was discovered between the applied voltage and time to ignition. This result was imperative for demonstrating that the reaction rate could be influenced with the application of higher applied voltages.</div><div>Fused filament fabrication was also used to demonstrate the scalability of the dual printed conductive energetic materials. A flexural test specimen made of the Al/PVDF was printed with an embedded strain gauge made of the Black Magic filament. This printed strain gauge was tested for dual purposes: as an igniter and as a strain sensor, demonstrating the multi-functional use of integrating conductive additives with energetic materials.</div><div>In all, the experiments in this document lay a foundation for utilizing conductive additives with energetic materials to offer an alternative form of ignition. Going forward, ohmic heating ignition may serve as a replacement to current, outdated methods of ignition for heat sensitive energetic materials.</div>
89

Caractérisation électrique et optimisation technologique des mémoires résistives Conductive Bridge Memory (CBRAM) afin d’optimiser la performance, la vitesse et la fiabilité / Electrical characterization and technological optimization of Conductive Bridge RAM CBRAM devices to improve performance, speed and reliability

Barci, Marinela 06 April 2016 (has links)
La technologie Flash arrive à ses limites de miniaturisation. Ainsi, la nécessité de nouvelles technologies mémoire augmente. Les candidats au remplacement des mémoires Flash sont les technologies non volatiles émergentes comme les mémoires à pont conducteur (CBRAM), résistives à base d'oxyde (RRAM), mémoires magnétiques (MRAM) et mémoires à changement de phase (PCRAM). En particulier, les mémoires CBRAM sont basées sur structure simple métal-isolant-métal (MIM) et présentent plusieurs avantages par rapport aux autres technologies. La CBRAM est non volatile, à savoir qu'elle garde l’information lorsque l'alimentation est coupée, ses dimensions peuvent être réduites jusqu'à nœud 10 nm, elle peut facilement être intégrée dans le Back-End d’une intégration CMOS, enfin, elle a une vitesse de fonctionnement élevée à basse tension et un faible coût de fabrication. Néanmoins, les spécifications pour l'industrialisation des CBRAM sont très strictes. Dans cette thèse, nous analysons deux générations de technologie CBRAM, chacune adressant un marché d'application spécifique. La première partie de la thèse est consacrée à l’étude électrique des structures à base de cuivre et de GdOX, qui présentent comme avantages une conservation des données très stable et une bonne résistance lors de la soudure des puces, et un bon comportement de l'endurance. Cette technologie adresse principalement les applications à haute température telle que l'automobile. Pour répondre aux spécifications, un oxyde métallique dopé ainsi que des bicouches sont intégrés pour réduire la tension de formation de la mémoire et augmenter la fenêtre de programmation. Les performances en endurance sont améliorées. La deuxième partie est dédiée à une nouvelle technologie de CBRAM, avec un empilement de type MIM. Dans ce cas, nous avons démontré des temps de commutation très rapides de 20ns à basses tensions (2V), combinés avec une endurance satisfaisante et une bonne rétention des données. Cette technologie semble être compatible avec les applications Internet des objets (IOT). En résumé, au cours de ce doctorat, l'objectif principal était d'étudier la fiabilité des dispositifs embarqués CBRAM en termes d’écriture des données, endurance et la conservation de l’information. Une méthodologie de test spécifique a été développée, afin d’évaluer les performances des technologies étudiées. Des modèles physiques ont été mis au point pour expliquer et analyser les résultats expérimentaux. Sur la base des résultats obtenus, nous démontrons que la technologie de CBRAM est très prometteuse pour les futures applications de mémoires non volatiles. / Flash technology is approaching its scaling limits, so the demand for novel memory technologies is increasing. Promising replacing candidates are the emerging non volatile technologies such as Conductive Bridge Memory (CBRAM), Oxide based Resistive RAM (OXRAM), Magnetic Random Access Memory (MRAM) and Phase Change Memory (PCRAM). In particular, CBRAM is based on a simple Metal-Insulator-Metal (MIM) structure and presents several advantages compared to the other technologies. CBRAM is non volatile, i.e. it keeps the information when the power is off, it is scalable down to 10nm technology node, it can be easily integrated into the Back-End-of-Line (BEOL), finally, it has high operation speed at low voltages and low cost per bit. Nevertheless, demands for the industrialization of CBRAM are very stringent and issues related to device reliability are still to be faced. In this thesis we analyze two generations of CBRAM technology, each one addressing a specific application market. The first part of the PhD is dedicated to the electricalstudy of Cu-based/GdOx structures, which present the advantages of a very stable data retention and resistance to soldering reflow and also good endurance behavior. This CBRAM family addresses mainly the high temperature applications as automotive. To fulfill the specification requirements, doping of metal-oxide andbilayers are integrated to decrease the forming voltage and increase the programmingwindow. Better endurance performance is also achieved. The second part isdedicated to a new CBRAM technology, with a simple MIM structure. In this case, the device showsfast operation speed of 20ns at low voltages of 2V, combined with satisfying endurance and data retention. This technology seems to be compatible with the growing Internet of Things (IOT) market. In summary, during the PhD research, the main objective was to study the reliability of the embedded CBRAM devices in terms of forming, endurance and data retention. Some methodologies were developed and the electrical set-up was modified and adapted to specific measurements. Physical models were developed to explain and better fit the experimental results. Based on the obtained results, we demonstrate that the CBRAM technology is highly promising for future NVM applications.
90

Processing a Nickel Nanostrand and Nickel Coated Carbon Fiber Filled Conductive Polyethylene by Injection Molding

Whitworth, David Anthony 17 March 2010 (has links) (PDF)
A new method for pre-impregnating nickel coated carbon fiber with a thermoplastic polymer to make towpreg, similar to a recently developed coating-line by João P. Nunes et al and a new electrically conductive thermoplastic are developed. A melted bath was used to help mitigate health concerns and waste for dispersion of nickel coated carbon fibers (NCF) in low density polyethylene (LDPE). This towpreg was then mixed with more LDPE or a mixture of LDPE and nickel nanostrands (NiNS) to a desired filler volume fraction to test the electrical conductivity of the composite. Some of these mixtures were then injection molded and tested again for conductivity as well as tensile and impact strength and compared to each other and the non-injection molded samples. It was found that mixing NiNS into the polymer in addition to NCF created a more conductive part than with NCF alone, in a couple orders of magnitude. Also, the shorter the NCF were, the greater the contribution of the NiNS to the electrical properties of the NCF filled material. The tensile strength was increased by adding the NCF and NiNS, while the impact strength (toughness) decreased.

Page generated in 0.0877 seconds