• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 477
  • 326
  • 44
  • 43
  • 20
  • 11
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 1116
  • 489
  • 447
  • 405
  • 327
  • 326
  • 292
  • 292
  • 87
  • 87
  • 75
  • 69
  • 67
  • 62
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Adaptive map alignment in the superior colliculus of the barn owl : a neuromorphic implementation

Huo, Juan January 2010 (has links)
Adaptation is one of the basic phenomena of biology, while adaptability is an important feature for neural network. Young barn owl can well adapt its visual and auditory integration to the environmental change, such as prism wearing. At first, a mathematical model is introduced by the related study in biological experiment. The model well explained the mechanism of the sensory map realignment through axongenesis and synaptogenesis. Simulation results of this model are consistent with the biological data. Thereafter, to test the model’s application in hardware, the model is implemented into a robot. Visual and auditory signals are acquired by the sensors of the robot and transferred back to PC through bluetooth. Results of the robot experiment are presented, which shows the SC model allowing the robot to adjust visual and auditory integration to counteract the effects of a prism. Finally, based on the model, a silicon Superior Colliculus is designed in VLSI circuit and fabricated. Performance of the fabricated chip has shown the synaptogenesis and axogenesis can be emulated in VLSI circuit. The circuit of neural model provides a new method to update signals and reconfigure the switch network (the chip has an automatic reconfigurable network which is used to correct the disparity between signals). The chip is also the first Superior Colliculus VLSI circuit to emulate the sensory map realignment.
282

Asymptotic invariants of infinite discrete groups

Riley, Timothy Rupert January 2002 (has links)
<b>Asymptotic cones.</b> A finitely generated group has a word metric, which one can scale and thereby view the group from increasingly distant vantage points. The group coalesces to an "asymptotic cone" in the limit (this is made precise using techniques of non-standard analysis). The reward is that in place of the discrete group one has a continuous object "that is amenable to attack by geometric (e.g. topological, infinitesimal) machinery" (to quote Gromov). We give coarse geometric conditions for a metric space X to have N-connected asymptotic cones. These conditions are expressed in terms of certain filling functions concerning filling N-spheres in an appropriately coarse sense. We interpret the criteria in the case where X is a finitely generated group &Gamma; with a word metric. This leads to upper bounds on filling functions for groups with simply connected cones -- in particular they have linearly bounded filling length functions. We prove that if all the asymptotic cones of &Gamma; are N-connected then &Gamma; is of type F<sub>N+1</sub> and we provide N-th order isoperimetric and isodiametric functions. Also we show that the asymptotic cones of a virtually polycyclic group &Gamma; are all contractible if and only if &Gamma; is virtually nilpotent. <b>Combable groups and almost-convex groups.</b> A combing of a finitely generated group &Gamma; is a normal form; that is a choice of word (a combing line) for each group element that satisfies a geometric constraint: nearby group elements have combing lines that fellow travel. An almost-convexity condition concerns the geometry of closed balls in the Cayley graph for &Gamma;. We show that even the most mild combability or almost-convexity restrictions on a finitely presented group already force surprisingly strong constraints on the geometry of its word problem. In both cases we obtain an n! isoperimetric function, and upper bounds of ~ n<sup>2</sup> on both the minimal isodiametric function and the filling length function.
283

Brachytherapy Seed and Applicator Localization via Iterative Forward Projection Matching Algorithm using Digital X-ray Projections

Pokhrel, Damodar 13 October 2010 (has links)
Interstitial and intracavitary brachytherapy plays an essential role in management of several malignancies. However, the achievable accuracy of brachytherapy treatment for prostate and cervical cancer is limited due to the lack of intraoperative planning and adaptive replanning. A major problem in implementing TRUS-based intraoperative planning is an inability of TRUS to accurately localize individual seed poses (positions and orientations) relative to the prostate volume during or after the implantation. For the locally advanced cervical cancer patient, manual drawing of the source positions on orthogonal films can not localize the full 3D intracavitary brachytherapy (ICB) applicator geometry. A new iterative forward projection matching (IFPM) algorithm can explicitly localize each individual seed/applicator by iteratively matching computed projections of the post-implant patient with the measured projections. This thesis describes adaptation and implementation of a novel IFPM algorithm that addresses hitherto unsolved problems in localization of brachytherapy seeds and applicators. The prototype implementation of 3-parameter point-seed IFPM algorithm was experimentally validated using a set of a few cone-beam CT (CBCT) projections of both the phantom and post-implant patient’s datasets. Geometric uncertainty due to gantry angle inaccuracy was incorporated. After this, IFPM algorithm was extended to 5-parameter elongated line-seed model which automatically reconstructs individual seed orientation as well as position. The accuracy of this algorithm was tested using both the synthetic-measured projections of clinically-realistic Model-6711 125I seed arrangements and measured projections of an in-house precision-machined prostate implant phantom that allows the orientations and locations of up to 100 seeds to be set to known values. The seed reconstruction error for simulation was less than 0.6 mm/3o. For the physical phantom experiments, IFPM absolute accuracy for position, polar angle, and azimuthal angel were (0.78 ± 0.57) mm, (5.8 ± 4.8)o, and (6.8 ± 4.0)o, respectively. It avoids the need to match corresponding seeds in each projection and accommodates incomplete data, overlapping seed clusters, and highly-migrated seeds. IFPM was further generalized from 5-parameter to 6-parameter model which was needed to reconstruct 3D pose of arbitrary-shape applicators. The voxelized 3D model of the applicator was obtained from external complex combinatorial geometric modeling. It is then integrated into the forward projection matching method for computing the 2D projections of the 3D ICB applicators, iteratively. The applicator reconstruction error for simulation was about 0.5 mm/2o. The residual 2D registration error (positional difference) between computed and actual measured applicator images was less than 1 mm for the intrauterine tandem and about 1.5 mm for the bilateral colpostats in each detector plane. By localizing the applicator’s internal structure and the sources, the effect of intra and inter-applicator attenuation can be included in the resultant dose distribution and CBCT metal streaking artifact mitigation. The localization accuracy of better than 1 mm and 6o has the potential to support more accurate Monte Carlo-based or 2D TG-43 dose calculations in clinical practice. It is hoped the clinical implementation of IFPM approach to localize elongated line-seed/applicator for intraoperative brachytherapy planning may have a positive impact on the treatment of prostate and cervical cancers.
284

ACCURACY OF CONE-BEAM COMPUTERIZED TOMOGRAPHY IN DETERMINING THE THICKNESS OF THE PALATAL MASTICATORY MUCOSA

Hardison, Justin 23 April 2012 (has links)
BACKGROUND: The aim was to compare the thickness of the palatal masticatory mucosa as determined on a cone-beam computerized (CBCT) scan versus thickness determined via bone-sounding. METHODS: A total of twenty patients requiring palatal surgery participated. Thickness of the palatal tissue was measured at various points radiographically and clinically. The two techniques were compared to determine the agreement of the two measurement modalities. RESULTS: Analysis of variance determined that there was no significant difference between the two methods. A small bias of the radiographic measurement being larger was found to be statistically significant (0.09 ± 0.69mm; p <0.0001). Moreover, the tissue thickness was shown to increase as the distance from the gingival margin increased and the tissue over the molars was thinner than the tissue over the premolars. CONCLUSIONS: CBCT can be used to accurately determine the soft tissue thickness of the palatal masticatory mucosa with minimal bias.
285

Accuracy of Limited Field Cone Beam Computed Tomography in the Detection of Buccal Cortical Plate Perforations Due to Periapical Lesions

Ha, Dan-Linh 02 May 2013 (has links)
Pre-surgical planning for endodontic microsurgery is facilitated by the use of cone beam computed tomography (CBCT). The purpose of this study was to determine whether limited field CBCT accurately predicts buccal cortical plate perforations due to endodontic lesions. Thirty-five roots that underwent microsurgical root end resection were included in this study. Prior to the surgery, 90 voxel CBCTs were taken with a Carestream 9300. The scans were analyzed by an endodontic resident and oral radiologist to determine the presence of a perforation in the buccal plate. These findings were compared to the clinical appearance of the bone. There was a significant relationship between a judgment of perforation made on the basis of CBCT and actual perforation as observed clinically. The CBCT prediction was accurate 83% of the time. A predicted perforation was validated in 88% of the instances and a predicted non-perforation was validated in 75% of the instances.
286

Density of Gutta Percha by Weight in Straight Root Canals and Curved Root Canals after Single Cone, Cold Lateral, and Warm Vertical Condensation

Sparrow, Gerald Clay 01 January 2008 (has links)
The purpose of this study was to compare the density of gutta percha following three different obturation techniques using two split-tooth models. One split-tooth model was constructed with a straight rooted maxillary incisor and the other with the curved palatal root of a maxillary molar. Each tooth was obturated using single cone, cold lateral, and warm vertical obturation techniques without sealer. Each obturation technique was performed 20 times for each of the root systems. The weights of the gutta percha were recorded for each root type and obturation technique by subtracting the post-fill weight from the pre-fill weight of the two split-tooth models. Results show that in the straight canal, the three obturation techniques are significantly different (p < 0.0001). The warm vertical technique had the largest weight of gutta percha, followed by the single cone, and lastly by the cold lateral condensation group. In the curved canal, the three fill types were also significantly different (p < 0.0001). The warm vertical and single cone obturation techniques were not significantly different from one another but were significantly greater in gutta percha weight than the cold lateral technique. In conclusion, within curved canals, warm vertical and single cone techniques were more dense than cold lateral condensation. In the straight canal, the warm vertical was more dense than the single cone which was more dense than the cold lateral technique.
287

IMAGE-BASED RESPIRATORY MOTION EXTRACTION AND RESPIRATION-CORRELATED CONE BEAM CT (4D-CBCT) RECONSTRUCTION

Dhou, Salam 02 May 2013 (has links)
Accounting for respiration motion during imaging helps improve targeting precision in radiation therapy. Respiratory motion can be a major source of error in determining the position of thoracic and upper abdominal tumor targets during radiotherapy. Thus, extracting respiratory motion is a key task in radiation therapy planning. Respiration-correlated or four-dimensional CT (4DCT) imaging techniques have been recently integrated into imaging systems for verifying tumor position during treatment and managing respiration-induced tissue motion. The quality of the 4D reconstructed volumes is highly affected by the respiratory signal extracted and the phase sorting method used. This thesis is divided into two parts. In the first part, two image-based respiratory signal extraction methods are proposed and evaluated. Those methods are able to extract the respiratory signals from CBCT images without using external sources, implanted markers or even dependence on any structure in the images such as the diaphragm. The first method, called Local Intensity Feature Tracking (LIFT), extracts the respiratory signal depending on feature points extracted and tracked through the sequence of projections. The second method, called Intensity Flow Dimensionality Reduction (IFDR), detects the respiration signal by computing the optical flow motion of every pixel in each pair of adjacent projections. Then, the motion variance in the optical flow dataset is extracted using linear and non-linear dimensionality reduction techniques to represent a respiratory signal. Experiments conducted on clinical datasets showed that the respiratory signal was successfully extracted using both proposed methods and it correlates well with standard respiratory signals such as diaphragm position and the internal markers’ signal. In the second part of this thesis, 4D-CBCT reconstruction based on different phase sorting techniques is studied. The quality of the 4D reconstructed images is evaluated and compared for different phase sorting methods such as internal markers, external markers and image-based methods (LIFT and IFDR). Also, a method for generating additional projections to be used in 4D-CBCT reconstruction is proposed to reduce the artifacts that result when reconstructing from an insufficient number of projections. Experimental results showed that the feasibility of the proposed method in recovering the edges and reducing the streak artifacts.
288

Fylogeneze archaméb / Phylogeny of Archamoebae

Ptáčková, Eliška January 2010 (has links)
Archamoebae is a small group of anaerobic protists belonging to the eukaryotic supergroup Amoebozoa. Historically, they were regarded as primitively amitochondriate. However, a mitochondrial remnant has been found in some archamoebae. Phylogenetic analyses showed that Archamoebae are closely related to the aerobic slime moulds (Mycetozoa). Trophozoites of archamoebae are amoeboflagellates or aflagellated amoebae. The group includes both parasitic (Entamoeba, Endolimax and, possibly, Endamoeba and Iodamoeba) and free-living (Mastigamoeba, Mastigella, Pelomyxa) genera. The genus Mastigina comprises both endozoic and free-living representatives. Flagellated genera Mastigina, Mastigamoeba, Mastigella and Pelomyxa possess a single basal body associated with a microtubular cone which may or may not be associated with nucleus. The cone is a common feature for Archamoebae and mycetozoan slime moulds. The phylogeny of Archamoebae has not been fully elucidated yet and the taxonomy of free-living representatives is confusing. In the present study, we obtained 42 stable isolates of free-living Archamoebae. We sequenced and analyzed SSU rDNA of 15 of them. The Archamoebae split into five lineages. Based on TEM, we were able to recognize genera Mastigamoeba and Mastigella. The isolate IND8 probably represents a new...
289

Cascaded Voxel Cone-Tracing Shadows : A Computational Performance Study

Dan, Sjödahl January 2019 (has links)
Background. Real-time shadows in 3D applications have for decades been implemented with a solution called Shadow Mapping or some variant of it. This is a solution that is easy to implement and has good computational performance, nevertheless it does suffer from some problems and limitations. But there are newer alternatives and one of them is based on a technique called Voxel Cone-Tracing. This can be combined with a technique called Cascading to create Cascaded Voxel Cone-Tracing Shadows (CVCTS). Objectives. To measure the computational performance of CVCTS to get better insight into it and provide data and findings to help developers make an informed decision if this technique is worth exploring. And to identify where the performance problems with the solution lies. Methods. A simple implementation of CVCTS was implemented in OpenGL aimed at simulating a solution that could be used for outdoor scenes in 3D applications. It had several different parameters that could be changed. Then computational performance measurements were made with these different parameters set at different settings. Results. The data was collected and analyzed before drawing conclusions. The results showed several parts of the implementation that could potentially be very slow and why this was the case. Conclusions. The slowest parts of the CVCTS implementation was the Voxelization and Cone-Tracing steps. It might be possible to use the CVCTS solution in the thesis in for example a game if the settings are not too high but that is a stretch. Little time could be spent during the thesis to optimize the solution and thus it’s possible that its performance could be increased.
290

Průniky těles / Intersection of solids

Otrubová, Anna January 2019 (has links)
The four chapters of this diploma thesis introduce a survey of the basic intersection types of solids, the focus being placed on the intersection of two pyramid and prisma solids, acting as a counterweight to most textbooks' interest in intersection of curved surfaces. The first chapter provides a detailed, wide-ranging insight into the issue of the solid and line intersection. The conclusion part of the thesis provides the reader with a brief commentary on the used literature. The work is supplemented with figures and example solutions. In the appendix part are found pre-drawn assignments. The enclosed CD contains complementary materials such as step by step solutions and 3D models created in the GeoGebra software along with drawn problems found especially in upper secondary school geometry textbooks and curriculum.

Page generated in 0.0301 seconds