• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 1
  • Tagged with
  • 15
  • 15
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Two dimensional isoviscous EHL and associated contact problems in linear elasticity

Hall, R. W. January 1986 (has links)
No description available.
2

Boundary-contact problems for domains with edge singularities

Kapanadze, David, Schulze, B.-Wolfgang January 2005 (has links)
We study boundary-contact problems for elliptic equations (and systems) with interfaces that have edge singularities. Such problems represent continuous operators between weighted edge spaces and subspaces with asymptotics. Ellipticity is formulated in terms of a principal symbolic hierarchy, containing interior, transmission, and edge symbols. We construct parametrices, show regularity with asymptotics of solutions in weighted edge spaces and illustrate the results by boundary-contact problems for the Laplacian with jumping coefficients.
3

Projection methods for contact problems in elasticity

Meyer, Arnd, Unger, Roman 01 September 2006 (has links) (PDF)
The aim of the paper is showing, how projection methods can be used for computing contact problems in elasticity for different classes of obstacles. Starting with the projection idea for handling hanging nodes in finite element discretizations the extension of the method for handling penetrated nodes in contact problems will be described for some obstacle classes.
4

Obstacle Description with Radial Basis Functions for Contact Problems in Elasticity

Unger, Roman 03 February 2009 (has links) (PDF)
In this paper the obstacle description with Radial Basis Functions for contact problems in three dimensional elasticity will be done. A short Introduction of the idea of Radial Basis Functions will be followed by the usage of Radial Basis Functions for approximation of isosurfaces. Then these isosurfaces are used for the obstacle-description in three dimensional elasticity contact problems. In the last part some computational examples will be shown.
5

Ajuste de modelos estruturais aplicado em problema de contato /

Garcia, André Mendes. January 2006 (has links)
Orientador: João Antônio Pereira / Banca: Amarildo Tabone Paschoalini / Banca: Heraldo Nélio Cambraia / Resumo: O presente trabalho propõe uma metodologia de ajuste de modelos de elementos finitos aplicado a problemas de contato. O ajuste do modelo é realizado através da atualização dos parâmetros físicos e/ou geométricos do modelo bem como dos parâmetros dos elementos de contato. O método utilizado é baseado nas FRF(s) e é formulado a partir de um resíduo de entrada, dado pelo balanço de força do sistema. Um software é implementado para fazer a comparação e correlação dos modelos analítico e experimental, e se necessário, ajustar os parâmetros do modelo analítico. O modelo analítico é gerado pelo software comercial ANSYSâ, e os dados experimentais são obtidos em testes experimentais de análise modal. A metodologia foi avaliada com exemplos numéricos e testes experimentais buscando identificar as potencialidades e limitações do método. Dois testes experimentais foram realizados. O primeiro teste consiste em obter os parâmetros modais de uma estrutura simples do tipo viga. No segundo teste, os parâmetros modais são obtidos de uma estrutura composta por duas peças em contato. O objetivo do primeiro teste é avaliar a potencialidade da metodologia proposta utilizando uma base de dados experimental confiável, já que a estrutura é simples e suas propriedades são bem conhecidas. O segundo teste tem por objetivo avaliar a metodologia para o problema de contato. Os resultados apresentados mostram a funcionalidade da metodologia. O ajuste foi realizado com êxito tanto para a estrutura simples como para a estrutura composta por duas peças em contato. / Abstract: The present work proposes a finite element model updating methodology applied to problems of contact. The updating of the models is accomplished through the updating of the physical and/or geometric parameters of the model as well as the parameters of the contact elements. The approach is a FRF-based method; it is formulated from input residue, given by the equilibrium force of the system. It is implemented a software to makes the comparison and correlation of the analytical and experimental models, and if necessary, to adjust the parameters of the analytic model based in the experimental data, in order to get a more reliable finite element model. The analytical model is created by the commercial software ANSYSâ, and the experimental data are obtained by experimental modal tests. The methodology was evaluated with numeric and experimental data aiming at identifying of the potentialities and limitations of the method. Two experimental tests were developed, the first test consists of the analyses of a beam like structure and the second one, the analysis of a structure composed by two pieces in contact. The aim of the first test is to evaluate the potentiality of the methodology using a reliable experimental base of data, since the structure is simple and its properties are very wellknown. The second test has for objective to evaluate the methodology for problems of contact. The presented results have shown the functionality of the methodology. The adjustment was accomplished with relative success for the simple structure as well as for the structure composed by two pieces in contact. / Mestre
6

Ajuste de modelos estruturais aplicado em problema de contato

Garcia, André Mendes [UNESP] 31 October 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-10-31Bitstream added on 2014-06-13T19:55:35Z : No. of bitstreams: 1 garcia_am_me_ilha.pdf: 659750 bytes, checksum: 7318de4cdef56cfcd2a84f0bc10c3fbb (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O presente trabalho propõe uma metodologia de ajuste de modelos de elementos finitos aplicado a problemas de contato. O ajuste do modelo é realizado através da atualização dos parâmetros físicos e/ou geométricos do modelo bem como dos parâmetros dos elementos de contato. O método utilizado é baseado nas FRF(s) e é formulado a partir de um resíduo de entrada, dado pelo balanço de força do sistema. Um software é implementado para fazer a comparação e correlação dos modelos analítico e experimental, e se necessário, ajustar os parâmetros do modelo analítico. O modelo analítico é gerado pelo software comercial ANSYSâ, e os dados experimentais são obtidos em testes experimentais de análise modal. A metodologia foi avaliada com exemplos numéricos e testes experimentais buscando identificar as potencialidades e limitações do método. Dois testes experimentais foram realizados. O primeiro teste consiste em obter os parâmetros modais de uma estrutura simples do tipo viga. No segundo teste, os parâmetros modais são obtidos de uma estrutura composta por duas peças em contato. O objetivo do primeiro teste é avaliar a potencialidade da metodologia proposta utilizando uma base de dados experimental confiável, já que a estrutura é simples e suas propriedades são bem conhecidas. O segundo teste tem por objetivo avaliar a metodologia para o problema de contato. Os resultados apresentados mostram a funcionalidade da metodologia. O ajuste foi realizado com êxito tanto para a estrutura simples como para a estrutura composta por duas peças em contato. / The present work proposes a finite element model updating methodology applied to problems of contact. The updating of the models is accomplished through the updating of the physical and/or geometric parameters of the model as well as the parameters of the contact elements. The approach is a FRF-based method; it is formulated from input residue, given by the equilibrium force of the system. It is implemented a software to makes the comparison and correlation of the analytical and experimental models, and if necessary, to adjust the parameters of the analytic model based in the experimental data, in order to get a more reliable finite element model. The analytical model is created by the commercial software ANSYSâ, and the experimental data are obtained by experimental modal tests. The methodology was evaluated with numeric and experimental data aiming at identifying of the potentialities and limitations of the method. Two experimental tests were developed, the first test consists of the analyses of a beam like structure and the second one, the analysis of a structure composed by two pieces in contact. The aim of the first test is to evaluate the potentiality of the methodology using a reliable experimental base of data, since the structure is simple and its properties are very wellknown. The second test has for objective to evaluate the methodology for problems of contact. The presented results have shown the functionality of the methodology. The adjustment was accomplished with relative success for the simple structure as well as for the structure composed by two pieces in contact.
7

Projection methods for contact problems in elasticity

Meyer, Arnd, Unger, Roman 01 September 2006 (has links)
The aim of the paper is showing, how projection methods can be used for computing contact problems in elasticity for different classes of obstacles. Starting with the projection idea for handling hanging nodes in finite element discretizations the extension of the method for handling penetrated nodes in contact problems will be described for some obstacle classes.
8

Obstacle Description with Radial Basis Functions for Contact Problems in Elasticity

Unger, Roman 03 February 2009 (has links)
In this paper the obstacle description with Radial Basis Functions for contact problems in three dimensional elasticity will be done. A short Introduction of the idea of Radial Basis Functions will be followed by the usage of Radial Basis Functions for approximation of isosurfaces. Then these isosurfaces are used for the obstacle-description in three dimensional elasticity contact problems. In the last part some computational examples will be shown.
9

Méthodes de discrétisation hybrides pour les problèmes de contact de Signorini et les écoulements de Bingham / Hybrid discretization methods for Signorini contact and Bingham flow problems

Cascavita Mellado, Karol 18 December 2018 (has links)
Cette thèse s'intéresse à la conception et à l'analyse de méthodes de discrétisation hybrides pour les inégalités variationnelles non linéaires apparaissant en mécanique des fluides et des solides. Les principaux avantages de ces méthodes sont la conservation locale au niveau des mailles, la robustesse par rapport à différents régimes de paramètres et la possibilité d’utiliser des maillages polygonaux / polyédriques avec des nœuds non coïncidants, ce qui est très intéressant dans le contexte de l’adaptation de maillage. Les méthodes de discrétisation hybrides sont basées sur des inconnues discrètes attachées aux faces du maillage. Des inconnues discrètes attachées aux mailles sont également utilisées, mais elles peuvent être éliminées localement par condensation statique. Deux applications principales des discrétisations hybrides sont abordées dans cette thèse. La première est le traitement par la méthode de Nitsche du problème de contact de Signorini (dans le cas scalaire) avec une non-linéarité dans les conditions aux limites. Nous prouvons des estimations d'erreur optimales conduisant à des taux de convergence d'erreur d'énergie d'ordre (k + 1), si des polynômes de face de degré k >= 0 sont utilisés. La deuxième application principale concerne les fluides à seuil viscoplastiques. Nous concevons une méthode de Lagrangien augmenté discrète appliquée à la discrétisation hybride. Nous exploitons la capacité des méthodes hybrides d’utiliser des maillages polygonaux avec des nœuds non coïncidants afin d'effectuer l’adaptation de maillage local et mieux capturer la surface limite. La précision et la performance des schémas sont évaluées sur des cas tests bidimensionnels, y compris par des comparaisons avec la littérature / This thesis is concerned with the devising and the analysis of hybrid discretization methods for nonlinear variational inequalities arising in computational mechanics. Salient advantages of such methods are local conservation at the cell level, robustness in different regimes and the possibility to use polygonal/polyhedral meshes with hanging nodes, which is very attractive in the context of mesh adaptation. Hybrid discretizations methods are based on discrete unknowns attached to the mesh faces. Discrete unknowns attached to the mesh cells are also used, but they can be eliminated locally by static condensation. Two main applications of hybrid discretizations methods are addressed in this thesis. The first one is the treatment using Nitsche's method of Signorini's contact problem (in the scalar-valued case) with a nonlinearity in the boundary conditions. We prove optimal error estimates leading to energy-error convergence rates of order (k+1) if face polynomials of degree k >= 0 are used. The second main application is on viscoplastic yield flows. We devise a discrete augmented Lagrangian method applied to the present hybrid discretization. We exploit the capability of hybrid methods to use polygonal meshes with hanging nodes to perform local mesh adaptation and better capture the yield surface. The accuracy and performance of the present schemes is assessed on bi-dimensional test cases including comparisons with the literature
10

Métodos de otimização aplicados à análise de estruturas / Linear and nonlinear programming applied to structural analysis

Rigo, Eduardo 22 October 1999 (has links)
O Método dos Elementos Finitos quando aplicado à análise de estruturas, em sua forma usual, conduz a sistemas de equações que, no caso não-linear, exigem algoritmos iterativos que realizam, em essência, uma linearização a cada passo de carga. Por outro lado, o Método da Energia formula o problema de análise estrutural na forma de uma minimização, podendo apresentar restrições sobre a função deslocamento, por exemplo. Nesse caso, os algoritmos de programação matemática proporcionam a maneira mais consistente para a obtenção da solução. O presente trabalho de mestrado trata, essencialmente, da aplicação das técnicas de otimização como ferramenta para a análise do comportamento não-linear de estruturas, que pode ser decorrente de condições de vinculação. Os problemas estruturais são formulados via Método da Energia, que resulta na minimização de funções quadráticas sujeitas a um conjunto de restrições. São discutidos os métodos do tipo Gradiente, Newton e Quase-Newton, com a descrição dos seus algoritmos básicos e apresentação da regra de busca unidimensional adotada (Regra de Armijo ou Exata). Devido ao fato do Método de Newton ter apresentado uma melhor convergência em relação aos demais algoritmos estudados, optou-se por combiná-lo com uma estratégia de conjuntos ativos para o caso de minimização com variáveis canalizadas. / The finite element method when applied to structural analysis, in its usual form, it drives the equations systems that, in the nonlinear case, they demand algorithms repetitive that accomplish, in essence, a linear programming to each load step. However, the Energy Method formulates the problem of structural analysis in the form of the minimizing, could present restrictions on the displacement function, for example. In that case, the algorithms of mathematical programming provide the most consistent way for obtaining of the solution. The present work negotiates, essentially, of the application in mathematical programming as a form to analyze the nonlinear structures behavior, that can be current of boundary conditions. The structural problems are formulated through Energy Method, that results in the mathematical programming of quadratic functions subject to a group of restrictions. The methods of the type Gradient are discussed, of Newton and Quasi-Newton, with the description of its basic algorithms and presentation of the rule of search adopted unidimensional (Rule of Armijo or Exact). Due to the fact of Newton\'s Method to have presented a better convergence in relation to the other studied algorithms, it was opted for combining it with a \"strategy of the active groups\" for the case of mathematical programming with restricted variables.

Page generated in 0.0941 seconds