• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 49
  • 43
  • 11
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 342
  • 342
  • 282
  • 170
  • 127
  • 120
  • 103
  • 63
  • 57
  • 56
  • 55
  • 54
  • 47
  • 44
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Examining the development of topic specific pedagogical content knowledge in stoichiometry in pre-service teachers

Ndlovu, Bongani Prince January 2017 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand In partial fulfillment of the requirements for the degree of Master of Science (Science Education) Johannesburg, 2017 / Over the past three years, National Senior Certificate diagnostic reports reported that learner performance in key chemistry topics remains an aspect for concern. In these reports, poor understanding of stoichiometry is identified as an underlying factor. On the other hand, the status of mathematics and science teaching has been under critique by several education researchers, pointing to poor teacher training in the subjects. One possible way to respond to the challenge in science education is to introduce and emphasize the development of Topic Specific Pedagogical Content Knowledge (TSPCK) as the professional knowledge for teaching science topics in Initial Teacher Education (ITE) programme. TSPCK is renowned for enabling teachers to pedagogically transform difficult content of specific science topics into forms best understandable by learners. This study examined the impact on the quality of TSPCK following an intervention that explicitly targeted the development of the competence to transform content knowledge using stoichiometry as a topic of learning. This examination happened as teacher plan to teach the topic. The study followed a Mixed Method research design and a case study as a research strategy. It was located in the methodology class of physical science IV. The participants were 10 pre-service teachers who were in their final year of Bachelor study in education (B. Ed). They were bound by the requirements of the course and their common choice of physical science as their major subject. These pre-service teachers were exposed to a TSPCK based intervention that explicitly targeted the development of TSPCK component interaction. More evidence of component interactions was comprehended as developing quality of TSPCK. Quantitative data was collected as a set of pre- and post-intervention TSPCK tests using existing, specially designed tools that were developed and validated in a separate study. Five (5) of the then pre-service were followed a year later after the intervention to measure the quality of TSPCK in the topic of intervention in order to determine the extent of retention of the quality of TSPCK since the intervention. Qualitative data was collected through face to face interviews to confirm observed patterns of retention. The findings in this study indicated that pre-service teachers experienced a visible improvement in the quality of their TSPCK in stoichiometry as a direct result of the intervention. Pre-service teachers showed more evidence of component interactions post the intervention. The results further indicated that pre-service teachers experienced the components of TSPCK to have different levels of difficulty when using them to transform the content in stoichiometry during planning. The component of ―conceptual teaching strategies‖ was found to be the most difficult. A year later, the quality of TSPCK in planning to teach the topic of the intervention was found to have been retained by the then pre-service teachers. Recommendations about the implementation of TSPCK in core topics in ITE are made. Firstly, for initial teacher education, it is recommended that courses such as methodology for teaching chemistry be structured as TSPCK based intervention. Secondly, more work need to be done in the examination of retention span of TSPCK. Thus, similar studies must be conducted in an effort to increase empirical evidence about the extent at which TSPCK is retained by beginning teachers. / MT 2017
52

Aspekter på utomhuspedagogik i geografiämnet / Aspects of outdoor education in geography education

Höglund, Moa, Forell, Julia January 2024 (has links)
Detta arbete riktar sig till lärare och lärarstudenter inom geografiämnet. Syftet med arbetet är att belysa olika aspekter av utomhuspedagogik, detta för att kunna förbättra lärares och lärarstudenters arbete med utomhuspedagogik. Frågeställningen som arbetet kommer att besvara är “Vad säger forskningen om positiva och negativa aspekter av utomhuspedagogik i geografiundervisningen?”. Frågeställningen väcktes under vår verksamhetsförlagda utbildning, då vi reagerade på att lärarna inte använde sig av utomhuspedagogik. Genom databaserna ERC, ERIC och Swepub har vi sökt fram vetenskapliga artiklar och doktorsavhandlingar. Detta har gjorts med relevanta sökord utifrån vår frågeställning.   Utifrån resultatet har vi kommit fram till att det främst finns positiva aspekter på utomhuspedagogik, men att det även förekommer få negativa aspekter. Med detta resultat kan vi dra slutsatsen att utomhuspedagogik ger övervägande positiva effekter för elevernas utveckling och lärande.  Detta kan gynna oss i vår framtida yrkesroll då denna kunskapsöversikt har gett oss en medvetenhet om hur viktig utomhuspedagogik är. Men även hur viktigt det är att vi som lärare skapar en välplanerad utomhuslektion då dåligt planerade utomhuslektioner missgynnar elevernas lärande.
53

Effect of the Science Teaching Advancement through Modeling Physical Science Professional Development Workshop on Teachers' Attitudes, Beliefs and Content Knowledge and Students' Content Knowledge

Dietz, Laura Elizabeth 14 August 2014 (has links)
No description available.
54

The Dimensionality of Science Achievement and its Links to Other Academic Domains

Lukowski, Sarah L. January 2014 (has links)
No description available.
55

The Pedagogical Content Knowledge of Teacher Educators: A Case Study in a Democratic Teacher Preparation Program

Chang, Yueh-hsia 07 October 2005 (has links)
No description available.
56

The transformation of science and mathematics content knowledge into teaching content by university faculty

Flynn, Natalie P. H. January 2015 (has links)
University science and mathematics education today is no longer solely focused on training the small fraction of students who will become tomorrow's science and mathematics researchers, but is required to engage and create scientifically/mathematically literate American citizens (Ball, 2000; Dean, 2009; Kind, 2009a; Mooney & Kirshenbaum, 2009; Olsen, 2009). University professors are typically content experts not trained in pedagogy. This creates unique teaching issues in transforming complex content material. Expert content mastery of a subject can blind faculty to potential student difficulties (Ben-Peretz, 2011; Nathan, Koedinger, & Alibali, 2001). This, combined with limited pedagogical training and curricular constraints, can create teaching difficulties, contributing to high levels of student attrition (Bhattacharya, 2012; Feldon, Timmerman, Stowe, & Showman, 2010). Considerable research has been conducted on best teaching practices and the central role that content knowledge plays in teaching, yet little evidence is found to illuminate the processes by which subject matter content experts (faculty) unpack their expertise for use in teaching (Ball, 2000; Bouwma-Gearhart, 2012; French, 2005; Weiman, Perkins, & Gilbert, 2010). Much of the research literature defines deconstructing and unpacking content knowledge as the complex processes by which experts transform content knowledge into knowledge used for teaching (Abell, 2008; Ball & Bass, 2000; Hashweh, 2005; Shulman, 1986, 1987). According to the well accepted educational construct known as pedagogical content knowledge (PCK), teachers possess unique and distinct sets of knowledge domains that enable them to transform their content into teachable knowledge (Shulman, 1986, 1987). Much of the literature agrees that strong foundational content knowledge is required in order to develop PCK (Hill, Rowen, & Ball, 2005; Lowenberg-Ball, Hoover-Thames, & Phelps, 2008; Padilla, Ponce-de-Leon, Rembado, & Garritz, 2008). If limited content is a major restriction in the development of PCK, how does this process proceed when content is strong, as in the case of university faculty? This study looked at the processes that occur as content experts (faculty) focus on the deconstruction process in order to develop lessons and teach. The study focused on the components or paths of the transformation process in an attempt to identify the development of the knowledge base that content experts use in order to teach. This study developed a survey from the existing literature in an attempt to illuminate the processes, tools, insights, and events that allow university science and mathematics content experts (Ph.D.'s) unpack their expertise in order to teach develop and teach undergraduate students. A pilot study was conducted at an urban university in order to refine the survey. The study consisted of 72 science or mathematics Ph.D. faculty members that teach at a research-based urban university. Follow-up interviews were conducted with 21 volunteer faculty to further explore their methods and tools for developing and implementing teaching within their discipline. Statistical analysis of the data revealed: faculty that taught while obtaining their Ph.D. were less confident in their ability to teach successful and faculty that received training in teaching believed that students have difficult to change misconceptions and do not commit enough time to their course. Student centered textbooks ranked the highest among tools used to gain teaching strategies followed by grading of exams and assignments for gaining insights into student knowledge and difficulties. Science and mathematics education literature and university provided education session ranked the lowest in rating scale for providing strategies for teaching. The open-ended survey questions were sub-divided and analyzed by the number of years of experience to identify the development of teaching knowledge over time and revealed that teaching became more interactive, less lecture based, and more engaging. As faculty matured and gained experience they became more aware of student misconceptions and difficulties often changing their teaching to eliminate such issues. As confidence levels increase their teaching included more technology-based tools, became more interactive, incorporated problem based activities, and became more flexible. This change occurred when and if faculty members altered their thinking about their knowledge from an expert centered perspective to a student centric view. Follow-up interviews of twenty faculty yielded a wide variety of insights into the complicated method of deconstructing expert science and mathematics content. The interviews revealed a major disconnect between education research and researchers and the science and mathematics content experts who teach. There is a pervasive disregard for science and mathematics education and training. Faculty members find little to no support for teaching. Though 81% obtained their Ph.D. with the intent to enter an academic setting, pedagogical training was non-existent or limited, both prior to and after obtaining faculty positions. Experience alone did not account for confidence or ability to successfully teach. Faculty that were able to `think like a student' and view their material from a student's perspective' seemed to be the most confident and flexible in their teaching methods. Grading and having an open and interactive teaching style, being on the `side of the students' also seemed to allow faculty to connect more deeply with the students and learn about common misconceptions and difficulties. Though most faculty claimed to not teach as they were taught and not recall having specific content difficulties, this essential interaction with many students facilitated a shift in thinking about their content. This shift allowed for a reversal from teacher centered classrooms to student centered. Multiple issues arise when teaching at a traditional larger lecture style found in the majority of universities science and mathematics courses that constrain and provide unique teaching challenges. Many faculty have developed unique tools to incorporate successful teaching strategies, such as daily pre-quizzes and smart-phone questioning as well as small group work, computer posted guides, strategic class breaks, and limiting lecture style in favor of a more active engaged classroom. / Educational Psychology
57

The Relationship of Literacy Teaching Efficacy Beliefs and Literacy Pedagogical Content Knowledge During Student Teaching

Galbally, Jaclyn January 2014 (has links)
Student literacy rates across the country are unacceptably low. Teacher preparation has emerged as a priority in both research and practice in efforts to improve the nation's literacy rates. Teacher knowledge and beliefs influence the quality of instruction teachers are able to implement. This study was designed to help educators and mentors of novice teachers understand the relationship between literacy pedagogical content knowledge and literacy teacher efficacy beliefs and changes to this relationship during the course of student teaching. Using a sample of 36 pre-service teachers assigned to student teaching in kindergarten, first or second grade classrooms, literacy pedagogical content knowledge was measured in a multiple-choice assessment that covered a variety of early literacy instructional areas including phonology, orthography, vocabulary, morphology and comprehension. Literacy teaching efficacy beliefs was measured using a self-report questionnaire. Participants completed the survey at two time points, at the beginning and end of student teaching. To determine if a literacy pedagogical content knowledge and literacy teaching efficacy beliefs demonstrated a relationship, Pearson correlations were calculated at both time points. Results of this study suggest that these constructs are not related and operate independently. Additionally this study suggested that while literacy teaching efficacy beliefs improved significantly over the course of student teaching, literacy pedagogical content knowledge did not. Results from this study can inform teacher educators, mentors of novice teaches and professional development programmers on the relationship of literacy pedagogical content knowledge and literacy teaching efficacy beliefs in pre-service teachers. / Educational Psychology
58

STEM education in Virginia 4-H: A qualitative exploration of engineering understandings in 4-H STEM educators

Corkins, Chelsea Rose 12 July 2019 (has links)
Science, Technology, Engineering, and Mathematics (STEM) education is spurred by an economic and social need for cross-discipline understanding of complex, worldwide problems, made through intentional connections between two or more STEM subject areas. In order for educators to articulate these connections, research suggests they must have a firm understanding of the individual disciplines through both content and pedagogical approaches. In 2007, as a leader in non-formal STEM education, 4-H made a specific commitment to improve STEM literacy in America's youth by forming the 4-H Science mission mandate, therefore increasing its STEM programming. This qualitative study examined how 4-H educators come to understand STEM and engineering concepts and utilizations, and whether their backgrounds influence their verbalization or expectations of engineering. Narrative themes emerged that help determine how engineering is currently and can continue to be more clearly and consistently articulated and connected within 4-H programming. Themes included 1) a lack of direct connection or understanding of engineering characteristics to 4-H programs, 2) familiarity with and ability to apply engineering characteristics to the Do Reflect Apply model, and 3) the importance of volunteers as STEM and engineering educators within 4-H programming. Strategies for professional development emphasizing engineering understandings, learning outcomes, and broad applications were discovered. Professional development should consider the effects of engineering and STEM self-efficacy, as well as professional identity development. Additionally, it utilize approaches such as the Do Reflect Apply model, and reflect on the learning objectives 4-H educators strive to achieve during STEM programming in conjunction with life-skills. / Master of Science in Life Sciences / In 2007, 4-H made a specific commitment to improve Science, Technology, Engineering, and Mathematics (STEM) literacy in America’s youth by forming the 4-H Science mission mandate. However, research suggests in order for educators to successfully implement STEM programming, they need to understand the content and best teaching practices, which presents a unique obstacle for 4-H educators as many lack formal education in both. By conducting interviews with current 4-H educators in Virginia, this research begins to highlight the importance behind STEM understanding and STEM teaching practices – particularly as they pertain to engineering projects. These interview and data analysis process uncovered common themes including connections between engineering and current 4-H educational approaches, as well as the existing barriers between volunteers as STEM educators and successful programming. In order to improve STEM education within 4-H, professional development strategies focusing on engineering characteristics, outcomes aligning with 4-H goals, and applications to real-world problems should be implemented.
59

The Impact of the Design Process on Student Self-Efficacy and Content Knowledge

Gess, Ashley Harding 05 May 2015 (has links)
The United States of America needs STEM trained workers, STEM faculty and STEM professionals to improve its technical and professional workforce in order to maintain leadership in a global economy. However, American students are not opting to remain in a STEM course of study, and this is especially so for women and minorities. Of the students who pursue post-secondary education, the majority of movement away from STEM majors occurs in the first two years. Thus, educators are concerned with investigating factors that may influence students' persistence and success when in a STEM track of learning. To that end, this quasi-experimental mixed-method study was concerned with investigating the effects of participation in the design process on student self-efficacy and content knowledge gains in an undergraduate anatomy and physiology laboratory. Over fifty students participated in a design task that paralleled the topic being studied in a given semester and were given efficacy surveys along with lab practicums. Qualitative efficacy data, quantitative efficacy data and quantitative practicum results were analyzed and triangulated to produce a meta-inference as to the effect of participation in the design project had on student learning. Preliminary results indicate that the design process makes statistically significant impacts on both self-efficacy and content knowledge in the given context. The author follows with a discussion of the impact of design-based learning in the undergraduate biology classroom and implications for further research are considered. / Ph. D.
60

Criteria for effective mathematics teacher education with regard to mathematical content knowledge for teaching / Mariana Plotz

Plotz, Mariana January 2007 (has links)
South African learners underachieve in mathematics. The many different factors that influence this underachievement include mathematics teachers' role in teaching mathematics with understanding. The question arises as to how teachers' mathematical content knowledge states can be transformed to positively impact learners' achievement in mathematics. In this study, different kinds of teachers' knowledge needed for teaching mathematics were discussed against the background of research in this area, which included the work of Shulman, Ma and Ball. From this study an important kind of knowledge, namely mathematical content knowledge for teaching (MCKfT), was identified and a teacher's ability to unpack mathematical knowledge and understanding was highlighted as a vital characteristic of MCKfT. To determine further characteristics of MCKfT, the study focussed on the nature of mathematics, different kinds of mathematical content knowledge (procedural and conceptual), cognitive processes (problem solving, reasoning, communication, connections and representations) involved in doing mathematics and the development of mathematical understanding (instrumental vs. relational understanding). The influence of understanding different problem contexts and teachers' ability to develop reflective practices in teaching and learning mathematics were discussed and connected to a teacher's ability to unpack mathematical knowledge and understanding. In this regard, the role of teachers' prior knowledge or current mathematical content knowledge states was discussed extensively. These theoretical investigations led to identifying the characteristics of MCKfT, which in turn resulted in theoretical criteria for the development of MCKfT. The theoretical study provided criteria with which teachers' current mathematical content knowledge states could be analysed. This prompted the development of a diagnostic instrument consisting of questions on proportional reasoning and functions. A qualitative study was undertaken in the form of a diagnostic content analysis on teachers' current mathematical content knowledge states. A group of secondary school mathematics teachers (N=128) involved in the Sediba Project formed the study population. The Sediba Project is an in-service teacher training program for mathematics teachers over a period of two years. These teachers were divided into three sub-groups according to the number of years they had been involved in the Sediba Project at that stage. The teachers' current mathematical content knowledge states were analysed with respect to the theoretically determined characteristics of and criteria for the development of MCKfT. These criteria led to a theoretical framework for assessing teachers' current mathematical content knowledge states. The first four attributes consisted of the steps involved in mathematical problem solving skills, namely conceptual knowledge (which implies a deep understanding of the problem), procedural knowledge (which is reflected in the correct choice of a procedure), the ability to correctly execute the procedure and the insight to give a valid interpretation of the answer. Attribute five constituted the completion of these four attributes. The final six attributes were an understanding of different representations, communication of understanding in writing, reasoning skills, recognition of connections among different mathematical ideas, the ability to unpack mathematical understanding and understanding the context a problem is set in. Quantitative analyses were done on the obtained results for the diagnostic content analysis to determine the reliability of the constructed diagnostic instrument and to search for statistically significant differences among the responses of the different sub-groups. Results seemed to indicate that those teachers involved in the Sediba Project for one or two years had benefited from the in-service teacher training program. However, the impact of this teachers' training program was clearly influenced by the teachers' prior knowledge of mathematics. It became clear that conceptual understanding of foundation, intermediate and senior phase school mathematics that should form a sound mathematical knowledge base for more advanced topics in the school curriculum, is for the most part procedurally based with little or no conceptual understanding. The conclusion was that these teachers' current mathematical content knowledge states did not correspond to the characteristics of MCKfT and therefore displayed a need for the development of teachers' current mathematical content knowledge states according to the proposed criteria and model for the development of MCKfT. The recommendations were based on the fact that the training that these teachers had been receiving with respect to the development of MCKfT is inadequate to prepare them to teach mathematics with understanding. Teachers' prior knowledge should be exposed so that training can focus on the transformation of current mathematical content knowledge states according to the characteristics of MCKfT. A model for the development of MCKfT was proposed. The innermost idea behind this model is that a habit of reflective practices should be developed with respect to the characteristics of MCKfT to enable a mathematics teacher to communicate and unpack mathematical knowledge and understanding and consequently solve mathematical problems and teach mathematics with understanding. Key words for indexing: school mathematics, teacher knowledge, mathematical content knowledge, mathematical content knowledge for teaching, mathematical knowledge acquisition, mathematics teacher education / Thesis (Ph.D. (Education))--North-West University, Potchefstroom Campus, 2007.

Page generated in 0.0922 seconds